Last active
October 22, 2017 16:16
-
-
Save giuseppebonaccorso/ee57c79334164dcfd6d9e5c422229e19 to your computer and use it in GitHub Desktop.
Example of Self-Organizing Map (Kohonen Network) based on the Olivetti faces dataset (Cupy-based)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cupy as cp | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from sklearn.datasets import fetch_olivetti_faces | |
# Set random seed for reproducibility | |
np.random.seed(1000) | |
cp.random.seed(1000) | |
# Retrieve the dataset | |
faces = fetch_olivetti_faces() | |
nb_iterations = 5000 | |
nb_startup_iterations = 100 | |
nb_patterns = 100 | |
pattern_length = faces['data'].shape[1] | |
pattern_width = pattern_height = int(np.sqrt(pattern_length)) | |
eta0 = 1.0 | |
sigma0 = 10 | |
tau = 400.0 | |
matrix_side = 20 | |
precomputed_distances = np.zeros((matrix_side, matrix_side, matrix_side, matrix_side)) | |
# Create the training set | |
X = faces['data'] | |
X_train = cp.array(X[0:nb_patterns]) | |
# Initialize the weights | |
W = cp.random.uniform(cp.min(X_train), cp.max(X_train), size=(matrix_side, matrix_side, pattern_length)) | |
def winning_unit(xt): | |
distances = cp.linalg.norm(W - xt, ord=2, axis=2) | |
max_activation_unit = cp.argmax(distances) | |
return int(cp.floor(max_activation_unit / matrix_side)), max_activation_unit % matrix_side | |
def eta(t): | |
return eta0 * cp.exp(-float(t) / tau) | |
def sigma(t): | |
return float(sigma0) * cp.exp(-float(t) / tau) | |
# Precompute the distances | |
for i in range(matrix_side): | |
for j in range(matrix_side): | |
for k in range(matrix_side): | |
for t in range(matrix_side): | |
precomputed_distances[i, j, k, t] = np.power(float(i) - float(k), 2) + np.power(float(j) - float(t), 2) | |
precomputed_distances = cp.array(precomputed_distances) | |
def distance_matrix(xt, yt, sigmat): | |
dm = precomputed_distances[xt, yt, :, :] | |
de = 2.0 * cp.power(sigmat, 2) | |
return cp.exp(-dm / de) | |
if __name__ == '__main__': | |
# Main cycle | |
sequence = np.arange(0, nb_patterns) | |
for t in range(nb_iterations): | |
np.random.shuffle(sequence) | |
if t < nb_startup_iterations: | |
etat = eta(t) | |
sigmat = sigma(t) | |
else: | |
etat = 0.1 | |
sigmat = 0.01 | |
for n in sequence: | |
x_sample = X_train[n] | |
xw, yw = winning_unit(x_sample) | |
dm = distance_matrix(xw, yw, sigmat) | |
dW = etat * cp.expand_dims(dm, axis=2) * (x_sample - W) | |
W += dW | |
# Show the weight matrix | |
matrix_w = cp.zeros((matrix_side * pattern_height, matrix_side * pattern_width)) | |
for i in range(matrix_side): | |
for j in range(matrix_side): | |
matrix_w[i * pattern_height:i * pattern_height + pattern_height, | |
j * pattern_height:j * pattern_height + pattern_width] = W[i, j].reshape((pattern_height, pattern_width)) * 255.0 | |
fig, ax = plt.subplots(figsize=(12, 12)) | |
ax.matshow(matrix_w.tolist(), cmap='gray') | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment