Created
May 25, 2019 15:01
-
-
Save geoffreygarrett/f62f2c7200725e40d3a3334bac0e2542 to your computer and use it in GitHub Desktop.
DeepLearning#4
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from CNN_Class import CNN, random_split, CustomDataset | |
import pygmo as pg | |
NORMALIZE = True | |
IMAGE_PATH = 'database/' | |
dataset = CustomDataset(image_path=IMAGE_PATH, normalise=NORMALIZE, train=True) | |
lengths = [10000, 10778] # train data and test data | |
train_dataset, test_dataset = random_split(dataset, lengths) # 20778 | |
def argument_input_interface( | |
n_conv, | |
kernel_conv, | |
stride_conv, | |
kernel_pool, | |
stride_pool, | |
n_layers, | |
dim1=(6, 32), | |
dim2=(120, 40) | |
): | |
_dim1 = np.linspace(dim1[0], dim1[1], int(n_conv)).astype(int) | |
_dim2 = np.linspace(dim2[0], dim2[1], int(n_conv)).astype(int) | |
_kernel_conv = [int(kernel_conv)] * int(n_conv) | |
_stride_conv = [int(stride_conv)] * int(n_conv) | |
_kernel_pool = [int(kernel_pool)] * int(n_conv) | |
_stride_pool = [int(stride_pool)] * int(n_conv) | |
return int(n_conv), list(_dim1), _kernel_conv, _stride_conv, _kernel_pool, _stride_pool, int(n_layers), list(_dim2) | |
class NeuroEvolutionaryNetwork: | |
def __init__(self): | |
self.network_class = CNN | |
def fitness(self, x): | |
session = self.network_class( | |
train_dataset, | |
test_dataset, | |
*argument_input_interface(*x) | |
) | |
return [session.losslst, session.realtime] | |
def get_nobj(self): | |
return 2 | |
def get_name(self): | |
return "NeuroEvolutionary Network" | |
def get_bounds(self): | |
return ( | |
# n_conv . kernel_conv . stride_conv . kernel_pool . stride_pool . n_layers | |
[3, 3, 1, 2, 2, 4], | |
[6, 5, 3, 5, 5, 15] | |
) | |
if __name__ == "__main__": | |
problem = pg.problem(NeuroEvolutionaryNetwork()) | |
pop = pg.population(problem, size=20) | |
algo = pg.algorithm(pg.nsga2(gen=40)) | |
pop = algo.evolve(pop) | |
fits, vectors = pop.get_f(), pop.get_x() | |
# extract and print non-dominated fronts | |
ndf, dl, dc, ndr = pg.fast_non_dominated_sorting(fits) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment