A javascript library for laying out area proportional venn and euler diagrams written by Ben Frederickson.
Created
August 11, 2014 09:38
-
-
Save ghiden/02cccc744c5edad2040a to your computer and use it in GitHub Desktop.
A Pen by ghiden.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<h1>Awesome Venn Diagarm Library by Ben Frederickson</h1> | |
<div class="info"> | |
<a href="http://www.benfrederickson.com/venn-diagrams-with-d3.js/">Venn Diagrams with D3.js</a> | |
| <a href="https://github.com/benfred/venn.js">venn.js</a> | |
</div> | |
<div class="content"> | |
<div class="form"> | |
<textarea id="data" rows="30" cols="60"> | |
{ | |
"sets": [ | |
{"label": "Radiohead", "size": 77348}, | |
{"label": "Thom Yorke", "size": 5621}, | |
{"label": "John Lennon", "size": 7773}, | |
{"label": "Kanye West", "size": 27053}, | |
{"label": "Eminem", "size": 19056}, | |
{"label": "Elvis Presley", "size": 15839}, | |
{"label": "Explosions in the Sky", "size": 10813}, | |
{"label": "Bach", "size": 9264}, | |
{"label": "Mozart", "size": 3959}, | |
{"label": "Philip Glass", "size": 4793}, | |
{"label": "St. Germain", "size": 4136}, | |
{"label": "Morrissey", "size": 10945}, | |
{"label": "Outkast", "size": 8444} | |
], | |
"overlaps": [ | |
{"sets": [0, 1], "size": 4832}, | |
{"sets": [0, 2], "size": 2602}, | |
{"sets": [0, 3], "size": 6141}, | |
{"sets": [0, 4], "size": 2723}, | |
{"sets": [0, 5], "size": 3177}, | |
{"sets": [0, 6], "size": 5384}, | |
{"sets": [0, 7], "size": 2252}, | |
{"sets": [0, 8], "size": 877}, | |
{"sets": [0, 9], "size": 1663}, | |
{"sets": [0, 10], "size": 899}, | |
{"sets": [0, 11], "size": 4557}, | |
{"sets": [0, 12], "size": 2332}, | |
{"sets": [1, 2], "size": 162}, | |
{"sets": [1, 3], "size": 396}, | |
{"sets": [1, 4], "size": 133}, | |
{"sets": [1, 5], "size": 135}, | |
{"sets": [1, 6], "size": 511}, | |
{"sets": [1, 7], "size": 159}, | |
{"sets": [1, 8], "size": 47}, | |
{"sets": [1, 9], "size": 168}, | |
{"sets": [1, 10], "size": 68}, | |
{"sets": [1, 11], "size": 336}, | |
{"sets": [1, 12], "size": 172}, | |
{"sets": [2, 3], "size": 406}, | |
{"sets": [2, 4], "size": 350}, | |
{"sets": [2, 5], "size": 1335}, | |
{"sets": [2, 6], "size": 145}, | |
{"sets": [2, 7], "size": 347}, | |
{"sets": [2, 8], "size": 176}, | |
{"sets": [2, 9], "size": 119}, | |
{"sets": [2, 10], "size": 46}, | |
{"sets": [2, 11], "size": 418}, | |
{"sets": [2, 12], "size": 146}, | |
{"sets": [3, 4], "size": 5465}, | |
{"sets": [3, 5], "size": 849}, | |
{"sets": [3, 6], "size": 724}, | |
{"sets": [3, 7], "size": 273}, | |
{"sets": [3, 8], "size": 143}, | |
{"sets": [3, 9], "size": 180}, | |
{"sets": [3, 10], "size": 218}, | |
{"sets": [3, 11], "size": 599}, | |
{"sets": [3, 12], "size": 3453}, | |
{"sets": [4, 5], "size": 977}, | |
{"sets": [4, 6], "size": 232}, | |
{"sets": [4, 7], "size": 250}, | |
{"sets": [4, 8], "size": 166}, | |
{"sets": [4, 9], "size": 97}, | |
{"sets": [4, 10], "size": 106}, | |
{"sets": [4, 11], "size": 225}, | |
{"sets": [4, 12], "size": 1807}, | |
{"sets": [5, 6], "size": 196}, | |
{"sets": [5, 7], "size": 642}, | |
{"sets": [5, 8], "size": 336}, | |
{"sets": [5, 9], "size": 165}, | |
{"sets": [5, 10], "size": 143}, | |
{"sets": [5, 11], "size": 782}, | |
{"sets": [5, 12], "size": 332}, | |
{"sets": [6, 7], "size": 262}, | |
{"sets": [6, 8], "size": 85}, | |
{"sets": [6, 9], "size": 284}, | |
{"sets": [6, 10], "size": 68}, | |
{"sets": [6, 11], "size": 363}, | |
{"sets": [6, 12], "size": 218}, | |
{"sets": [7, 8], "size": 1581}, | |
{"sets": [7, 9], "size": 716}, | |
{"sets": [7, 10], "size": 133}, | |
{"sets": [7, 11], "size": 254}, | |
{"sets": [7, 12], "size": 132}, | |
{"sets": [8, 9], "size": 280}, | |
{"sets": [8, 10], "size": 53}, | |
{"sets": [8, 11], "size": 117}, | |
{"sets": [8, 12], "size": 67}, | |
{"sets": [9, 10], "size": 57}, | |
{"sets": [9, 11], "size": 184}, | |
{"sets": [9, 12], "size": 89}, | |
{"sets": [10, 11], "size": 51}, | |
{"sets": [10, 12], "size": 115}, | |
{"sets": [11, 12], "size": 162}, | |
{"sets": [0, 1, 6], "size": 480}, | |
{"sets": [0, 1, 9], "size": 152}, | |
{"sets": [0, 2, 7], "size": 112}, | |
{"sets": [0, 3, 4], "size": 715}, | |
{"sets": [0, 3, 12], "size": 822}, | |
{"sets": [0, 4, 5], "size": 160}, | |
{"sets": [0, 5, 11], "size": 292}, | |
{"sets": [0, 6, 12], "size": 122}, | |
{"sets": [0, 7, 11], "size": 118}, | |
{"sets": [0, 9, 10], "size" :13}, | |
{"sets": [2, 7, 8], "size": 72} | |
] | |
} | |
</textarea><br /> | |
<button id="apply">Apply</button> | |
</div> | |
<div class="venn"> | |
</div> | |
</div> | |
<div class="footer"> | |
<a href="http://www.thingsontop.com/roads-lead-radiohead-431.html">Data source</a> | |
</div> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(function(venn) { | |
"use strict"; | |
/** given a list of set objects, and their corresponding overlaps. | |
updates the (x, y, radius) attribute on each set such that their positions | |
roughly correspond to the desired overlaps */ | |
venn.venn = function(sets, overlaps, parameters) { | |
parameters = parameters || {}; | |
parameters.maxIterations = parameters.maxIterations || 500; | |
var lossFunction = parameters.lossFunction || venn.lossFunction; | |
var initialLayout = parameters.layoutFunction || venn.greedyLayout; | |
// initial layout is done greedily | |
sets = initialLayout(sets, overlaps); | |
// transform x/y coordinates to a vector to optimize | |
var initial = new Array(2*sets.length); | |
for (var i = 0; i < sets.length; ++i) { | |
initial[2 * i] = sets[i].x; | |
initial[2 * i + 1] = sets[i].y; | |
} | |
// optimize initial layout from our loss function | |
var totalFunctionCalls = 0; | |
var solution = venn.fmin( | |
function(values) { | |
totalFunctionCalls += 1; | |
var current = new Array(sets.length); | |
for (var i = 0; i < sets.length; ++i) { | |
current[i] = {x: values[2 * i], | |
y: values[2 * i + 1], | |
radius : sets[i].radius, | |
size : sets[i].size}; | |
} | |
return lossFunction(current, overlaps); | |
}, | |
initial, | |
parameters); | |
// transform solution vector back to x/y points | |
var positions = solution.solution; | |
for (i = 0; i < sets.length; ++i) { | |
sets[i].x = positions[2 * i]; | |
sets[i].y = positions[2 * i + 1]; | |
} | |
return sets; | |
}; | |
/** Returns the distance necessary for two circles of radius r1 + r2 to | |
have the overlap area 'overlap' */ | |
venn.distanceFromIntersectArea = function(r1, r2, overlap) { | |
// handle complete overlapped circles | |
if (Math.min(r1, r2) * Math.min(r1,r2) * Math.PI <= overlap) { | |
return Math.abs(r1 - r2); | |
} | |
return venn.bisect(function(distance) { | |
return circleIntersection.circleOverlap(r1, r2, distance) - overlap; | |
}, 0, r1 + r2); | |
}; | |
/// gets a matrix of euclidean distances between all sets in venn diagram | |
venn.getDistanceMatrix = function(sets, overlaps) { | |
// initialize an empty distance matrix between all the points | |
var distances = []; | |
for (var i = 0; i < sets.length; ++i) { | |
distances.push([]); | |
for (var j = 0; j < sets.length; ++j) { | |
distances[i].push(0); | |
} | |
} | |
// compute distances between all the points | |
for (i = 0; i < overlaps.length; ++i) { | |
var current = overlaps[i]; | |
if (current.sets.length !== 2) { | |
continue; | |
} | |
var left = current.sets[0], | |
right = current.sets[1], | |
r1 = Math.sqrt(sets[left].size / Math.PI), | |
r2 = Math.sqrt(sets[right].size / Math.PI), | |
distance = venn.distanceFromIntersectArea(r1, r2, current.size); | |
distances[left][right] = distances[right][left] = distance; | |
} | |
return distances; | |
}; | |
/** Lays out a Venn diagram greedily, going from most overlapped sets to | |
least overlapped, attempting to position each new set such that the | |
overlapping areas to already positioned sets are basically right */ | |
venn.greedyLayout = function(sets, overlaps) { | |
// give each set a default position + radius | |
var setOverlaps = {}; | |
for (var i = 0; i < sets.length; ++i) { | |
setOverlaps[i] = []; | |
sets[i].radius = Math.sqrt(sets[i].size / Math.PI); | |
sets[i].x = sets[i].y = 0; | |
} | |
// map each set to a list of all the other sets that overlap it | |
for (i = 0; i < overlaps.length; ++i) { | |
var current = overlaps[i]; | |
if (current.sets.length !== 2) { | |
continue; | |
} | |
var left = current.sets[0], right = current.sets[1]; | |
setOverlaps[left].push ({set:right, size:current.size}); | |
setOverlaps[right].push({set:left, size:current.size}); | |
} | |
// get list of most overlapped sets | |
var mostOverlapped = []; | |
for (var set in setOverlaps) { | |
if (setOverlaps.hasOwnProperty(set)) { | |
var size = 0; | |
for (i = 0; i < setOverlaps[set].length; ++i) { | |
size += setOverlaps[set][i].size; | |
} | |
mostOverlapped.push({set: set, size:size}); | |
} | |
} | |
// sort by size desc | |
function sortOrder(a,b) { | |
return b.size - a.size; | |
} | |
mostOverlapped.sort(sortOrder); | |
// keep track of what sets have been laid out | |
var positioned = {}; | |
function isPositioned(element) { | |
return element.set in positioned; | |
} | |
// adds a point to the output | |
function positionSet(point, index) { | |
sets[index].x = point.x; | |
sets[index].y = point.y; | |
positioned[index] = true; | |
} | |
// add most overlapped set at (0,0) | |
positionSet({x: 0, y: 0}, mostOverlapped[0].set); | |
// get distances between all points | |
var distances = venn.getDistanceMatrix(sets, overlaps); | |
for (i = 1; i < mostOverlapped.length; ++i) { | |
var setIndex = mostOverlapped[i].set, | |
overlap = setOverlaps[setIndex].filter(isPositioned); | |
set = sets[setIndex]; | |
overlap.sort(sortOrder); | |
if (overlap.length === 0) { | |
throw "Need overlap information for set " + JSON.stringify( set ); | |
} | |
var points = []; | |
for (var j = 0; j < overlap.length; ++j) { | |
// get appropriate distance from most overlapped already added set | |
var p1 = sets[overlap[j].set], | |
d1 = distances[setIndex][overlap[j].set]; | |
// sample positions at 90 degrees for maximum aesthetics | |
points.push({x : p1.x + d1, y : p1.y}); | |
points.push({x : p1.x - d1, y : p1.y}); | |
points.push({y : p1.y + d1, x : p1.x}); | |
points.push({y : p1.y - d1, x : p1.x}); | |
// if we have at least 2 overlaps, then figure out where the | |
// set should be positioned analytically and try those too | |
for (var k = j + 1; k < overlap.length; ++k) { | |
var p2 = sets[overlap[k].set], | |
d2 = distances[setIndex][overlap[k].set]; | |
var extraPoints = circleIntersection.circleCircleIntersection( | |
{ x: p1.x, y: p1.y, radius: d1}, | |
{ x: p2.x, y: p2.y, radius: d2}); | |
for (var l = 0; l < extraPoints.length; ++l) { | |
points.push(extraPoints[l]); | |
} | |
} | |
} | |
// we have some candidate positions for the set, examine loss | |
// at each position to figure out where to put it at | |
var bestLoss = 1e50, bestPoint = points[0]; | |
for (j = 0; j < points.length; ++j) { | |
sets[setIndex].x = points[j].x; | |
sets[setIndex].y = points[j].y; | |
var loss = venn.lossFunction(sets, overlaps); | |
if (loss < bestLoss) { | |
bestLoss = loss; | |
bestPoint = points[j]; | |
} | |
} | |
positionSet(bestPoint, setIndex); | |
} | |
return sets; | |
}; | |
/// Uses multidimensional scaling to approximate a first layout here | |
venn.classicMDSLayout = function(sets, overlaps) { | |
// get the distance matrix | |
var distances = venn.getDistanceMatrix(sets, overlaps); | |
// get positions for each set | |
var positions = mds.classic(distances); | |
// translate back to (x,y,radius) coordinates | |
for (var i = 0; i < sets.length; ++i) { | |
sets[i].x = positions[i][0]; | |
sets[i].y = positions[i][1]; | |
sets[i].radius = Math.sqrt(sets[i].size / Math.PI); | |
} | |
return sets; | |
}; | |
/** Given a bunch of sets, and the desired overlaps between these sets - computes | |
the distance from the actual overlaps to the desired overlaps. Note that | |
this method ignores overlaps of more than 2 circles */ | |
venn.lossFunction = function(sets, overlaps) { | |
var output = 0; | |
function getCircles(indices) { | |
return indices.map(function(i) { return sets[i]; }); | |
} | |
for (var i = 0; i < overlaps.length; ++i) { | |
var area = overlaps[i], overlap; | |
if (area.sets.length == 2) { | |
var left = sets[area.sets[0]], | |
right = sets[area.sets[1]]; | |
overlap = circleIntersection.circleOverlap(left.radius, right.radius, | |
circleIntersection.distance(left, right)); | |
} else { | |
overlap = circleIntersection.intersectionArea(getCircles(area.sets)); | |
} | |
output += (overlap - area.size) * (overlap - area.size); | |
} | |
return output; | |
}; | |
/** Scales a solution from venn.venn or venn.greedyLayout such that it fits in | |
a rectangle of width/height - with padding around the borders. */ | |
venn.scaleSolution = function(solution, width, height, padding) { | |
var minMax = function(d) { | |
var hi = Math.max.apply(null, solution.map( | |
function(c) { return c[d] + c.radius; } )), | |
lo = Math.min.apply(null, solution.map( | |
function(c) { return c[d] - c.radius;} )); | |
return {max:hi, min:lo}; | |
}; | |
width -= 2*padding; | |
height -= 2*padding; | |
var xRange = minMax('x'), | |
yRange = minMax('y'), | |
xScaling = width / (xRange.max - xRange.min), | |
yScaling = height / (yRange.max - yRange.min), | |
scaling = Math.min(yScaling, xScaling); | |
for (var i = 0; i < solution.length; ++i) { | |
var set = solution[i]; | |
set.radius = scaling * set.radius; | |
set.x = padding + (set.x - xRange.min) * scaling; | |
set.y = padding + (set.y - yRange.min) * scaling; | |
} | |
solution.scaling = scaling; | |
return solution; | |
}; | |
function weightedSum(a, b) { | |
var ret = new Array(a[1].length || 0); | |
for (var j = 0; j < ret.length; ++j) { | |
ret[j] = a[0] * a[1][j] + b[0] * b[1][j]; | |
} | |
return ret; | |
} | |
function centerVennDiagram( diagram, width, height, padding ) { | |
var diagramBoundaries; | |
var allowedWidth = width - ( 2 * ( padding || 0 ) ); | |
var allowedHeight = height - ( 2 * ( padding || 0 ) ); | |
var scale; | |
var transformX, transformY; | |
var transform = ""; | |
if ( diagram ) { | |
diagramBoundaries = diagram[ 0 ][ 0 ].getBBox(); | |
if ( diagramBoundaries && width && height ) { | |
// See if we need to scale to fit the width/height | |
if ( diagramBoundaries.width > allowedWidth ) { | |
scale = allowedWidth / diagramBoundaries.width; | |
} | |
if ( diagramBoundaries.height > allowedHeight ) { | |
if ( !scale || ( allowedHeight / diagramBoundaries.height ) < scale ) { | |
scale = allowedHeight / diagramBoundaries.height; | |
} | |
} | |
if ( scale ) { | |
transform = "scale(" + scale + ")"; | |
} | |
else { | |
scale = 1; | |
} | |
transformX = Math.floor( ( allowedWidth - ( diagramBoundaries.width * scale ) ) / 2 ); | |
transformY = Math.floor( ( allowedHeight - ( diagramBoundaries.height * scale ) ) / 2 ); | |
diagram.attr( "transform", "translate(" + transformX + "," + transformY + ") " + transform ); | |
} | |
} | |
} | |
/** finds the zeros of a function, given two starting points (which must | |
* have opposite signs */ | |
venn.bisect = function(f, a, b, parameters) { | |
parameters = parameters || {}; | |
var maxIterations = parameters.maxIterations || 100, | |
tolerance = parameters.tolerance || 1e-10, | |
fA = f(a), | |
fB = f(b), | |
delta = b - a; | |
if (fA * fB > 0) { | |
throw "Initial bisect points must have opposite signs"; | |
} | |
if (fA === 0) return a; | |
if (fB === 0) return b; | |
for (var i = 0; i < maxIterations; ++i) { | |
delta /= 2; | |
var mid = a + delta, | |
fMid = f(mid); | |
if (fMid * fA >= 0) { | |
a = mid; | |
} | |
if ((Math.abs(delta) < tolerance) || (fMid === 0)) { | |
return mid; | |
} | |
} | |
return a + delta; | |
}; | |
/** minimizes a function using the downhill simplex method */ | |
venn.fmin = function(f, x0, parameters) { | |
parameters = parameters || {}; | |
var maxIterations = parameters.maxIterations || x0.length * 200, | |
nonZeroDelta = parameters.nonZeroDelta || 1.1, | |
zeroDelta = parameters.zeroDelta || 0.001, | |
minErrorDelta = parameters.minErrorDelta || 1e-5, | |
rho = parameters.rho || 1, | |
chi = parameters.chi || 2, | |
psi = parameters.psi || -0.5, | |
sigma = parameters.sigma || 0.5, | |
callback = parameters.callback; | |
// initialize simplex. | |
var N = x0.length, | |
simplex = new Array(N + 1); | |
simplex[0] = x0; | |
simplex[0].fx = f(x0); | |
for (var i = 0; i < N; ++i) { | |
var point = x0.slice(); | |
point[i] = point[i] ? point[i] * nonZeroDelta : zeroDelta; | |
simplex[i+1] = point; | |
simplex[i+1].fx = f(point); | |
} | |
var sortOrder = function(a, b) { return a.fx - b.fx; }; | |
for (var iteration = 0; iteration < maxIterations; ++iteration) { | |
simplex.sort(sortOrder); | |
if (callback) { | |
callback(simplex); | |
} | |
if (Math.abs(simplex[0].fx - simplex[N].fx) < minErrorDelta) { | |
break; | |
} | |
// compute the centroid of all but the worst point in the simplex | |
var centroid = new Array(N); | |
for (i = 0; i < N; ++i) { | |
centroid[i] = 0; | |
for (var j = 0; j < N; ++j) { | |
centroid[i] += simplex[j][i]; | |
} | |
centroid[i] /= N; | |
} | |
// reflect the worst point past the centroid and compute loss at reflected | |
// point | |
var worst = simplex[N]; | |
var reflected = weightedSum([1+rho, centroid], [-rho, worst]); | |
reflected.fx = f(reflected); | |
var replacement = reflected; | |
// if the reflected point is the best seen, then possibly expand | |
if (reflected.fx <= simplex[0].fx) { | |
var expanded = weightedSum([1+chi, centroid], [-chi, worst]); | |
expanded.fx = f(expanded); | |
if (expanded.fx < reflected.fx) { | |
replacement = expanded; | |
} | |
} | |
// if the reflected point is worse than the second worst, we need to | |
// contract | |
else if (reflected.fx >= simplex[N-1].fx) { | |
var shouldReduce = false; | |
var contracted; | |
if (reflected.fx <= worst.fx) { | |
// do an inside contraction | |
contracted = weightedSum([1+psi, centroid], [-psi, worst]); | |
contracted.fx = f(contracted); | |
if (contracted.fx < worst.fx) { | |
replacement = contracted; | |
} else { | |
shouldReduce = true; | |
} | |
} else { | |
// do an outside contraction | |
contracted = weightedSum([1-psi * rho, centroid], [psi*rho, worst]); | |
contracted.fx = f(contracted); | |
if (contracted.fx <= reflected.fx) { | |
replacement = contracted; | |
} else { | |
shouldReduce = true; | |
} | |
} | |
if (shouldReduce) { | |
// do reduction. doesn't actually happen that often | |
for (i = 1; i < simplex.length; ++i) { | |
simplex[i] = weightedSum([1 - sigma, simplex[0]], | |
[sigma - 1, simplex[i]]); | |
simplex[i].fx = f(simplex[i]); | |
} | |
} | |
} | |
simplex[N] = replacement; | |
} | |
simplex.sort(sortOrder); | |
return {f : simplex[0].fx, | |
solution : simplex[0]}; | |
}; | |
/** returns a svg path of the intersection area of a bunch of circles */ | |
venn.intersectionAreaPath = function(circles) { | |
var stats = {}; | |
circleIntersection.intersectionArea(circles, stats); | |
var arcs = stats.arcs; | |
if (arcs.length == 0) { | |
return "M 0 0"; | |
} | |
var ret = ["\nM", arcs[0].p2.x, arcs[0].p2.y]; | |
for (var i = 0; i < arcs.length; ++i) { | |
var arc = arcs[i], r = arc.circle.radius, wide = arc.width > r; | |
ret.push("\nA", r, r, 0, wide ? 1 : 0, 1, arc.p1.x, arc.p1.y); | |
} | |
return ret.join(" "); | |
} | |
venn.drawD3Diagram = function(element, dataset, width, height, parameters) { | |
parameters = parameters || {}; | |
var colours = d3.scale.category10(), | |
circleFillColours = parameters.circleFillColours || colours, | |
circleStrokeColours = parameters.circleStrokeColours || circleFillColours, | |
circleStrokeWidth = parameters.circleStrokeWidth || function(i) { return 0; }, | |
textFillColours = parameters.textFillColours || colours, | |
textStrokeColours = parameters.textStrokeColours || textFillColours, | |
nodeOpacity = parameters.opacity || 0.3, | |
padding = parameters.padding || 6; | |
dataset = venn.scaleSolution(dataset, width, height, padding); | |
var svg = element.append("svg") | |
.attr("width", width) | |
.attr("height", height); | |
var diagram = svg.append( "g" ); | |
var nodes = diagram.append("g").selectAll("g") | |
.data(dataset, function(d) { | |
return d.label; | |
}); | |
var nodeEnter = nodes.enter() | |
.append("g") | |
.attr('class', 'node'); | |
nodeEnter.append("circle") | |
.attr("r", function(d) { return d.radius; }) | |
.style("fill-opacity", nodeOpacity) | |
.attr("cx", function(d) { return d.x; }) | |
.attr("cy", function(d) { return d.y; }) | |
.style("stroke", function(d, i) { return circleStrokeColours(i); }) | |
.style("stroke-width", function(d, i) { return circleStrokeWidth(i); }) | |
.style("fill", function(d, i) { return circleFillColours(i); }); | |
nodeEnter.append("text") | |
.attr("x", function(d) { return d.x; }) | |
.attr("y", function(d) { return d.y; }) | |
.attr("text-anchor", "middle") | |
.attr("dy", "0.35em") | |
.style("stroke", function(d, i) { return textStrokeColours(i); }) | |
.style("fill", function(d, i) { return textFillColours(i); }) | |
.text(function(d) { return d.label; }); | |
var circles = nodes.selectAll("circle"); | |
var text = nodes.selectAll("text"); | |
centerVennDiagram( diagram, width, height, padding ); | |
return {'svg' : svg, | |
'nodes' : nodes, | |
'circles' : circles, | |
'text' : text }; | |
}; | |
venn.updateD3Diagram = function(element, dataset, parameters) { | |
parameters = parameters || {}; | |
var colours = d3.scale.category10(), | |
circleFillColours = parameters.circleFillColours || colours, | |
circleStrokeColours = parameters.circleStrokeColours || circleFillColours, | |
circleStrokeWidth = parameters.circleStrokeWidth || function(i) { return 0; }, | |
textFillColours = parameters.textFillColours || colours, | |
textStrokeColours = parameters.textStrokeColours || textFillColours, | |
nodeOpacity = parameters.opacity || 0.3, | |
padding = parameters.padding || 6; | |
var svg = element.select("svg"), | |
width = parseInt(svg.attr('width'), 10), | |
height = parseInt(svg.attr('height'), 10), | |
circles, texts; | |
dataset = venn.scaleSolution(dataset, width, height, 6); | |
var nodes = svg.select('g').select('g').selectAll("g.node") | |
.data(dataset, function(d) { return d.label; }); | |
nodes.exit().remove(); | |
var nodeEnter = nodes.enter() | |
.append("g") | |
.attr('class', 'node'); | |
nodeEnter.append("circle") | |
.style("fill-opacity", nodeOpacity) | |
.style("stroke", function(d, i) { return circleStrokeColours(i); }) | |
.style("stroke-width", function(d, i) { return circleStrokeWidth(i); }) | |
.style("fill", function(d, i) { return circleFillColours(i); }); | |
nodeEnter.append("text") | |
.attr("text-anchor", "middle") | |
.attr("dy", "0.35em") | |
.style("stroke", function(d, i) { return textStrokeColours(i); }) | |
.style("fill", function(d, i) { return textFillColours(i); }) | |
nodes.select("circle") | |
.transition() | |
.duration(400) | |
.attr("cx", function(d) { return d.x; }) | |
.attr("cy", function(d) { return d.y; }) | |
.attr("r", function(d) { return d.radius; }); | |
nodes.select("text") | |
.transition() | |
.duration(400) | |
.text(function(d) { return d.label; }) | |
.attr("x", function(d) { return d.x; }) | |
.attr("y", function(d) { return d.y; }); | |
}; | |
}(window.venn = window.venn || {})); | |
(function(circleIntersection) { | |
"use strict"; | |
var SMALL = 1e-10; | |
/** Returns the intersection area of a bunch of circles (where each circle | |
is an object having an x,y and radius property) */ | |
circleIntersection.intersectionArea = function(circles, stats) { | |
// get all the intersection points of the circles | |
var intersectionPoints = getIntersectionPoints(circles); | |
// filter out points that aren't included in all the circles | |
var innerPoints = intersectionPoints.filter(function (p) { | |
return circleIntersection.containedInCircles(p, circles); | |
}); | |
var arcArea = 0, polygonArea = 0, arcs = [], i; | |
// if we have intersection points that are within all the circles, | |
// then figure out the area contained by them | |
if (innerPoints.length > 1) { | |
// sort the points by angle from the center of the polygon, which lets | |
// us just iterate over points to get the edges | |
var center = circleIntersection.getCenter(innerPoints); | |
for (i = 0; i < innerPoints.length; ++i ) { | |
var p = innerPoints[i]; | |
p.angle = Math.atan2(p.x - center.x, p.y - center.y); | |
} | |
innerPoints.sort(function(a,b) { return b.angle - a.angle;}); | |
// iterate over all points, get arc between the points | |
// and update the areas | |
var p2 = innerPoints[innerPoints.length - 1]; | |
for (i = 0; i < innerPoints.length; ++i) { | |
var p1 = innerPoints[i]; | |
// polygon area updates easily ... | |
polygonArea += (p2.x + p1.x) * (p1.y - p2.y); | |
// updating the arc area is a little more involved | |
var midPoint = {x : (p1.x + p2.x) / 2, | |
y : (p1.y + p2.y) / 2}, | |
arc = null; | |
for (var j = 0; j < p1.parentIndex.length; ++j) { | |
if (p2.parentIndex.indexOf(p1.parentIndex[j]) > -1) { | |
// figure out the angle halfway between the two points | |
// on the current circle | |
var circle = circles[p1.parentIndex[j]], | |
a1 = Math.atan2(p1.x - circle.x, p1.y - circle.y), | |
a2 = Math.atan2(p2.x - circle.x, p2.y - circle.y); | |
var angleDiff = (a2 - a1); | |
if (angleDiff < 0) { | |
angleDiff += 2*Math.PI; | |
} | |
// and use that angle to figure out the width of the | |
// arc | |
var a = a2 - angleDiff/2, | |
width = circleIntersection.distance(midPoint, { | |
x : circle.x + circle.radius * Math.sin(a), | |
y : circle.y + circle.radius * Math.cos(a) | |
}); | |
// pick the circle whose arc has the smallest width | |
if ((arc === null) || (arc.width > width)) { | |
arc = { circle : circle, | |
width : width, | |
p1 : p1, | |
p2 : p2}; | |
} | |
} | |
} | |
arcs.push(arc); | |
arcArea += circleIntersection.circleArea(arc.circle.radius, arc.width); | |
p2 = p1; | |
} | |
} else { | |
// no intersection points, is either disjoint - or is completely | |
// overlapped. figure out which by examining the smallest circle | |
var smallest = circles[0]; | |
for (i = 1; i < circles.length; ++i) { | |
if (circles[i].radius < smallest.radius) { | |
smallest = circles[i]; | |
} | |
} | |
// make sure the smallest circle is completely contained in all | |
// the other circles | |
var disjoint = false; | |
for (i = 0; i < circles.length; ++i) { | |
if (circleIntersection.distance(circles[i], smallest) > Math.abs(smallest.radius - circles[i].radius)) { | |
disjoint = true; | |
break; | |
} | |
} | |
if (disjoint) { | |
arcArea = polygonArea = 0; | |
} else { | |
arcArea = smallest.radius * smallest.radius * Math.PI; | |
arcs.push({circle : smallest, | |
p1: { x: smallest.x, y : smallest.y + smallest.radius}, | |
p2: { x: smallest.x - SMALL, y : smallest.y + smallest.radius}, | |
width : smallest.radius * 2 }); | |
} | |
} | |
polygonArea /= 2; | |
if (stats) { | |
stats.area = arcArea + polygonArea; | |
stats.arcArea = arcArea; | |
stats.polygonArea = polygonArea; | |
stats.arcs = arcs; | |
stats.innerPoints = innerPoints; | |
stats.intersectionPoints = intersectionPoints; | |
} | |
return arcArea + polygonArea; | |
}; | |
/** returns whether a point is contained by all of a list of circles */ | |
circleIntersection.containedInCircles = function(point, circles) { | |
for (var i = 0; i < circles.length; ++i) { | |
if (circleIntersection.distance(point, circles[i]) > circles[i].radius + SMALL) { | |
return false; | |
} | |
} | |
return true; | |
}; | |
/** Gets all intersection points between a bunch of circles */ | |
function getIntersectionPoints(circles) { | |
var ret = []; | |
for (var i = 0; i < circles.length; ++i) { | |
for (var j = i + 1; j < circles.length; ++j) { | |
var intersect = circleIntersection.circleCircleIntersection(circles[i], | |
circles[j]); | |
for (var k = 0; k < intersect.length; ++k) { | |
var p = intersect[k]; | |
p.parentIndex = [i,j]; | |
ret.push(p); | |
} | |
} | |
} | |
return ret; | |
} | |
circleIntersection.circleIntegral = function(r, x) { | |
var y = Math.sqrt(r * r - x * x); | |
return x * y + r * r * Math.atan2(x, y); | |
}; | |
/** Returns the area of a circle of radius r - up to width */ | |
circleIntersection.circleArea = function(r, width) { | |
return circleIntersection.circleIntegral(r, width - r) - circleIntersection.circleIntegral(r, -r); | |
}; | |
/** euclidean distance between two points */ | |
circleIntersection.distance = function(p1, p2) { | |
return Math.sqrt((p1.x - p2.x) * (p1.x - p2.x) + | |
(p1.y - p2.y) * (p1.y - p2.y)); | |
}; | |
/** Returns the overlap area of two circles of radius r1 and r2 - that | |
have their centers separated by distance d. Simpler faster | |
circle intersection for only two circles */ | |
circleIntersection.circleOverlap = function(r1, r2, d) { | |
// no overlap | |
if (d >= r1 + r2) { | |
return 0; | |
} | |
// completely overlapped | |
if (d <= Math.abs(r1 - r2)) { | |
return Math.PI * Math.min(r1, r2) * Math.min(r1, r2); | |
} | |
var w1 = r1 - (d * d - r2 * r2 + r1 * r1) / (2 * d), | |
w2 = r2 - (d * d - r1 * r1 + r2 * r2) / (2 * d); | |
return circleIntersection.circleArea(r1, w1) + circleIntersection.circleArea(r2, w2); | |
}; | |
/** Given two circles (containing a x/y/radius attributes), | |
returns the intersecting points if possible. | |
note: doesn't handle cases where there are infinitely many | |
intersection points (circles are equivalent):, or only one intersection point*/ | |
circleIntersection.circleCircleIntersection = function(p1, p2) { | |
var d = circleIntersection.distance(p1, p2), | |
r1 = p1.radius, | |
r2 = p2.radius; | |
// if to far away, or self contained - can't be done | |
if ((d >= (r1 + r2)) || (d <= Math.abs(r1 - r2))) { | |
return []; | |
} | |
var a = (r1 * r1 - r2 * r2 + d * d) / (2 * d), | |
h = Math.sqrt(r1 * r1 - a * a), | |
x0 = p1.x + a * (p2.x - p1.x) / d, | |
y0 = p1.y + a * (p2.y - p1.y) / d, | |
rx = -(p2.y - p1.y) * (h / d), | |
ry = -(p2.x - p1.x) * (h / d); | |
return [{ x: x0 + rx, y : y0 - ry }, | |
{ x: x0 - rx, y : y0 + ry }]; | |
}; | |
/** Returns the center of a bunch of points */ | |
circleIntersection.getCenter = function(points) { | |
var center = { x: 0, y: 0}; | |
for (var i =0; i < points.length; ++i ) { | |
center.x += points[i].x; | |
center.y += points[i].y; | |
} | |
center.x /= points.length; | |
center.y /= points.length; | |
return center; | |
}; | |
}(window.circleIntersection = window.circleIntersection || {})); | |
function main() { | |
var diagram, | |
tooltip = d3.select("body").append("div") | |
.attr("class", "venntooltip"), | |
dataInput = document.getElementById('data'), | |
init = true, | |
elem = d3.select(".venn"); | |
function load(rawJSONString) { | |
var vennObj, sets, overlaps, jsonData; | |
try { | |
jsonData = JSON.parse(rawJSONString); | |
sets = jsonData.sets; | |
overlaps = jsonData.overlaps | |
} catch(e) { | |
alert('JSON parse error. Please check your data.'); | |
return; | |
} | |
// get positions for each set | |
vennObj = venn.venn(sets, overlaps); | |
if (init) { | |
// draw the diagram in the 'venn' div | |
diagram = venn.drawD3Diagram(elem, vennObj, 500, 500); | |
init = false; | |
} | |
else { | |
venn.updateD3Diagram(elem, vennObj); | |
} | |
// hover on all the circles | |
diagram.circles | |
.style("stroke-opacity", 0) | |
.style("stroke", "white") | |
.style("stroke-width", "2") | |
.on("mousemove", function() { | |
tooltip.style("left", (d3.event.pageX) + "px") | |
.style("top", (d3.event.pageY - 28) + "px"); | |
}) | |
.on("mouseover", function(d, i) { | |
var selection = d3.select(this); | |
d3.select(this).moveParentToFront() | |
.transition() | |
.style("fill-opacity", .5) | |
.style("stroke-opacity", 1); | |
tooltip.transition().style("opacity", .9); | |
tooltip.text(d.size + " users"); | |
}) | |
.on("mouseout", function(d, i) { | |
d3.select(this).transition() | |
.style("fill-opacity", .3) | |
.style("stroke-opacity", 0); | |
tooltip.transition().style("opacity", 0); | |
}); | |
// draw a path around each intersection area, add hover there as well | |
var intersections = diagram.svg.select("g").selectAll("path") | |
.data(overlaps) | |
intersections | |
.enter() | |
.append("path") | |
.style("fill-opacity","0") | |
.style("fill", "black") | |
.style("stroke-opacity", 0) | |
.style("stroke", "white") | |
.style("stroke-width", "2") | |
intersections | |
.attr("d", function(d) { | |
return venn.intersectionAreaPath(d.sets.map(function(j) { return vennObj[j]; })); | |
}) | |
.on("mouseover", function(d, i) { | |
d3.select(this).transition() | |
.style("fill-opacity", .1) | |
.style("stroke-opacity", 1); | |
tooltip.transition().style("opacity", .9); | |
tooltip.text(d.size + " users"); | |
}) | |
.on("mouseout", function(d, i) { | |
d3.select(this).transition() | |
.style("fill-opacity", 0) | |
.style("stroke-opacity", 0); | |
tooltip.transition().style("opacity", 0); | |
}) | |
.on("mousemove", function() { | |
tooltip.style("left", (d3.event.pageX) + "px") | |
.style("top", (d3.event.pageY - 28) + "px"); | |
}); | |
intersections.exit().remove(); | |
} | |
d3.selection.prototype.moveParentToFront = function() { | |
return this.each(function(){ | |
this.parentNode.parentNode.appendChild(this.parentNode); | |
}); | |
}; | |
document.getElementById('apply').addEventListener('click', function() { | |
load(dataInput.value); | |
}); | |
load(dataInput.value) | |
} | |
window.onload = main(); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@import url(htp://fonts.googleapis.com/css?family=Roboto); | |
body { | |
width: 1020px; | |
margin: 0 auto; | |
text-align: center; | |
background-color: #eee; | |
font-family: 'Roboto'; | |
} | |
ul { | |
list-style: none; | |
} | |
.form { | |
float: left; | |
margin: 20px 10px; | |
} | |
textarea { | |
font-family: 'Courier'; | |
} | |
.venn { | |
float: right; | |
} | |
.venntooltip { | |
position: absolute; | |
text-align: center; | |
width: 128px; | |
height: 22px; | |
background: #333; | |
color: #ddd; | |
border: 0px; | |
border-radius: 8px; | |
opacity: 0; | |
} | |
svg { | |
font-family: 'Roboto'; | |
font-weight: 300; | |
font-size: 12px; | |
} | |
.footer { | |
clear: both; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment