Last active
January 16, 2022 20:18
-
-
Save gituser768/5b69fd0e24482857bf54ed417f554b72 to your computer and use it in GitHub Desktop.
Simulation of variance of estimate of F1 as precision and recall vary from 0 to 1
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
import numpy as np | |
import numpy.linalg as la | |
import pandas as pd | |
import numpy.random as rn | |
import matplotlib.pyplot as plt | |
def hmean(a, b): | |
return np.nan_to_num(2 / (1/a + 1/b)) | |
def main(): | |
p = 0.5 | |
n_iter = 10000 | |
r_steps = 30 | |
p_steps = 40 | |
recall = np.linspace(0, 1, r_steps + 1)[1:] | |
precision = np.linspace(0, 1, p_steps + 1)[1:] | |
p_1_0 = recall * p / precision[:, np.newaxis] - recall * p | |
recall_neg = p_1_0 / (1 - p) | |
f1s = defaultdict(list) | |
num_samples = [100] | |
for i in range(n_iter): | |
for n in num_samples: | |
pos = (rn.rand(n) > p) | |
pred_tpos = (rn.rand(n, r_steps) < recall) & pos[:, np.newaxis] | |
pred_tneg = (rn.rand(n, p_steps, r_steps) < recall_neg) & ~pos[:, np.newaxis, np.newaxis] | |
pred = pred_tpos[:, np.newaxis] | pred_tneg | |
recall_hat = pred_tpos.sum(0) / pos.sum(0) | |
precision_hat = pred_tpos.sum(0) / pred.sum(0) | |
f1s[n].append(hmean(np.tile(recall_hat, p_steps), precision_hat.reshape(-1)).reshape(*precision_hat.shape)) | |
for n in num_samples: | |
plt.contourf(recall, precision, np.stack(f1s[n]).std(0)) | |
plt.figure() | |
plt.show() | |
if __name__ == "__main__": main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This is missing:
p≥πr/(1−π+πr)