|
/** |
|
This sofrware and program is distributed under MIT License. |
|
Original alogorithm : http://people.csail.mit.edu/sparis/bf/ |
|
Please cite above paper for research purpose. |
|
|
|
The MIT License (MIT) |
|
|
|
Copyright (c) 2015 Yuichi Takeda |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
of this software and associated documentation files (the "Software"), to deal |
|
in the Software without restriction, including without limitation the rights |
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
copies of the Software, and to permit persons to whom the Software is |
|
furnished to do so, subject to the following conditions: |
|
|
|
The above copyright notice and this permission notice shall be included in |
|
all copies or substantial portions of the Software. |
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
|
THE SOFTWARE. |
|
*/ |
|
|
|
#ifndef __FAST_BILATERAL__ |
|
#define __FAST_BILATERAL__ |
|
|
|
#include <opencv2/opencv.hpp> |
|
|
|
namespace cv_extend { |
|
|
|
void bilateralFilter(cv::InputArray src, cv::OutputArray dst, |
|
double sigmaColor, double sigmaSpace); |
|
|
|
void bilateralFilterImpl(cv::Mat1d src, cv::Mat1d dst, |
|
double sigmaColor, double sigmaSpace); |
|
|
|
|
|
template<typename T, typename T_, typename T__> |
|
inline |
|
T clamp(const T_ min, const T__ max, const T x) |
|
{ |
|
return |
|
( x < static_cast<T>(min) ) ? static_cast<T>(min) : |
|
( x < static_cast<T>(max) ) ? static_cast<T>(x) : |
|
static_cast<T>(max); |
|
} |
|
|
|
template<typename T> |
|
inline |
|
T |
|
trilinear_interpolation( const cv::Mat mat, |
|
const double y, |
|
const double x, |
|
const double z) |
|
{ |
|
const size_t height = mat.size[0]; |
|
const size_t width = mat.size[1]; |
|
const size_t depth = mat.size[2]; |
|
|
|
const size_t y_index = clamp(0, height-1, static_cast<size_t>(y)); |
|
const size_t yy_index = clamp(0, height-1, y_index+1); |
|
const size_t x_index = clamp(0, width-1, static_cast<size_t>(x)); |
|
const size_t xx_index = clamp(0, width-1, x_index+1); |
|
const size_t z_index = clamp(0, depth-1, static_cast<size_t>(z)); |
|
const size_t zz_index = clamp(0, depth-1, z_index+1); |
|
const double y_alpha = y - y_index; |
|
const double x_alpha = x - x_index; |
|
const double z_alpha = z - z_index; |
|
|
|
return |
|
(1.0-y_alpha) * (1.0-x_alpha) * (1.0-z_alpha) * mat.at<T>(y_index, x_index, z_index) + |
|
(1.0-y_alpha) * x_alpha * (1.0-z_alpha) * mat.at<T>(y_index, xx_index, z_index) + |
|
y_alpha * (1.0-x_alpha) * (1.0-z_alpha) * mat.at<T>(yy_index, x_index, z_index) + |
|
y_alpha * x_alpha * (1.0-z_alpha) * mat.at<T>(yy_index, xx_index, z_index) + |
|
(1.0-y_alpha) * (1.0-x_alpha) * z_alpha * mat.at<T>(y_index, x_index, zz_index) + |
|
(1.0-y_alpha) * x_alpha * z_alpha * mat.at<T>(y_index, xx_index, zz_index) + |
|
y_alpha * (1.0-x_alpha) * z_alpha * mat.at<T>(yy_index, x_index, zz_index) + |
|
y_alpha * x_alpha * z_alpha * mat.at<T>(yy_index, xx_index, zz_index); |
|
|
|
} |
|
|
|
|
|
/** |
|
* Implementation |
|
*/ |
|
|
|
void bilateralFilter(cv::InputArray _src, cv::OutputArray _dst, |
|
double sigmaColor, double sigmaSpace) |
|
{ |
|
cv::Mat src = _src.getMat(); |
|
|
|
CV_Assert(src.channels() == 1); |
|
|
|
// bilateralFilterImpl runs with double depth, single channel |
|
if ( src.depth() != CV_64FC1 ) { |
|
src = cv::Mat(_src.size(), CV_64FC1); |
|
_src.getMat().convertTo(src, CV_64FC1); |
|
} |
|
|
|
cv::Mat dst_tmp = cv::Mat(_src.size(), CV_64FC1); |
|
bilateralFilterImpl(src, dst_tmp, sigmaColor, sigmaSpace); |
|
|
|
_dst.create(dst_tmp.size(), _src.type()); |
|
dst_tmp.convertTo(_dst.getMat(), _src.type()); |
|
|
|
} |
|
|
|
void bilateralFilterImpl(cv::Mat1d src, cv::Mat1d dst, |
|
double sigma_color, double sigma_space) |
|
{ |
|
using namespace cv; |
|
const size_t height = src.rows, width = src.cols; |
|
const size_t padding_xy = 2, padding_z = 2; |
|
double src_min, src_max; |
|
cv::minMaxLoc(src, &src_min, &src_max); |
|
|
|
const size_t small_height = static_cast<size_t>((height-1)/sigma_space) + 1 + 2 * padding_xy; |
|
const size_t small_width = static_cast<size_t>((width-1)/sigma_space) + 1 + 2 * padding_xy; |
|
const size_t small_depth = static_cast<size_t>((src_max-src_min)/sigma_color) + 1 + 2 * padding_xy; |
|
|
|
int data_size[] = {small_height, small_width, small_depth}; |
|
cv::Mat data(3, data_size, CV_64FC2); |
|
data.setTo(0); |
|
|
|
// down sample |
|
for ( int y = 0; y < height; ++y ) { |
|
for ( int x = 0; x < width; ++x) { |
|
const size_t small_x = static_cast<size_t>( x/sigma_space + 0.5) + padding_xy; |
|
const size_t small_y = static_cast<size_t>( y/sigma_space + 0.5) + padding_xy; |
|
const double z = src.at<double>(y,x) - src_min; |
|
const size_t small_z = static_cast<size_t>( z/sigma_color + 0.5 ) + padding_z; |
|
|
|
cv::Vec2d v = data.at<cv::Vec2d>(small_y, small_x, small_z); |
|
v[0] += src.at<double>(y,x); |
|
v[1] += 1.0; |
|
data.at<cv::Vec2d>(small_y, small_x, small_z) = v; |
|
} |
|
} |
|
|
|
// convolution |
|
cv::Mat buffer(3, data_size, CV_64FC2); |
|
buffer.setTo(0); |
|
int offset[3]; |
|
offset[0] = &(data.at<cv::Vec2d>(1,0,0)) - &(data.at<cv::Vec2d>(0,0,0)); |
|
offset[1] = &(data.at<cv::Vec2d>(0,1,0)) - &(data.at<cv::Vec2d>(0,0,0)); |
|
offset[2] = &(data.at<cv::Vec2d>(0,0,1)) - &(data.at<cv::Vec2d>(0,0,0)); |
|
|
|
for ( int dim = 0; dim < 3; ++dim ) { // dim = 3 stands for x, y, and depth |
|
const int off = offset[dim]; |
|
for ( int ittr = 0; ittr < 2; ++ittr ) { |
|
cv::swap(data, buffer); |
|
|
|
for ( int y = 1; y < small_height-1; ++y ) { |
|
for ( int x = 1; x < small_width-1; ++x ) { |
|
cv::Vec2d *d_ptr = &(data.at<cv::Vec2d>(y,x,1)); |
|
cv::Vec2d *b_ptr = &(buffer.at<cv::Vec2d>(y,x,1)); |
|
for ( int z = 1; z < small_depth-1; ++z, ++d_ptr, ++b_ptr ) { |
|
cv::Vec2d b_prev = *(b_ptr-off), b_curr = *b_ptr, b_next = *(b_ptr+off); |
|
*d_ptr = (b_prev + b_next + 2.0 * b_curr) / 4.0; |
|
} // z |
|
} // x |
|
} // y |
|
|
|
} // ittr |
|
} // dim |
|
|
|
// upsample |
|
|
|
for ( cv::MatIterator_<cv::Vec2d> d = data.begin<cv::Vec2d>(); d != data.end<cv::Vec2d>(); ++d ) |
|
{ |
|
(*d)[0] /= (*d)[1] != 0 ? (*d)[1] : 1; |
|
} |
|
|
|
for ( int y = 0; y < height; ++y ) { |
|
for ( int x = 0; x < width; ++x ) { |
|
const double z = src.at<double>(y,x) - src_min; |
|
const double px = static_cast<double>(x) / sigma_space + padding_xy; |
|
const double py = static_cast<double>(y) / sigma_space + padding_xy; |
|
const double pz = static_cast<double>(z) / sigma_color + padding_z; |
|
dst.at<double>(y,x) = trilinear_interpolation<cv::Vec2d>(data, py, px, pz)[0]; |
|
} |
|
} |
|
|
|
} |
|
|
|
} // end of namespace cv_extend |
|
#endif |
Please mension the running time of this "bilateralFilterImpl" method per frame or image