Created
July 25, 2023 01:33
-
-
Save gentlyawesome/2cb48bf8c4e376f0a45abd1507a0e599 to your computer and use it in GitHub Desktop.
Vector DB
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from collections import defaultdict | |
from typing import List, Tuple | |
def cosine_similarity(v1: np.ndarray, v2: np.ndarray) -> float: | |
dot_product = np.dot(v1, v2) | |
norm_v1 = np.linalg.norm(v1) | |
norm_v2 = np.linalg.norm(v2) | |
return dot_product / (norm_v1 * norm_v2) | |
class VectorDatabase: | |
def __init__(self): | |
self.vectors = defaultdict(np.ndarray) | |
def insert(self, key: str, vector: np.ndarray) -> None: | |
self.vectors[key] = vector | |
def search(self, query_vector: np.ndarray, k: int) -> List[Tuple[str, float]]: | |
similarities = [(key, cosine_similarity(query_vector, vector)) for key, vector in self.vectors.items()] | |
similarities.sort(key=lambda x: x[1], reverse=True) | |
return similarities[:k] | |
def retrieve(self, key: str) -> np.ndarray: | |
return self.vectors.get(key, None) | |
vector_db = VectorDatabase() | |
vector_db.insert("vector_1", np.array([0.1,0.2,0.3])) | |
vector_db.insert("vector_2", np.array([0.4,0.5,0.6])) | |
query_vector = np.array([0.15,0.25,0.35]) | |
similar_vectors = vector_db.search(query_vector, k = 2) | |
print("Similar vectors:", similar_vectors) | |
retrieved_vector = vector_db.retrieve("vector_1") | |
print("Retrieved vector:", retrieved_vector) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment