Download offline script file https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from torch.fx.experimental.proxy_tensor import make_fx | |
from torch._decomp import get_decompositions | |
import tempfile | |
import torch_mlir | |
def prepare_sentence_tokens(hf_model: str, sentence: str): |
module attributes {torch.debug_module_name = "GraphModule"} { | |
func private @__torch__.torch.fx.graph_module.___torch_mangle_0.GraphModule.forward(%arg0: !torch.nn.Module<"__torch__.torch.fx.graph_module.___torch_mangle_0.GraphModule">, %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[50257,768],f32>}, %arg2: !torch.tensor {torch.type_bound = !torch.vtensor<[2304],f32>}, %arg3: !torch.tensor {torch.type_bound = !torch.vtensor<[768,2304],f32>}, %arg4: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg5: !torch.tensor {torch.type_bound = !torch.vtensor<[768,768],f32>}, %arg6: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg7: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg8: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg9: !torch.tensor {torch.type_bound = !torch.vtensor<[768],f32>}, %arg10: !torch.tensor {torch.type_bound = !torch.vtensor<[3072],f32>}, %arg11: !torch.tensor {torch.type_bound = !torch.vtensor<[768,3072],f32>}, %ar |
The official instructions on installing TensorFlow are here: https://www.tensorflow.org/install. If you want to install TensorFlow just using pip, you are running a supported Ubuntu LTS distribution, and you're happy to install the respective tested CUDA versions (which often are outdated), by all means go ahead. A good alternative may be to run a Docker image.
I am usually unhappy with installing what in effect are pre-built binaries. These binaries are often not compatible with the Ubuntu version I am running, the CUDA version that I have installed, and so on. Furthermore, they may be slower than binaries optimized for the target architecture, since certain instructions are not being used (e.g. AVX2, FMA).
So installing TensorFlow from source becomes a necessity. The official instructions on building TensorFlow from source are here: ht
import streamlit as st | |
import spacy | |
from spacy import displacy | |
import pandas as pd | |
from scispacy.umls_linking import UmlsEntityLinker | |
from scispacy.abbreviation import AbbreviationDetector | |
SPACY_MODEL_NAMES = ["en_core_sci_sm", "en_core_sci_md", "en_core_sci_lg"] |
// | |
// Implementation for Yocto/RayTrace. | |
// | |
// | |
// LICENSE: | |
// | |
// Copyright (c) 2016 -- 2020 Fabio Pellacini | |
// | |
// Permission is hereby granted, free of charge, to any person obtaining a copy |