Last active
September 17, 2017 19:45
-
-
Save github-shakti/7251f50ddcb51f429f0fb160f8d12193 to your computer and use it in GitHub Desktop.
Perceptron Model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #! python3 | |
| #This is a perceptron implementation written using tensor flow to learn basics of tensor flow | |
| #from tensorflow.examples.tutorials.mnist import input_data | |
| #mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | |
| #(Train 55k / Test 10k / Validate 10k) | |
| #structure of Data : x:mnist.train.images y:mnist.train.label | |
| #mnist.train.images : rc [55000, 784] | |
| #mnist.train.labels : rc [55000, 10] | |
| #y=softmax(Wx+b) | |
| from tensorflow.examples.tutorials.mnist import input_data | |
| mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | |
| import tensorflow as tf | |
| x = tf.placeholder(tf.float32, [None, 784]) | |
| W = tf.Variable(tf.zeros([784, 10])) | |
| b = tf.Variable(tf.zeros([10])) | |
| y = tf.nn.softmax(tf.matmul(x, W) + b) | |
| y_ = tf.placeholder(tf.float32, [None, 10]) | |
| cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) | |
| train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) | |
| sess = tf.InteractiveSession() | |
| tf.global_variables_initializer().run() | |
| for _ in range(1000): | |
| batch_xs, batch_ys = mnist.train.next_batch(100) | |
| sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) | |
| correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) | |
| accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
| print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #! python3 | |
| import matplotlib.pyplot as mp | |
| import numpy as np | |
| import random | |
| mp.ion() | |
| fig=mp.figure() | |
| mp.axis([0,100,-1,2]) | |
| data = [ | |
| (np.array([0,0,1]), 0), | |
| (np.array([1,0,1]), 1), | |
| (np.array([0,1,1]), 1), | |
| (np.array([1,1,1]), 1), | |
| ] | |
| w = np.random.rand(3) | |
| unit_step = lambda x: 0 if x < 0 else 1 | |
| errors = [] | |
| lr=0.1 | |
| epoch=100 | |
| for i in range(epoch): | |
| x, expected = random.choice(data) | |
| result = np.dot(w, x) | |
| error = expected - unit_step(result) | |
| errors.append(error) | |
| w += lr * error * x | |
| ssa=w | |
| mp.subplot(3, 1, 1) | |
| mp.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.2, hspace=0.3) | |
| mp.ylabel('Error Values') | |
| mp.plot(i, error,'m.') | |
| mp.subplot(3, 1, 2) | |
| mp.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.2, hspace=0.3) | |
| mp.plot(i, ssa[0],'r.') | |
| mp.plot(i, ssa[1],'b.') | |
| mp.plot(i, ssa[2],'g.') | |
| mp.ylabel('Change in Weights') | |
| mp.subplot(3, 1, 3) | |
| mp.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.2, hspace=0.3) | |
| mp.plot(i, x[0],'r.') | |
| mp.plot(i, x[1],'b_') | |
| #mp.plot(i, x[2],'g.') | |
| mp.ylabel(' X-Values') | |
| mp.show() | |
| mp.pause(0.0001) | |
| while True: | |
| mp.pause(0.0001) | |
| for x, _ in data: | |
| result = np.dot(x, w) | |
| print("{}: {} -> {}".format(x[:2], result, unit_step(result))) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #! python3 | |
| import matplotlib.pyplot as mp | |
| import numpy as np | |
| import random | |
| mp.ion() | |
| fig=mp.figure() | |
| mp.axis([0,100,-1,2]) | |
| data = [ | |
| (np.array([0,0,1]), 0), | |
| (np.array([1,0,1]), 1), | |
| (np.array([0,1,1]), 1), | |
| (np.array([1,1,1]), 0), | |
| ] | |
| w = np.random.rand(3) | |
| unit_step = lambda x: 0 if x < 0 else 1 | |
| errors = [] | |
| lr=0.1 | |
| epoch=100 | |
| for i in range(epoch): | |
| x, expected = random.choice(data) | |
| result = np.dot(w, x) | |
| error = expected - unit_step(result) | |
| errors.append(error) | |
| w += lr * error * x | |
| ssa=w | |
| mp.subplot(3, 1, 1) | |
| mp.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.2, hspace=0.3) | |
| mp.ylabel('Error Values') | |
| mp.plot(i, error,'m.') | |
| mp.subplot(3, 1, 2) | |
| mp.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.2, hspace=0.3) | |
| mp.plot(i, ssa[0],'r.') | |
| mp.plot(i, ssa[1],'b.') | |
| mp.plot(i, ssa[2],'g.') | |
| mp.ylabel('Change in Weights') | |
| mp.subplot(3, 1, 3) | |
| mp.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.2, hspace=0.3) | |
| mp.plot(i, x[0],'r.') | |
| mp.plot(i, x[1],'b_') | |
| #mp.plot(i, x[2],'g.') | |
| mp.ylabel(' X-Values') | |
| mp.show() | |
| mp.pause(0.0001) | |
| while True: | |
| mp.pause(0.0001) | |
| for x, _ in data: | |
| result = np.dot(x, w) | |
| print("{}: {} -> {}".format(x[:2], result, unit_step(result))) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #! python3 | |
| # | |
| #Credits : https://blog.dbrgn.ch/2013/3/26/perceptrons-in-python/ | |
| # | |
| import matplotlib.pyplot as mp | |
| import numpy as np | |
| import random | |
| mp.ion() | |
| fig=mp.figure() | |
| mp.axis([0,100,-1,2]) | |
| data = [ | |
| (np.array([0,0,1]), 0), | |
| (np.array([0,1,1]), 1), | |
| (np.array([1,0,1]), 1), | |
| (np.array([1,1,1]), 1), | |
| ] | |
| w = np.random.rand(3) | |
| unit_step = lambda x: 0 if x < 0 else 1 | |
| errors = [] | |
| lr=0.1 | |
| epoch=100 | |
| for i in range(epoch): | |
| x, expected = random.choice(data) | |
| result = np.dot(w, x) | |
| error = expected - unit_step(result) | |
| errors.append(error) | |
| w += lr * error * x | |
| ssa=w | |
| mp.plot(i, error,'m.') | |
| mp.plot(i, ssa[0],'g.') | |
| mp.plot(i, ssa[1],'r.') | |
| mp.plot(i, ssa[2],'b.') | |
| mp.plot(i, x[0],'r_') | |
| mp.plot(i, x[1],'b_') | |
| #mp.plot(i, x[2],'r.') | |
| mp.show() | |
| mp.pause(0.0001) | |
| for x, _ in data: | |
| result = np.dot(x, w) | |
| print("{}: {} -> {}".format(x[:2], result, unit_step(result))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment