Created
April 11, 2022 11:05
-
-
Save ghamarian/ae7d409ad2cd47e46dcce31fbae1c1e3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <Eigen/Dense> | |
#include <Eigen/IterativeLinearSolvers> | |
#include <algorithm> | |
#include <iostream> | |
#include <random> | |
#include <vector> | |
std::pair<Eigen::MatrixXf, Eigen::MatrixXf> GenerateData(size_t n) { | |
std::vector<float> x_data(n); | |
std::iota(x_data.begin(), x_data.end(), 0); | |
std::vector<float> y_data(n); | |
std::iota(y_data.begin(), y_data.end(), 0); | |
// mutate data | |
std::random_device rd; | |
std::mt19937 re(rd()); | |
std::uniform_real_distribution<float> dist(-1.5f, 1.5f); | |
for (auto& x : x_data) { | |
x += dist(re); // add noise | |
} | |
for (auto& y : y_data) { | |
y += dist(re); // add noise | |
} | |
// Make result | |
Eigen::Map<Eigen::MatrixXf> x(x_data.data(), static_cast<Eigen::Index>(n), 1); | |
Eigen::Map<Eigen::MatrixXf> y(y_data.data(), static_cast<Eigen::Index>(n), 1); | |
return {x, y}; | |
} | |
int main() { | |
size_t n = 1000; | |
// generate training data | |
Eigen::MatrixXf x1, y; | |
std::tie(x1, y) = GenerateData(n); | |
Eigen::MatrixXf x0 = Eigen::MatrixXf::Ones(n, 1); | |
// setup line coeficients y = b(4) + k(0.3)*x | |
y.array() *= 0.3f; | |
y.array() += 4.f; | |
Eigen::MatrixXf x(n, 2); | |
x << x0, x1; | |
// train estimator | |
Eigen::LeastSquaresConjugateGradient<Eigen::MatrixXf> gd; | |
gd.setMaxIterations(100); | |
gd.setTolerance(0.001f); | |
gd.compute(x); | |
Eigen::VectorXf b = gd.solve(y); | |
std::cout << "Estimated parameters vector : " << b << std::endl; | |
// normal equations | |
Eigen::VectorXf b_norm = (x.transpose() * x).ldlt().solve(x.transpose() * y); | |
std::cout << "Estimated with normal equation parameters vector : " << b_norm | |
<< std::endl; | |
// predict | |
Eigen::MatrixXf new_x(5, 2); | |
new_x << 1, 1, 1, 2, 1, 3, 1, 4, 1, 5; | |
auto new_y = new_x.array().rowwise() * b.transpose().array(); | |
std::cout << "Predicted values : \n" << new_y << std::endl; | |
auto new_y_norm = new_x.array().rowwise() * b_norm.transpose().array(); | |
std::cout << "Predicted(norm) values : \n" << new_y_norm << std::endl; | |
return 0; | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment