Last active
July 12, 2023 04:59
-
-
Save gglin001/94043b211ed2946ff93e04cc8f4823b1 to your computer and use it in GitHub Desktop.
encode & decode onnx model to qr code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import binascii | |
import tarfile | |
from io import BytesIO | |
import qrcode | |
parser = argparse.ArgumentParser("xx") | |
parser.add_argument("--input_file", type=str, required=True, help="input file") | |
args = parser.parse_args() | |
fp = args.input_file | |
with open(fp, "rb") as fh: | |
onnx_buffer = BytesIO(fh.read()) | |
onnx_buffer.seek(0) | |
# save to tar buffer | |
tar_buffer = BytesIO() | |
# mode = 'w:gz' | |
mode = 'w:xz' | |
# mode = 'w:bz2' | |
tar = tarfile.open(fileobj=tar_buffer, mode=mode) | |
tarinfo = tarfile.TarInfo(fp) | |
tarinfo.size = len(onnx_buffer.getvalue()) | |
tar.addfile(tarinfo, onnx_buffer) | |
tar.close() | |
tar_buffer.seek(0) | |
tar_content = tar_buffer.read() | |
xx_ = binascii.hexlify(tar_content) | |
print(f"{mode}: {len(xx_)}") | |
# debug | |
# b = binascii.a2b_hex(xx_) | |
MAX_LEN = 2300 | |
for i in range(0, len(xx_), MAX_LEN): | |
xx = xx_[i : i + MAX_LEN] | |
fp = f'qr_{i}.png' | |
print(f"encode to {fp} , len {len(xx)}") | |
qrcode.make(xx, version=40).save(fp) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import binascii | |
import tarfile | |
import numpy as np | |
from io import BytesIO | |
import onnx | |
import qrcode | |
def clean_onnx(fp): | |
onnx_model = onnx.load_model(fp) | |
for init in onnx_model.graph.initializer: | |
num_elements = np.prod(init.dims) | |
if num_elements > 10: | |
init.ClearField('int32_data') | |
init.ClearField('int64_data') | |
init.ClearField('float_data') | |
init.ClearField('double_data') | |
init.ClearField('raw_data') | |
return onnx_model | |
def clean_onnx_no_init(fp): | |
onnx_model = onnx.load_model(fp) | |
init = onnx_model.graph.initializer | |
# TODO: keep axis/step/.. param for Gather/Slice and other Nodes | |
for idx in range(len(init)): | |
init.pop() | |
return onnx_model | |
parser = argparse.ArgumentParser("xx") | |
parser.add_argument("--input_file", type=str, required=True, help="input file") | |
args = parser.parse_args() | |
# test | |
# wget https://github.com/onnx/models/raw/main/vision/classification/resnet/model/resnet50-v1-7.onnx | |
# fp = 'resnet50-v1-7.onnx' | |
fp = args.input_file | |
onnx_model = clean_onnx(fp) | |
# save onnx to buffer | |
onnx_buffer = BytesIO() | |
onnx.save_model(onnx_model, onnx_buffer) | |
onnx_buffer.seek(0) | |
# save to tar buffer | |
tar_buffer = BytesIO() | |
# mode = 'w:gz' | |
mode = 'w:xz' | |
# mode = 'w:bz2' | |
tar = tarfile.open(fileobj=tar_buffer, mode=mode) | |
tarinfo = tarfile.TarInfo(f"{fp}.clean.onnx") | |
tarinfo.size = len(onnx_buffer.getvalue()) | |
tar.addfile(tarinfo, onnx_buffer) | |
tar.close() | |
tar_buffer.seek(0) | |
tar_content = tar_buffer.read() | |
xx_ = binascii.hexlify(tar_content) | |
print(f"{mode}: {len(xx_)}") | |
# debug | |
# b = binascii.a2b_hex(xx_) | |
MAX_LEN = 2300 | |
for i in range(0, len(xx_), MAX_LEN): | |
xx = xx_[i : i + MAX_LEN] | |
fp = f'qr_{i}.png' | |
print(f"encode to {fp} , len {len(xx)}") | |
qrcode.make(xx, version=40).save(fp) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import binascii | |
import glob | |
import os | |
import tarfile | |
from io import BytesIO | |
from PIL import Image | |
from pyzbar.pyzbar import decode | |
fps = glob.glob('qr_*.png') | |
fps = sorted(fps, key=lambda x: int(x.split('_')[1].split('.')[0])) | |
bytes = b'' | |
for fp in fps: | |
x = decode(Image.open(fp)) | |
xxx = x[0].data | |
print(f"dencode from {fp} , len {len(x[0].data)}") | |
bytes += xxx | |
he = binascii.a2b_hex(bytes) | |
tar_buffer = BytesIO() | |
tar_buffer.write(he) | |
tar_buffer.seek(0) | |
# mode = 'r:gz' | |
mode = 'r:xz' | |
# mode = 'r:bz2' | |
tar = tarfile.open(fileobj=tar_buffer, mode=mode) | |
tar.extractall('.') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import onnx | |
import numpy as np | |
import onnx.helper | |
import onnx.numpy_helper | |
import numpy as np | |
np.random.seed(1984) | |
def fill_onnx(fp): | |
onnx_model = onnx.load_model(fp) | |
for init in onnx_model.graph.initializer: | |
num_elements = np.prod(init.dims) | |
if num_elements > 10: | |
print(f"{init.name}: {init.dims}") | |
np_dtype = onnx.helper.tensor_dtype_to_np_dtype(init.data_type) | |
array = np.random.uniform(-1, 1, size=init.dims).astype(np_dtype) | |
init.raw_data = array.tobytes() | |
return onnx_model | |
fp = 'clean.onnx' | |
onnx_model = fill_onnx(fp) | |
fp_restored = f"{fp}.restored.onnx" | |
onnx.save(onnx_model, fp_restored) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
3rds
for encode
onnx
qrcode
https://pypi.org/project/qrcode/
https://github.com/lincolnloop/python-qrcode
for decode
PIL
pyzbar
https://pypi.org/project/pyzbar/
https://github.com/NaturalHistoryMuseum/pyzbar