Last active
April 23, 2019 15:32
-
-
Save ginrou/01e3b5f7acba87cd05901f7590957b4a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## empty |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/usr/env python | |
import numpy as np | |
import os | |
import itertools | |
from keras.models import Model, load_model | |
from keras.layers import Input, BatchNormalization, Activation, Dense, Dropout | |
from keras.layers.core import Lambda, RepeatVector, Reshape | |
from keras.layers.convolutional import Conv2D, Conv2DTranspose | |
from keras.layers.pooling import MaxPooling2D, GlobalMaxPool2D | |
from keras.layers.merge import concatenate, add | |
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau | |
from keras.optimizers import Adam | |
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img | |
class Unet: | |
@staticmethod | |
def conv2d_block(input, filters, skip_dropout = False, dropout = 0.5, kernel_size=3, batchnorm = True): | |
c = Conv2D(filters=filters, kernel_size=(kernel_size, kernel_size), padding="same", kernel_initializer="he_normal")(input) | |
if batchnorm: | |
c = BatchNormalization()(c) | |
c = Activation("relu")(c) | |
c = Conv2D(filters=filters, kernel_size=(kernel_size, kernel_size), padding="same", kernel_initializer="he_normal")(c) | |
if batchnorm: | |
c = BatchNormalization()(c) | |
c = Activation("relu")(c) | |
if skip_dropout: | |
return c | |
else: | |
p = MaxPooling2D((2,2))(c) | |
p = Dropout(dropout)(p) | |
return (c, p) | |
@staticmethod | |
def trans_conv2d_block(input_upsample, input_concat, filters, kernel_size=3, strides=2, dropout=0.5): | |
u = Conv2DTranspose(filters, (kernel_size, kernel_size), strides=(strides, strides), padding="same")(input_upsample) | |
u = concatenate([u, input_concat]) | |
u = Dropout(dropout)(u) | |
c = Unet.conv2d_block(u, filters, skip_dropout=True) | |
return (u,c) | |
def __init__(self): | |
self.IMG_HEIGHT = 256 | |
self.IMG_WIDTH = 256 | |
self.IMG_CHANNELS = 3 | |
self.NUM_CLASS = 21 | |
self.FILTER_BASE = 16 | |
self.input = Input((self.IMG_HEIGHT, self.IMG_WIDTH, self.IMG_CHANNELS)) | |
c1, p1 = self.conv2d_block(self.input, self.FILTER_BASE * 1) | |
c2, p2 = self.conv2d_block(p1, self.FILTER_BASE * 2) | |
c3, p3 = self.conv2d_block(p2, self.FILTER_BASE * 4) | |
c4, p4 = self.conv2d_block(p3, self.FILTER_BASE * 8) | |
c5 = self.conv2d_block(p4, self.FILTER_BASE * 16, skip_dropout=True) | |
u6, c6 = self.trans_conv2d_block(c5, c4, self.FILTER_BASE * 8) | |
u7, c7 = self.trans_conv2d_block(c6, c3, self.FILTER_BASE * 4) | |
u8, c8 = self.trans_conv2d_block(c7, c2, self.FILTER_BASE * 2) | |
u9, c9 = self.trans_conv2d_block(c8, c1, self.FILTER_BASE * 1) | |
self.output = Conv2D(self.NUM_CLASS, (1,1), activation="sigmoid")(c9) | |
self.model = Model(inputs=[self.input], outputs=[self.output]) | |
def predict(self, input_img): ## input_img will be numpy array which has same shape with self.input | |
return self.model.predict(input_img) | |
def to_index_color_img(self, predict_result): | |
arg_max_img = np.argmax(predict_result, axis=2) | |
color_img = np.array(arg_max_img.shape) | |
cmap = color_map() | |
@staticmethod | |
def color_map(N=256, normalized=False): | |
def bitget(byteval, idx): | |
return ((byteval & (1 << idx)) != 0) | |
dtype = 'float32' if normalized else 'uint8' | |
cmap = np.zeros((N, 3), dtype=dtype) | |
for i in range(N): | |
r = g = b = 0 | |
c = i | |
for j in range(8): | |
r = r | (bitget(c, 0) << 7-j) | |
g = g | (bitget(c, 1) << 7-j) | |
b = b | (bitget(c, 2) << 7-j) | |
c = c >> 3 | |
cmap[i] = np.array([r, g, b]) | |
cmap = cmap/255 if normalized else cmap | |
return cmap | |
class ImageLoader: | |
def crop(self, img, shape): | |
W, H = img.size | |
X, Y = shape | |
top_left = img.crop((0,0,X,Y)) | |
top_right = img.crop((W-X, 0, W, Y)) | |
bottom_left = img.crop((0, H-Y, X, H)) | |
bottom_right = img.crop((W-X, H-Y, W, H)) | |
center = img.crop(((W-X)/2, (H-Y)/2, (W+X)/2, (H+Y)/2 )) | |
return top_left, top_right, bottom_left, bottom_right, center | |
def load(self, data_dir, img_size, num_train = 100): | |
self.keys = sorted([f[:-4] for f in os.listdir(os.path.join(data_dir, "SegmentationClass"))]) | |
self.img_path_list = [os.path.join(data_dir, "JPEGImages", k + ".jpg") for k in self.keys] | |
self.mask_path_list = [os.path.join(data_dir, "SegmentationClass", k + ".png") for k in self.keys] | |
imgs = list(itertools.chain.from_iterable([ self.crop(load_img(p), img_size) for p in self.img_path_list] )) | |
masks = list(itertools.chain.from_iterable([ self.crop(load_img(p), img_size) for p in self.mask_path_list] )) | |
self.train_imgs, self.test_imgs = imgs[:-num_train], imgs[:num_train] | |
self.train_masks, self.test_masks = masks[:-num_train], masks[:num_train] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment