Created
June 12, 2019 12:41
-
-
Save geoffsmith/0b69070e96262dffe4ae1c22e9126bf3 to your computer and use it in GitHub Desktop.
Example showing PixelShuffle ONNX export doesn't use same ordering as PyTorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import onnx | |
| import torch | |
| from caffe2.python.onnx import backend | |
| from torch import nn | |
| from torch.autograd import Variable | |
| from torch.nn import PixelShuffle | |
| class MyPixelShuffle(nn.Module): | |
| """ | |
| Alternative version of pixel shuffle that was copied from the C++ version | |
| """ | |
| def __init__(self, upscale_factor): | |
| super(MyPixelShuffle, self).__init__() | |
| self._upscale_factor = upscale_factor | |
| self._upscale_factor_squared = upscale_factor ** 2 | |
| def forward(self, x): | |
| b = x.shape[0] | |
| c = x.shape[1] | |
| h = x.shape[2] | |
| w = x.shape[3] | |
| oc = c / self._upscale_factor_squared | |
| oh = h * self._upscale_factor | |
| ow = w * self._upscale_factor | |
| input_reshaped = x.reshape(b, oc, self._upscale_factor, self._upscale_factor, h, w) | |
| permuted = input_reshaped.permute(0, 1, 4, 2, 5, 3) | |
| return permuted.reshape(b, oc, oh, ow) | |
| not_working = PixelShuffle(2) | |
| working = MyPixelShuffle(2) | |
| shape = (1, 4, 2, 2) | |
| input = Variable(torch.randn(*shape), requires_grad=True) | |
| expected_out = not_working(input).detach().numpy() | |
| print('Expected first row\t\t{}'.format(expected_out[0, 0, 0])) | |
| my_out = working(input).detach().numpy() | |
| print('MyPixelShuffle first row\t{}'.format(my_out[0, 0, 0])) | |
| dummy_input = torch.randn(*shape) | |
| torch.onnx.export(not_working, dummy_input, 'pixel_shuffle.onnx') | |
| model = onnx.load("pixel_shuffle.onnx") | |
| rep = backend.prepare(model) | |
| outputs = rep.run(input.detach().numpy())[0] | |
| print('Builtin shuffle ONNX first row\t{}'.format(outputs[0, 0, 0])) | |
| torch.onnx.export(working, dummy_input, 'pixel_shuffle_working.onnx') | |
| model = onnx.load("pixel_shuffle_working.onnx") | |
| rep = backend.prepare(model) | |
| outputs = rep.run(input.detach().numpy())[0] | |
| print('MyPixelShuffle ONNX first row\t{}'.format(outputs[0, 0, 0])) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment