Last active
May 18, 2025 20:54
-
-
Save gideongrinberg/ccb97ee98d2a2c0e92dde61dddb3553b to your computer and use it in GitHub Desktop.
Magic Square Proof Attempt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- This module serves as the root of the `MagicSquare` library. | |
-- Import modules here that should be built as part of the library. | |
import Mathlib.Data.ZMod.Basic | |
import Mathlib.Data.Int.Basic | |
import Mathlib.Tactic.Ring.RingNF | |
import Mathlib.Algebra.Group.Defs | |
import Mathlib.Tactic.LinearCombination | |
import Mathlib.Tactic.Linarith.Frontend | |
import Mathlib.Data.Complex.Basic | |
import Mathlib.Data.Complex.Norm | |
import Mathlib.Analysis.Complex.Arg | |
import Mathlib.Data.Real.Sqrt | |
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic | |
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex | |
import MagicSquare.Lemmas | |
open MagicSquare.Lemmas (angle_mod_basic) | |
-- Gaussian Integer logic | |
structure GaussianInt where | |
re : ℤ -- Real part | |
im : ℤ -- Imaginary part | |
deriving DecidableEq, Repr | |
instance : CoeSort GaussianInt (ℤ × ℤ) where | |
coe := fun ⟨a, b⟩ => (a, b) | |
instance : Add GaussianInt where | |
add a b := ⟨a.re + b.re, a.im + b.im⟩ | |
instance : Mul GaussianInt where | |
mul a b := ⟨a.re * b.re - a.im * b.im, a.re * b.im + a.im * b.re⟩ | |
instance : Neg GaussianInt where | |
neg a := ⟨-a.re, -a.im⟩ | |
def GaussianInt.norm (α : GaussianInt) : ℤ := | |
α.re ^ 2 + α.im ^ 2 | |
def GaussianInt.conj (a : GaussianInt) : GaussianInt := ⟨a.re, -a.im⟩ | |
lemma GaussianInt.norm_nonneg (α : GaussianInt) : 0 ≤ α.norm := by | |
cases' α with a b | |
have h₁ : 0 ≤ a ^ 2 := by apply sq_nonneg | |
have h₂ : 0 ≤ b ^ 2 := by apply sq_nonneg | |
exact add_nonneg h₁ h₂ | |
instance : HPow GaussianInt ℕ GaussianInt where | |
hPow := fun a n => | |
Nat.recOn n | |
(⟨1, 0⟩ : GaussianInt) | |
(fun _ ih => a * ih) | |
@[simp] | |
lemma hPow_zero (a : GaussianInt) : a ^ (0 : ℕ) = ⟨1, 0⟩ := by | |
-- `Nat.recOn 0 _ _` reduces directly to the base case | |
rfl | |
@[simp] | |
lemma hPow_succ (a : GaussianInt) (n : ℕ) : | |
a ^ (n + 1) = a * a ^ n := by | |
-- `Nat.recOn (n+1) _ _` reduces to the “step” case | |
rfl | |
@[simp] lemma mul_re (a b : GaussianInt) : (a * b).re = a.re * b.re - a.im * b.im := rfl | |
@[simp] lemma mul_im (a b : GaussianInt) : (a * b).im = a.re * b.im + a.im * b.re := rfl | |
-- Basic norm properties | |
theorem gnorm_mul (α β : GaussianInt) : | |
(α * β).norm = α.norm * β.norm := by | |
-- Expand definitions and simplify using algebraic properties | |
simp [GaussianInt.norm, mul_re, mul_im, sq] | |
ring -- Simplify the expression using ring operations | |
lemma norm_eq_sq_mag (α : GaussianInt) : | |
α.norm = (α.re ^ 2 + α.im ^ 2) := rfl | |
lemma sq_eq_sq_of_nonneg {a b : ℤ} (ha : 0 ≤ a) (hb : 0 ≤ b) (h : a ^ 2 = b ^ 2) : a = b := by | |
nlinarith | |
-- Check if pairs p and q are distinct | |
-- modulo order and sign | |
def pairwiseDistinct (p q : ℤ × ℤ) : Prop := | |
let (a, b) := p | |
let (c, d) := q | |
¬ ((a = c ∧ b = d) ∨ -- identity | |
(a = d ∧ b = c) ∨ -- swap | |
(a = -c ∧ b = -d) ∨ -- negate both | |
(a = -d ∧ b = -c) ∨ -- swap + negate both | |
(a = c ∧ b = -d) ∨ -- negate second | |
(a = -c ∧ b = d) ∨ -- negate first | |
(a = -d ∧ b = c) ∨ -- swap + negate first | |
(a = d ∧ b = -c)) -- swap + negate second | |
def pairwiseEquivalent (p q : GaussianInt) : Prop := | |
¬ pairwiseDistinct p q | |
theorem main_theorem : ¬(∃ (m n p q u v : ℤ), | |
(m^2 + n^2)^2 = (p^2 + q^2)^2 ∧ (p^2 + q^2)^2 = (u^2 + v^2)^2 ∧ | |
4 * m * n * (m^2 - n^2) + 4 * p * q * (p^2 - q^2) + 4 * u * v * (u^2 - v^2) = 0 ∧ | |
pairwiseDistinct (m, n) (p, q) ∧ | |
pairwiseDistinct (p, q) (u, v) ∧ | |
pairwiseDistinct (m, n) (u, v) | |
):= by | |
rintro ⟨m, n, p, q, r, s, h₁, h₂, h₃, h₄, h₅, h₆⟩ | |
-- Translate into ℤ[i] | |
let α : GaussianInt := ⟨m, n⟩ | |
let β : GaussianInt := ⟨p, q⟩ | |
let γ : GaussianInt := ⟨r, s⟩ | |
have h₁' : α.norm = β.norm := by | |
apply sq_eq_sq_of_nonneg (GaussianInt.norm_nonneg α) (GaussianInt.norm_nonneg β) | |
exact h₁ | |
have h₂' : β.norm = γ.norm := by | |
apply sq_eq_sq_of_nonneg (GaussianInt.norm_nonneg β) (GaussianInt.norm_nonneg γ) | |
exact h₂ | |
have h_norm : α.norm = β.norm ∧ β.norm = γ.norm := ⟨h₁', h₂'⟩ | |
have h_imag : (α^4).im + (β^4).im + (γ^4).im = 0 := by | |
simp [hPow_succ, mul_im, mul_re, h₃] | |
linear_combination h₃ | |
have h_norm_val : α.norm = β.norm := h_norm.1 | |
have h_norm_val' : β.norm = γ.norm := h_norm.2 | |
let t := α.norm | |
-- Prove that α β and γ are on the unit circle | |
let α_unit : ℂ := ⟨α.re / Real.sqrt t, α.im / Real.sqrt t⟩ | |
let β_unit : ℂ := ⟨β.re / Real.sqrt t, β.im / Real.sqrt t⟩ | |
let γ_unit : ℂ := ⟨γ.re / Real.sqrt t, γ.im / Real.sqrt t⟩ | |
have h_unit_norm : ‖α_unit‖ = 1 ∧ ‖β_unit‖ = 1 ∧ ‖γ_unit‖ = 1 := by | |
have ht : (0 : ℝ) < t := by | |
sorry | |
apply And.intro | |
. -- proof of α | |
sorry | |
. apply And.intro | |
. -- proof of β | |
sorry | |
. -- proof of γ | |
sorry | |
-- Define angles from normalized complex numbers | |
let θ_α := Complex.arg α_unit | |
let θ_β := Complex.arg β_unit | |
let θ_γ := Complex.arg γ_unit | |
-- Express imaginary parts using sine | |
have h_sin_sum : Real.sin (4 * θ_α) + Real.sin (4 * θ_β) + Real.sin (4 * θ_γ) = 0 := by | |
exact sorry | |
have h_angle_symm : ∃ (φ ψ : ℝ), | |
Real.sin φ + Real.sin ψ + Real.sin (-(φ + ψ)) = 0 := by | |
sorry | |
obtain ⟨φ, ψ, hφψ⟩ := h_angle_symm | |
-- Conclude two angles must be negatives modulo 2π | |
-- have h_angle_mod : | |
-- (∃ k : ℤ, φ + ψ = (k : ℝ) * Real.pi) ∨ | |
-- (∃ k : ℤ, φ = -ψ + (k : ℝ) * 2 * Real.pi) := by sorry | |
have h_angle_mod : | |
(∃ k : ℤ, φ + ψ = (k : ℝ) * Real.pi) ∨ | |
(∃ k : ℤ, φ = (k : ℝ) * 2 * Real.pi) ∨ | |
(∃ k : ℤ, ψ = (k : ℝ) * 2 * Real.pi) := by | |
sorry | |
-- Connect angles to Gaussian integer equivalence | |
have h_equiv : α = β.conj ∨ β = γ.conj ∨ γ = α.conj := by | |
sorry | |
rcases h_equiv with hαβ | hβγ | hγα | |
· -- α equals the conjugate of β → contradicts h₄ | |
have h_re : m = p := by | |
simpa [α, β, GaussianInt.conj] using congrArg GaussianInt.re hαβ | |
have h_im : n = -q := by | |
simpa [α, β, GaussianInt.conj] using congrArg GaussianInt.im hαβ | |
have : False := by | |
-- after substituting `h_re`, `h_im`, the disjunction in `pairwiseDistinct` | |
-- is true, so `h₄ : ¬ True`, hence `h₄ trivial` is a contradiction | |
have hcontra : True → False := by | |
simp [pairwiseDistinct, h_re, h_im] at h₄ | |
exact hcontra trivial | |
exact this | |
· -- β equals the conjugate of γ → contradicts h₅ | |
have h_re : p = r := by | |
simpa [β, γ, GaussianInt.conj] using congrArg GaussianInt.re hβγ | |
have h_im : q = -s := by | |
simpa [β, γ, GaussianInt.conj] using congrArg GaussianInt.im hβγ | |
have : False := by | |
have hcontra : True → False := by | |
simp [pairwiseDistinct, h_re, h_im] at h₅ | |
exact hcontra trivial | |
exact this | |
· -- γ equals the conjugate of α → contradicts h₆ | |
have h_re : r = m := by | |
simpa [γ, α, GaussianInt.conj] using congrArg GaussianInt.re hγα | |
have h_im : s = -n := by | |
simpa [γ, α, GaussianInt.conj] using congrArg GaussianInt.im hγα | |
have : False := by | |
have hcontra : True → False := by | |
simp [pairwiseDistinct, h_re, h_im] at h₆ | |
exact hcontra trivial | |
exact this |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment