Created
December 5, 2019 15:43
-
-
Save geoffreygarrett/c3ae2c7edc3af81c39e31718d323db30 to your computer and use it in GitHub Desktop.
MATLAB Conversion from classical orbital elements into RV.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [r,v] = coe2rv(a, e, inc, raan, argp, theta, mu) | |
cos_raan = cos(raan); | |
sin_raan = sin(raan); | |
cos_argp = cos(argp); | |
sin_argp = sin(argp); | |
cos_inc = cos(inc); | |
sin_inc = sin(inc); | |
r = a * (1 - e ^ 2) / (1.0 + e * cos(theta)); | |
l1 = (+cos_raan * cos_argp - sin_raan * sin_argp * cos_inc); | |
l2 = (-cos_raan * sin_argp - sin_raan * cos_argp * cos_inc); | |
m1 = (+sin_raan * cos_argp + cos_raan * sin_argp * cos_inc); | |
m2 = (-sin_raan * sin_argp + cos_raan * cos_argp * cos_inc); | |
n1 = sin_argp * sin_inc; | |
n2 = cos_argp * sin_inc; | |
aux = [r * cos(theta); r * sin(theta)]; | |
transformation = [l1, l2;... | |
m1, m2;... | |
n1, n2]; | |
% Position | |
xyz = transformation * aux; | |
x = xyz(1); | |
y = xyz(2); | |
z = xyz(3); | |
% Velocity | |
H = sqrt(mu * a * (1 - e ^ 2)); | |
v_x = mu / H * (-l1 * sin(theta) + l2 * (e + cos(theta))); | |
v_y = mu / H * (-m1 * sin(theta) + m2 * (e + cos(theta))); | |
v_z = mu / H * (-n1 * sin(theta) + n2 * (e + cos(theta))); | |
r = [x, y, z]; | |
v = [v_x, v_y, v_z]; | |
end | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment