Last active
November 18, 2015 10:25
-
-
Save ggreif/9263e1a095917535b705 to your computer and use it in GitHub Desktop.
Given two coordinates, compute the Ulam spiral number at that place.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Data.Char | |
ch = chr . (+65) | |
-- east quadrant | |
ulam x y | x > y && x > -y = (x*2 - 1)^2 + (x + y) - 1 | |
-- north quadrant | |
ulam x y | x <= y && x > -y = (y*2)^2 - (x + y) | |
-- west quadrant | |
ulam x y | x <= y && x <= -y = (x*2)^2 - (x + y) | |
-- south quadrant (default) | |
ulam x y = (y*2 - 1)^2 + (x + y) - 1 | |
matrix = [[ch $ ulam x y | x <- [-4 .. 4]] | y <- reverse [-4 .. 4]] | |
vis = mapM_ putStrLn matrix | |
primes = [2,3] ++ filter isPrime [5,7 ..] | |
isPrime x = and [x `rem` p /= 0 | p <- takeWhile (\p -> p*p <= x) primes] | |
pmatrix :: Int -> [String] | |
pmatrix w = [[test $ ulam x y | x <- [-w .. w]] | y <- reverse [-w .. w]] | |
where test n = ch $ isPrime (n + 2) | |
ch True = '@' | |
ch _ = ' ' | |
prvis w = mapM_ putStrLn (pmatrix w) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment