Created
August 3, 2017 13:47
-
-
Save giuseppebonaccorso/25b82ab1f7d1e9971f59ddf7fefc1455 to your computer and use it in GitHub Desktop.
Assessing clustering optimality with instability index
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.cluster import KMeans | |
from sklearn.datasets import make_blobs | |
from sklearn.metrics.pairwise import pairwise_distances | |
import multiprocessing | |
# Set random seed for reproducibility | |
np.random.seed(1000) | |
# Generate a dummy dataset | |
nb_samples = 1500 | |
nb_features = 2 | |
X, Y = make_blobs(n_samples=nb_samples, n_features=nb_features, centers=8, cluster_std=2.0, random_state=1000) | |
# Create noisy versions | |
nb_noisy_versions = 20 | |
Xp = np.ndarray(shape=(nb_noisy_versions, nb_samples, nb_features)) | |
for i in range(nb_noisy_versions): | |
for j in range(nb_samples): | |
if np.random.uniform(0, 1) < 0.5: | |
Xp[i, j, :] = X[j, :] + np.random.normal(scale=0.5, size=nb_features) | |
else: | |
Xp[i, j, :] = X[j, :] | |
# Compute the instabilities | |
max_nb_clusters = 15 | |
instabilities = [] | |
for n in range(2, max_nb_clusters+1): | |
Yp = [] | |
ds = [] | |
for k in range(nb_noisy_versions): | |
km = KMeans(n_clusters=n, n_jobs=multiprocessing.cpu_count()) | |
Yp.append(km.fit_predict(Xp[k, :, :])) | |
for i in range(len(Yp)-1): | |
for j in range(i, len(Yp)): | |
d = pairwise_distances(Yp[i].reshape(-1, 1), Yp[j].reshape(-1, 1), 'hamming') | |
ds.append(d[0, 0]) | |
instabilities.append((2.0 * np.sum(ds)) / float(nb_noisy_versions ** 2)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment