Last active
May 30, 2019 14:34
-
-
Save georgepar/1468fe613537f527b96086c8512afaa6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import mlflow | |
import mlflow.pytorch | |
class MlFlowLogger(object): | |
def __init__(self, | |
uri=None, | |
experiment_name=None, | |
model_path='models', | |
**params): | |
self.params = params | |
self.experiment_name = experiment_name | |
self.run = None | |
self.uri = uri | |
self.model_path = model_path | |
self.start() | |
def get_or_set_experiment(self): | |
print(mlflow.get_tracking_uri()) | |
if self.experiment_name is None: | |
return | |
try: | |
mlflow.create_experiment(self.experiment_name) | |
except Exception: | |
print('Experiment {} already exists' | |
.format(self.experiment_name)) | |
mlflow.set_experiment(self.experiment_name) | |
@staticmethod | |
def log_param(k, v): | |
mlflow.log_param(k, v) | |
def log_params(self, params=None): | |
if params is None: | |
params = self.params | |
for k, v in params.items(): | |
self.log_param(k, v) | |
@staticmethod | |
def log_metric(k, v): | |
mlflow.log_metric(k, v) | |
def log_metrics(self, metrics): | |
for k, v in metrics.items(): | |
self.log_metric(k, v) | |
def log_model(self, model): | |
""" for local saving of models """ | |
mlflow.pytorch.save_model(model, self.model_path) | |
def start(self): | |
mlflow.set_tracking_uri(self.uri) | |
self.get_or_set_experiment() | |
self.run = mlflow.start_run() | |
self.log_params() | |
def end(self): | |
mlflow.end_run() | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torchvision import datasets, transforms | |
import time | |
from mlflow_logger import MlFlowLogger | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | |
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | |
self.conv2_drop = nn.Dropout2d() | |
self.fc1 = nn.Linear(320, 50) | |
self.fc2 = nn.Linear(50, 10) | |
def forward(self, x): | |
x = F.relu(F.max_pool2d(self.conv1(x), 2)) | |
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) | |
x = x.view(-1, 320) | |
x = F.relu(self.fc1(x)) | |
x = F.dropout(x, training=self.training) | |
x = self.fc2(x) | |
return F.log_softmax(x, dim=1) | |
def train(args, model, device, train_loader, optimizer, epoch): | |
model.train() | |
running_loss = 0 | |
total = 0 | |
for batch_idx, (data, target) in enumerate(train_loader): | |
data, target = data.to(device), target.to(device) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.nll_loss(output, target) | |
running_loss += loss.item() | |
total += 1 | |
loss.backward() | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.item())) | |
avg_loss = float(running_loss) / total | |
return avg_loss | |
def test(args, model, device, test_loader): | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for data, target in test_loader: | |
data, target = data.to(device), target.to(device) | |
output = model(data) | |
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | |
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability | |
correct += pred.eq(target.view_as(pred)).sum().item() | |
test_loss /= len(test_loader.dataset) | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
100. * correct / len(test_loader.dataset))) | |
return {'val_loss': test_loss, 'val_accuracy': 100. * correct / len(test_loader.dataset)} | |
def main(): | |
# Training settings | |
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | |
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | |
help='input batch size for training (default: 64)') | |
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | |
help='input batch size for testing (default: 1000)') | |
parser.add_argument('--epochs', type=int, default=10, metavar='N', | |
help='number of epochs to train (default: 10)') | |
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', | |
help='learning rate (default: 0.01)') | |
parser.add_argument('--momentum', type=float, default=0.5, metavar='M', | |
help='SGD momentum (default: 0.5)') | |
parser.add_argument('--no-cuda', action='store_true', default=False, | |
help='disables CUDA training') | |
parser.add_argument('--seed', type=int, default=1, metavar='S', | |
help='random seed (default: 1)') | |
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
help='how many batches to wait before logging training status') | |
args = parser.parse_args() | |
use_cuda = not args.no_cuda and torch.cuda.is_available() | |
torch.manual_seed(args.seed) | |
device = torch.device("cuda" if use_cuda else "cpu") | |
config = vars(args) | |
import pprint | |
print('Running with configuration:') | |
pprint.pprint(config) | |
logger = MlFlowLogger(experiment_name='mnist', **config) | |
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} | |
train_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('../data', train=True, download=True, | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.batch_size, shuffle=True, **kwargs) | |
test_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('../data', train=False, transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.test_batch_size, shuffle=True, **kwargs) | |
model = Net().to(device) | |
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) | |
st1 = time.time() | |
final_accuracy = 0 | |
for epoch in range(1, args.epochs + 1): | |
st = time.time() | |
train_loss = train(args, model, device, train_loader, optimizer, epoch) | |
et = time.time() | |
train_seconds = et - st | |
logger.log_metric('train_loss', train_loss) | |
logger.log_metric('train_seconds', train_seconds) | |
st = time.time() | |
val_metrics = test(args, model, device, test_loader) | |
logger.log_metrics(val_metrics) | |
et = time.time() | |
val_seconds = et - st | |
logger.log_metric('val_seconds', val_seconds) | |
final_accuracy = val_metrics['val_accuracy'] | |
total_time = time.time() - st1 | |
logger.log_metric('total_time', total_time) | |
logger.log_metric('final_accuracy', final_accuracy) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment