Created
July 10, 2020 21:52
-
-
Save ghost-not-in-the-shell/967a64ce385aecd20fa4ed3fce9fbb89 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --without-K #-} | |
open import Data.Empty | |
open import Data.Sum | |
open import Function | |
open import Relation.Binary.PropositionalEquality | |
open import Relation.Nullary | |
_∙_ = trans | |
∙-unitʳ : ∀ {A : Set} {x y : A} (p : x ≡ y) → p ∙ refl ≡ p | |
∙-unitʳ refl = refl | |
transport : ∀ {A : Set} (P : A → Set) {x y} → x ≡ y → P x → P y | |
transport P refl = id | |
apd : ∀ {A : Set} {P : A → Set} (f : (x : A) → P x) | |
→ ∀ {x y} (p : x ≡ y) → transport P p (f x) ≡ f y | |
apd f refl = refl | |
happly : ∀ {A : Set} {P : A → Set} {f g : (x : A) → P x} | |
→ f ≡ g | |
→ ∀ x → f x ≡ g x | |
happly refl x = refl | |
lemma-296 : ∀ {X : Set} {A B : X → Set} {x y : X} | |
→ (p : x ≡ y) | |
→ {f : A x → B x} | |
→ {g : A y → B y} | |
→ transport (λ x → A x → B x) p f ≡ g | |
→ ∀ (a : A x) → transport (λ x → B x) p (f a) ≡ g (transport (λ x → A x) p a) | |
lemma-296 refl f≡g = happly f≡g | |
axiom-k : Set → Set | |
axiom-k A = ∀ (x : A) (p : x ≡ x) → p ≡ refl | |
is-prop : Set → Set | |
is-prop A = ∀ (x y : A) → x ≡ y | |
is-set : Set → Set | |
is-set A = ∀ (x y : A) (p q : x ≡ y) → p ≡ q | |
postulate | |
funext : ∀ {A B : Set} {f g : A → B} | |
→ (∀ x → f x ≡ g x) | |
→ f ≡ g | |
¬-is-prop : ∀ {A : Set} → is-prop (¬ A) | |
¬-is-prop f g = funext λ x → ⊥-elim (f x) | |
theorem-721 : ∀ {A : Set} → axiom-k A → is-set A | |
theorem-721 f x .x p refl = f x p | |
cancelˡ : ∀ {A : Set} {x y z : A} {p : x ≡ y} {r s : y ≡ z} | |
→ p ∙ r ≡ p ∙ s | |
→ r ≡ s | |
cancelˡ {p = refl} = id | |
lemma-2112 : ∀ {A : Set} {a x₁ x₂ : A} {p : x₁ ≡ x₂} {q : a ≡ x₁} | |
→ transport (λ x → a ≡ x) p q ≡ q ∙ p | |
lemma-2112 {p = refl} = sym (∙-unitʳ _) | |
theorem-722 : ∀ {A : Set} | |
→ ((x y : A) → ¬ ¬ x ≡ y → x ≡ y) | |
→ (x : A) (p : x ≡ x) → p ≡ refl | |
theorem-722 {A} f x p = | |
let ρ : (x : A) → ¬ ¬ x ≡ x | |
ρ x = λ ¬x≡x → ⊥-elim (¬x≡x refl) | |
in cancelˡ (begin | |
f x x (ρ x) ∙ p ≡⟨ sym (lemma-2112 {p = p}) ⟩ | |
transport (x ≡_) p (f x x (ρ x)) ≡⟨ lemma-296 p (apd (f x) p) (ρ x) ⟩ | |
f x x (transport (λ z → ¬ ¬ x ≡ z) p (ρ x)) ≡⟨ cong (f x x) (¬-is-prop _ _) ⟩ | |
f x x (ρ x) ≡⟨ sym (∙-unitʳ _) ⟩ | |
f x x (ρ x) ∙ refl ∎) | |
where open import Relation.Binary.Reasoning.Setoid (setoid _) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment