Created
September 20, 2017 12:33
-
-
Save giuseppebonaccorso/36b6a7eac1a3e54063ea96aa48ba4acf to your computer and use it in GitHub Desktop.
Hopfield Network
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
# Set random seed for reproducibility | |
np.random.seed(1000) | |
nb_patterns = 4 | |
pattern_width = 4 | |
pattern_height = 4 | |
max_iterations = 10 | |
# Initialize the patterns | |
X = np.zeros((nb_patterns, pattern_width * pattern_height)) | |
X[0] = [-1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1] | |
X[1] = [-1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1] | |
X[2] = [-1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1] | |
X[3] = [1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1] | |
# Show the patterns | |
fig, ax = plt.subplots(1, nb_patterns, figsize=(10, 5)) | |
for i in range(nb_patterns): | |
ax[i].matshow(X[i].reshape((pattern_height, pattern_width)), cmap='gray') | |
ax[i].set_xticks([]) | |
ax[i].set_yticks([]) | |
plt.show() | |
# Train the network | |
W = np.zeros((pattern_width * pattern_height, pattern_width * pattern_height)) | |
for i in range(pattern_width * pattern_height): | |
for j in range(pattern_width * pattern_height): | |
if i == j or W[i, j] != 0.0: | |
continue | |
w = 0.0 | |
for n in range(nb_patterns): | |
w += X[n, i] * X[n, j] | |
W[i, j] = w / X.shape[0] | |
W[j, i] = W[i, j] | |
# Create a corrupted test pattern | |
x_test = np.array([1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1]) | |
# Recover the original patterns | |
A = x_test.copy() | |
for _ in range(max_iterations): | |
for i in range(pattern_width * pattern_height): | |
A[i] = 1.0 if np.dot(W[i], A) > 0 else -1.0 | |
# Show corrupted and recovered patterns | |
fig, ax = plt.subplots(1, 2, figsize=(10, 5)) | |
ax[0].matshow(x_test.reshape(pattern_height, pattern_width), cmap='gray') | |
ax[0].set_title('Corrupted pattern') | |
ax[0].set_xticks([]) | |
ax[0].set_yticks([]) | |
ax[1].matshow(A.reshape(pattern_height, pattern_width), cmap='gray') | |
ax[1].set_title('Recovered pattern') | |
ax[1].set_xticks([]) | |
ax[1].set_yticks([]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment