Last active
August 29, 2015 14:14
-
-
Save ggggggggg/06a33f11b27762653e9a to your computer and use it in GitHub Desktop.
sampling scope time zero
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pylab as plt | |
from scipy.optimize import curve_fit | |
import gpib_instrument | |
scope = gpib_instrument.Gpib_Instrument(pad=3) | |
scope.ask("OUT TRA1") | |
def ask(s): | |
scope.write(s) | |
r = "" | |
while '\x00' not in r: | |
r+=scope.read() | |
return r[:r.find('\x00')-1] | |
def getxinfo(): | |
r = ask("WFMP?") | |
r2=r.split(",",10000) | |
d={c.split(":")[0]:c.split(":")[1] for c in r2} | |
xincr = float(d["XINCR"]) | |
ymult = float(d["YMULT"]) | |
return xincr, ymult | |
def askcurv(): | |
d = ask("CURV?") | |
d2=d.split(",",1000000) | |
curveid = d2.pop(0) | |
print(curveid) | |
d3 = [int(q) for q in d2] | |
d3 = d3[:-1] | |
xincr,ymult = getxinfo() | |
return np.arange(len(d3))*xincr, np.array(d3)*ymult | |
def model(x,baseline, amp, t0, tau1, tau2): | |
# model the turn on as an exponential | |
t=x-t0 | |
# following http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1485918 | |
return baseline+amp*(np.exp(t/tau1)+tau2/tau1*(np.exp(t/tau1)-np.exp(t/tau2)))*np.greater(t,0) | |
def model_simple(x, baseline, amp, t0, tau): | |
t = x-t0 | |
return baseline*np.less_equal(x,0)+(amp+(baseline-amp)*np.exp(-t/tau))*np.greater(t,0) | |
def dofit(x,y, guesses=[1,10, 30, 40,50]): | |
p_guess = np.array(guesses, dtype="float64") | |
firstnotuse = plt.find(y>np.amax(y)*0.5)[0] | |
useinds = np.arange(firstnotuse) | |
xfit = x[useinds] | |
yfit = y[useinds] | |
p_fit, p_covar =curve_fit(model, xfit, yfit, p0=p_guess) | |
p_names = ["baseline", "amplitude", "t0", "tau1", "tau2"] | |
if np.shape(p_covar)==(): | |
p_covar = np.eye(len(p_fit))*np.inf | |
for i in xrange(len(p_fit)): | |
print("%s %g +/- %g"%(p_names[i], p_fit[i], np.sqrt(p_covar[i,i]))) | |
plt.figure() | |
plt.plot(x,y,label="trace") | |
plt.plot(x[useinds], y[useinds],"o",label="used for fit") | |
plt.plot(x[useinds], model(x[useinds],p_fit[0],p_fit[1],p_fit[2],p_fit[3],p_fit[4]),"s",label="fit") | |
plt.plot([p_fit[2],p_fit[2]], plt.ylim()) | |
plt.xlim(x[0],x[-1]) | |
plt.legend() | |
plt.show() | |
plt.ion() | |
data = np.loadtxt("apdrise") | |
x=data[0,:] | |
y=data[1,:] | |
y-=y[0] | |
plt.plot(x,y) | |
firstnotuse = plt.find(y>np.amax(y)*0.5)[0] | |
plt.plot(x[:firstnotuse],model(x[:firstnotuse], 0, 0.0002, 0.4e-9,50e-12,100e-12)) | |
plt.plot(x[:firstnotuse],model_simple(x[:firstnotuse], 0, 0.0075, 0.4e-9,50e-12)) | |
dofit(x,y,[0, 0.0002, 0.4e-9,50e-12,100e-12]) | |
tau_rc = 35e-12 | |
ymodel=model(x, 0,0.000217, 396e-12, 59.5e-12, 144e-12 ) | |
yft = np.fft.rfft(ymodel) | |
f = np.fft.rfftfreq(len(y), x[1]-x[0]) | |
cf = np.sqrt(1/(1+(f*tau_rc)**2)) | |
ysm = np.fft.irfft(cf*yft,len(y)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment