Created
January 20, 2020 06:58
-
-
Save genomewalker/ba45984aac64fb8e2278606d8231f37a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
# Functions for pretty histograms | |
nclass.all <- function(x, fun = median) | |
{ | |
fun(c( | |
nclass.Sturges(x), | |
nclass.scott(x), | |
nclass.FD(x) | |
)) | |
} | |
calc_bin_width <- function(x, ...) | |
{ | |
rangex <- range(x, na.rm = TRUE) | |
(rangex[2] - rangex[1]) / nclass.all(x, ...) | |
} | |
library(ggplot2) | |
StatPercentileX <- ggproto("StatPercentileX", Stat, | |
compute_group = function(data, scales, probs) { | |
percentiles <- quantile(data$x, probs=probs) | |
data.frame(xintercept=percentiles) | |
}, | |
required_aes = c("x") | |
) | |
stat_percentile_x <- function(mapping = NULL, data = NULL, geom = "vline", | |
position = "identity", na.rm = FALSE, | |
show.legend = NA, inherit.aes = TRUE, ...) { | |
layer( | |
stat = StatPercentileX, data = data, mapping = mapping, geom = geom, | |
position = position, show.legend = show.legend, inherit.aes = inherit.aes, | |
params = list(na.rm = na.rm, ...) | |
) | |
} | |
StatPercentileXLabels <- ggproto("StatPercentileXLabels", Stat, | |
compute_group = function(data, scales, probs) { | |
percentiles <- quantile(data$x, probs=probs) | |
data.frame(x=percentiles, y=Inf, | |
label=paste0("p", probs*100, ": ", | |
scales::comma(round(10^percentiles, digits=1)))) | |
}, | |
required_aes = c("x") | |
) | |
stat_percentile_xlab <- function(mapping = NULL, data = NULL, geom = "text", | |
position = "identity", na.rm = FALSE, | |
show.legend = NA, inherit.aes = TRUE, ...) { | |
layer( | |
stat = StatPercentileXLabels, data = data, mapping = mapping, geom = geom, | |
position = position, show.legend = show.legend, inherit.aes = inherit.aes, | |
params = list(na.rm = na.rm, ...) | |
) | |
} | |
# Get assemblies | |
HMP1_I_assm <- read_csv("~/Downloads/HMASM.csv") %>% | |
select(1:2) %>% | |
setNames(c("label", "body_site")) | |
# Read data | |
data <- read_tsv("~/Downloads/marine_hmp_smpl_norfs.tsv.gz", col_names = FALSE) %>% | |
setNames(c("label", "norfs")) %>% | |
mutate(study = case_when(grepl("^TARA", label) ~ "TARA", | |
grepl("^MP", label) ~ "MALASPINA", | |
grepl("^OSD", label) ~ "OSD", | |
grepl("^SRS", label) ~ "HMP", | |
TRUE ~ "GOS")) | |
# Read HMP QC samples | |
HMP_qc <- read_tsv("~/Downloads/HMP_qc_passed.txt", col_names = FALSE) %>% | |
setNames("label") | |
# Get all cdata | |
# HMP1-I date = 2011 | |
# HMP1-II date = 2014 | |
HMP_cdata <- read_csv("~/Downloads/HMP_phase2017_cdata.txt", col_names = FALSE) %>% | |
mutate(phase = case_when(grepl("2011", X8) ~ "HMP1-I", | |
TRUE ~ "HMP1-II")) %>% | |
select(X1, phase) %>% rename(label = X1) | |
# Get bad HMP1-I samples | |
# 745 samples | |
HMP1_I <- HMP_cdata %>% | |
inner_join(HMP1_I_assm) | |
# 690 HQ | |
HMP_bad <- HMP1_I %>% | |
filter(phase == "HMP1-I", !(label %in% HMP_qc$label)) | |
# | |
data_orig <- data %>% | |
filter(!(label %in% HMP_bad$label)) | |
data %>% | |
group_by(study) %>% | |
count() | |
data_orig %>% | |
group_by(study) %>% | |
count() | |
nsamples <- data_orig %>% | |
group_by(study) %>% | |
count() | |
data_orig_summary <- summary(data_orig$norfs) | |
ggthemr::ggthemr(palette = "fresh", layout = "scientific") | |
data_orig %>% | |
ggplot(aes(norfs)) + | |
geom_histogram(binwidth = calc_bin_width(log10(data_orig$norfs)), color = "black", alpha = 0.7) + | |
stat_percentile_x(probs=c(0.25, 0.5, 0.75), linetype=2, color = "#B7144B") + | |
stat_percentile_xlab(probs=c(0.25, 0.5, 0.75), hjust=1, vjust=1.5, angle=90) + | |
scale_x_log10(labels = scales::comma) + | |
xlab("Number of ORFs") + | |
ylab("Counts") | |
p25 <- quantile(data_orig$norfs, probs=0.25) | |
orfXsample <- data_orig %>% | |
filter(norfs >= p25) %>% | |
group_by(study) %>% | |
count(sort = TRUE) | |
# Get final set of samples | |
data_final <- data_orig %>% | |
filter(norfs >= p25) | |
data_final %>% | |
ggplot(aes(norfs)) + | |
geom_histogram(binwidth = calc_bin_width(log10(data_orig$norfs)), color = "black", alpha = 0.7) + | |
stat_percentile_x(probs=c(0.25, 0.5, 0.75), linetype=2, color = "#B7144B") + | |
stat_percentile_xlab(probs=c(0.25, 0.5, 0.75), hjust=1, vjust=1.5, angle=90) + | |
scale_x_log10(labels = scales::comma) + | |
xlab("Number of ORFs") + | |
ylab("Counts") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment