Created
August 20, 2015 23:51
-
-
Save girving/16a0ffa1f0abb08934c2 to your computer and use it in GitHub Desktop.
reachability on random diagonal graphs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
from __future__ import division,print_function | |
from numpy import * | |
import scipy.sparse | |
import scipy.sparse.csgraph | |
""" | |
Consider approximate disjoint diagonal cycles concentric around the origin. | |
We can arrange that cycle C_n has radius O(n) and length O(n). | |
The probability of all cycles being unbroken is thus roughly | |
prod_n (1-2^O(n)) | |
which could easily be positive. This doesn't answer the question. | |
""" | |
random.seed(37832) | |
def reached(n): | |
"""How far can we reach on an (2n+1)^2 lattice of random diagonals?""" | |
# Build our random graph | |
up = random.randint(2,size=4*n*n).reshape(2*n,2*n).astype(bool) | |
def V(x,y): | |
return (2*n+1)*x+y | |
x = arange(2*n) | |
x,y = x[:,None],x[None,:] | |
i = V(x,y+1-up) | |
j = V(x+1,y+up) | |
v = ones((2*n)**2,dtype=bool) | |
A = scipy.sparse.coo_matrix((v,(i.ravel(),j.ravel())),shape=((2*n+1)**2,)*2).tocsr() | |
# Perform depth first search | |
reached = scipy.sparse.csgraph.depth_first_order(A,i_start=V(n,n),directed=False,return_predecessors=False) | |
good = zeros((2*n+1,2*n+1),dtype=bool) | |
good.ravel()[reached] = 1 | |
return good | |
def plot(): | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
from matplotlib import cm | |
fig = plt.figure() | |
steps = 1000 | |
ns = array([25,50,100,200,400,800]) | |
for sub,n in enumerate(ns): | |
ax = fig.add_subplot(1,len(ns),sub+1,projection='3d') | |
prob = zeros((2*n+1,2*n+1)) | |
for s in xrange(steps): | |
print('step %d / %d'%(s,steps)) | |
prob += reached(n) | |
prob /= steps | |
print('center prob = %g'%(prob[n,n])) | |
print('prob = \n%s'%prob) | |
i = arange(2*n+1)-n | |
i,j = meshgrid(i,i) | |
def half(x): | |
assert x.shape==(2*n+1,2*n+1) | |
y = zeros_like(x) | |
for i in xrange(2*n+1): | |
l = min(i,2*n-i) | |
j = arange(2*l+1)-l | |
y[i,n+j] = x[i+j,i-j] | |
return y | |
print('half(prob) = \n%s'%half(prob)) | |
if n<=50: | |
ax.plot_surface(i,j,half(prob),rstride=1,cstride=1,linewidth=0,cmap=cm.coolwarm) | |
else: | |
ax.plot_surface(i,j,half(prob),linewidth=0,cmap=cm.coolwarm) | |
ax.set_title('n = %d'%n) | |
ax.view_init(elev=5.) | |
ax.w_xaxis.set_ticklabels([]) | |
ax.w_yaxis.set_ticklabels([]) | |
plt.show() | |
if __name__=='__main__': | |
plot() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment