Last active
July 21, 2021 16:07
-
-
Save gituser768/6fbd0316e9dff0c8f3d92866b5b07457 to your computer and use it in GitHub Desktop.
ranking metrics that account for imperfect recall of first pass ranker
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def calc_ndcg(a, b, num_rel): | |
ranking_len = len(a) | |
len_diff = int(num_rel - a.sum()) | |
a = np.r_[a, np.ones(len_diff)] | |
b = np.r_[b, (b.min() - 1) * np.ones(len_diff)] | |
if (a.mean() < 1) and (a.mean() > 0): return ndcg_score([a], [b], k=ranking_len) | |
else: return np.nan | |
def calc_auc(a, b, num_rel, population_size): | |
assert a.sum() <= num_rel | |
assert len(a) <= population_size | |
assert num_rel <= population_size | |
if (a.mean() < 1) and (a.mean() > 0): | |
top_k_auc = roc_auc_score(a, b) | |
else: | |
top_k_auc = 1 | |
ranking_len = len(a) | |
num_rel_top_k = a.sum() | |
num_rel_rest = num_rel - num_rel_top_k | |
rest_size = population_size - ranking_len | |
num_irrel_top_k = ranking_len - num_rel_top_k | |
num_irrel_rest = rest_size - num_rel_rest | |
num_irrel = num_irrel_top_k + num_irrel_rest | |
top_k_bottom_rest_auc = num_rel_top_k / ranking_len * (rest_size / num_irrel_rest) | |
bottom_rest_top_k_auc = 0 | |
bottom_rest_auc = 1/2 | |
prob_top_k = num_rel_top_k / num_rel * num_irrel_top_k / num_irrel | |
prob_top_k_bottom_rest = num_rel_top_k / num_rel * num_irrel_rest / num_irrel | |
prob_bottom_rest_top_k = num_irrel_top_k / num_irrel * num_rel_rest / num_rel | |
prob_bottom_rest = num_rel_rest / num_rel * num_irrel_rest / num_irrel | |
return (top_k_auc * prob_top_k + | |
bottom_rest_top_k_auc * prob_bottom_rest_top_k + | |
np.nan_to_num(top_k_bottom_rest_auc) * prob_top_k_bottom_rest + | |
bottom_rest_auc * prob_bottom_rest) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment