Skip to content

Instantly share code, notes, and snippets.

@gka
Created May 1, 2020 15:14
Show Gist options
  • Save gka/cb051c50ab8b08de7f5c12ec6fdc52eb to your computer and use it in GitHub Desktop.
Save gka/cb051c50ab8b08de7f5c12ec6fdc52eb to your computer and use it in GitHub Desktop.
# ---------------------
# This is the R script that generates the charts, maps and tables for the Datawrapper blog post http://blog.datawrapper.de/coronavirus-charts, written by Lisa Charlotte Rost.
# This is NOT great R code. It works, but much of it could have been achieved with shorter code, more elegant, more efficiently, less confusing and without so many libraries; especially the further you go down the script (I got better in the process, among others thanks to my coworker Gregor Aisch who's still a R pro). Please don't use this code to learn R.
# ---------------------
# load libraries
needs(dplyr, readr, reshape2, jsonlite, data.table, tidyr, htmltab, zoo)
# ^ if this command fails, run
# source("./needs.R")
# disable scientific notation
options(scipen = 999)
options(tz="Europe/London")
Sys.setenv(TZ="Europe/London")
Sys.setlocale("LC_CTYPE", "en_US.UTF-8")
setwd('./data/coronavirus/')
# ---------------------
# D O U B L I N G T I M E S O V E R T I M E
# for line chart
message(" D O U B L I N G T I M E S O V E R T I M E for line chart with ECDC data")
read_csv(url("https://covid.ourworldindata.org/data/ecdc/full_data.csv")) %>%
group_by(location) %>%
filter(max(total_deaths) >= 1000) %>%
select(date, location, new_deaths) %>%
mutate(new_deaths = rollapply(new_deaths, 7, mean, fill=NA)) %>%
drop_na() %>%
ungroup() %>%
filter(location != "World") %>%
pivot_wider(names_from = "location", values_from = "new_deaths") %>%
write_csv("ecdc-newdeaths.csv")
read_csv(url("https://covid.ourworldindata.org/data/ecdc/full_data.csv")) %>%
group_by(location) %>%
filter(max(total_cases) >= 5000) %>%
select(date, location, new_cases) %>%
mutate(new_cases = rollapply(new_cases, 7, mean, fill=NA)) %>%
drop_na() %>%
ungroup() %>%
filter(location != "World") %>%
pivot_wider(names_from = "location", values_from = "new_cases") %>%
write_csv("ecdc-newcases.csv")
# -------------------------------------------
# R O U T I N G R E Q U E S T L I N E C H A R T S
# -------------------------------------------
# with data from Apple Maps
# source: https://www.apple.com/covid19/mobility
message("apple data routing requests chart")
all <- read_csv(url("https://raw.githubusercontent.com/ActiveConclusion/COVID19_mobility/master/apple_reports/applemobilitytrends.csv")) %>%
select(-alternative_name) %>%
pivot_longer(-c(geo_type, region, transportation_type), names_to = "date", values_to = "value") %>%
mutate(region=recode(region, "Republic of Korea" = "South Korea"))
apple_writecsv <- function(data, case_type) {
data %>%
group_by(region, transportation_type) %>%
ungroup() %>%
select(region, date, value) %>%
pivot_wider(names_from = "region", values_from = "value") %>%
write_csv(sprintf("%s.csv", case_type))
}
# Driving in countries
selected_regions <- c("Germany", "Japan", "United States", "Macao", "Hong Kong", "Taiwan", "Sweden", "Russia", "Spain", "Italy", "France", "New Zealand", "Argentina", "India", "South Korea", "Iceland", "UK" )
all %>%
filter(transportation_type == "driving" & geo_type == "country/region" & region %in% selected_regions) %>%
apple_writecsv("driving")
# Transt in cities
selected_cities_transit <- c("Osaka", "Tokyo", "Berlin", "London", "New York", "Rome", "Madrid", "Paris", "San Francisco - Bay Area", "Auckland", "Toronto", "Seattle", "Chicago", "Taipei", "Stockholm", "Detroit", "New York City")
all %>%
filter(transportation_type == "transit" & geo_type == "city" & region %in% selected_cities_transit) %>%
apple_writecsv("transit_cities")
# -------------------------------------------
# C O L U M N C H A R T S
# -------------------------------------------
message("column charts")
# with data by
# J O H N S H O P K I N S
# --------------------
# Column chart functions
download_data_and_filter <- function(case_type, shown_country) {
read_csv(url(sprintf("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_%s_global.csv", case_type))) %>%
filter(`Country/Region` == shown_country) %>%
rename(country = `Country/Region`,
province = `Province/State`) %>%
select(-Lat, -Long) %>%
pivot_longer(-c(country, province), names_to = "date", values_to = case_type) %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
group_by(date) %>%
arrange(date) %>%
summarise_at(case_type, sum) %>%
mutate_at(case_type, ~ifelse(date == "2020-03-12", lag(.) + (lead(.)-lag(.))/2, .))
}
download_data_and_filter_multiple <- function(case_type, shown_country) {
read_csv(url(sprintf("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_%s_global.csv", case_type))) %>%
filter(`Country/Region` %in% shown_country) %>%
rename(country = `Country/Region`,
province = `Province/State`) %>%
select(-Lat, -Long) %>%
pivot_longer(-c(country, province), names_to = "date", values_to = case_type) %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
group_by(date) %>%
arrange(date) %>%
summarise_at(case_type, sum) %>%
mutate_at(case_type, ~ifelse(date == "2020-03-12", lag(.) + (lead(.)-lag(.))/2, .)) %>%
rename(confirmed = 2)
}
download_data <- function(case_type) {
read_csv(url(sprintf("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_%s_global.csv", case_type))) %>%
rename(country = `Country/Region`,
province = `Province/State`) %>%
select(-Lat, -Long) %>%
pivot_longer(-c(country, province), names_to = "date", values_to = case_type) %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
group_by(date) %>%
arrange(date) %>%
summarise_at(case_type, sum) %>%
mutate_at(case_type, ~ifelse(date == "2020-03-12", lag(.) + (lead(.)-lag(.))/2, .))
}
join_and_export <- function(country_name_for_csv) {
full_join(confirmed, deaths, by="date") %>%
arrange(date) %>%
mutate(`new confirmed cases` = confirmed - lag(confirmed),
`deaths` = deaths - lag(deaths)) %>%
select(date, `new confirmed cases`, deaths) %>%
mutate(`new confirmed cases` = case_when(
date == "2020-03-12" ~ (lead(`new confirmed cases`)+`new confirmed cases`)*0.44,
date == "2020-03-13" ~ (lag(`new confirmed cases`) +`new confirmed cases`)*0.56,
date != "2020-03-12" & date != "2020-03-13" ~ `new confirmed cases`)) %>%
write_csv(sprintf("%s-current-recov-death-per-day.csv", country_name_for_csv))
}
join_and_export_recov <- function(country_name_for_csv) {
full_join(confirmed, deaths, by="date") %>%
full_join(recovered, by="date") %>%
arrange(date) %>%
mutate(`new confirmed cases` = confirmed - lag(confirmed),
deaths = deaths - lag(deaths),
recoveries = recovered - lag(recovered)) %>%
select(date, `new confirmed cases`, deaths, recoveries) %>%
mutate(`new confirmed cases` = case_when(
date == "2020-03-12" ~ (lead(`new confirmed cases`)+`new confirmed cases`)*0.44,
date == "2020-03-13" ~ (lag(`new confirmed cases`) +`new confirmed cases`)*0.56,
date != "2020-03-12" & date != "2020-03-13" ~ `new confirmed cases`)) %>%
write_csv(sprintf("%s-current-recov-death-per-day2.csv", country_name_for_csv))
}
join_and_correct <- function(data) {
data %>%
arrange(date) %>%
mutate(confirmed = confirmed - lag(confirmed)) %>%
select(date, confirmed) %>%
mutate(confirmed = case_when(
date == "2020-03-12" ~ (lead(confirmed)+confirmed)*0.44,
date == "2020-03-13" ~ (lag(confirmed) +confirmed)*0.56,
date != "2020-03-12" & date != "2020-03-13" ~ confirmed))
}
rolling_average <- function(data, country_name_for_csv) {
data %>%
pivot_longer(-date, names_to = "type", values_to = "cases") %>%
group_by(type) %>%
mutate(roll = (rollapplyr(cases, 7, mean, fill=NA))) %>%
select(-cases) %>%
pivot_wider(names_from = "type", values_from = "roll") %>%
drop_na() %>%
write_csv(sprintf("%s-rolling.csv", country_name_for_csv))
}
# ---------------------
# New cases and deaths per day, WORLDWIDE
# AND new cases, recoveries and deaths YESTERDAY
# for column chart https://app.datawrapper.de/chart/7o2fN/visualize
confirmed <- download_data("confirmed")
recovered <- download_data("recovered")
deaths <- download_data("deaths")
# with recovered
full_join(confirmed, deaths, by="date") %>%
full_join(recovered, by="date") %>%
mutate(date = as.Date(date, "%m/%d/%y"),
current = confirmed - deaths - recovered) %>%
arrange(date) %>%
select(date, current, deaths, recovered) %>%
write_csv("worldwide_cumulative-current-recov-death-per-day.csv")
yesterday <- join_and_export_recov("worldwide") %>%
write_csv("worldwide-cases-per-day2.csv")
yesterday %>% rolling_average("world")
# New cases and deaths and recoveries YESTERDAY
yesterday <-yesterday %>% filter(row_number()==n()) %>%
select(date, `new confirmed cases`, deaths, recoveries) %>%
mutate(date = as.Date(date, "%Y-%m-%d")) %>%
mutate(date = format(date, "Numbers for yesterday, %A, %B %d"))
yesterday = as.data.frame(t(yesterday))
yesterday = setDT(yesterday, keep.rownames = TRUE)[] %>%
mutate(rn=recode(rn, "date"=" "),
rn=recode(rn, "new confirmed cases" = "Yesterday, this many new people <b>got tested positive</b> for COVID-19:"),
rn=recode(rn, "deaths"="And at least this number of people <b>died from the virus</b>:"),
rn=recode(rn, "recoveries"="But we also know that at least this number of people <b>recovered</b>:")) %>%
write_csv("worlwide-current-recov-death-yesterday2.csv")
# New cases and deaths YESTERDAY
yesterday <- join_and_export("worldwide") %>%
write_csv("worldwide-cases-per-day.csv") %>%
filter(row_number()==n()) %>%
select(date, `new confirmed cases`, deaths) %>%
mutate(date = as.Date(date, "%Y-%m-%d")) %>%
mutate(date = format(date, "Numbers for yesterday, %A, %B %d"))
yesterday = as.data.frame(t(yesterday))
yesterday = setDT(yesterday, keep.rownames = TRUE)[] %>%
mutate(rn=recode(rn, "date"=" "),
rn=recode(rn, "new confirmed cases" = "Yesterday, this many new people <b>got tested positive</b> for COVID-19:"),
rn=recode(rn, "deaths"="And at least this number of people <b>died from the virus</b>:")) %>%
write_csv("worlwide-current-recov-death-yesterday.csv")
# ---------------------
# New cases, recoveries and deaths per day, Spain, for column chart
confirmed <- download_data_and_filter("confirmed", "Spain")
deaths <- download_data_and_filter("deaths", "Spain")
join_and_export("spain")
recovered <- download_data_and_filter("recovered", "Spain")
join_and_export_recov("spain") %>%
rolling_average("spain")
# ---------------------
# New cases, recoveries and deaths per day, US, for column chart
confirmed <- download_data_and_filter("confirmed", "US")
deaths <- download_data_and_filter("deaths", "US")
recovered <- download_data_and_filter("recovered", "US")
join_and_export_recov("us") %>%
rolling_average("us")
# ---------------------
# New cases, recoveries and deaths per day, Germany, for column chart
confirmed <- download_data_and_filter("confirmed", "Germany")
deaths <- download_data_and_filter("deaths", "Germany")
join_and_export("germany")
recovered <- download_data_and_filter("recovered", "Germany")
join_and_export_recov("germany") %>%
rolling_average("germany")
# ---------------------
# New cases, recoveries and deaths per day, China, for column chart
confirmed <- download_data_and_filter("confirmed", "China")
deaths <- download_data_and_filter("deaths", "China")
recovered <- download_data_and_filter("recovered", "China")
join_and_export("china")
join_and_export_recov("china") %>%
rolling_average("china")
# ---------------------
# New cases, recoveries and deaths per day, Italy, for column chart
confirmed <- download_data_and_filter("confirmed", "Italy")
deaths <- download_data_and_filter("deaths", "Italy")
recovered <- download_data_and_filter("recovered", "Italy")
join_and_export("italy")
join_and_export_recov("italy") %>%
rolling_average("italy")
# ---------------------
# New cases, recoveries and deaths per day, United Kingdom, for column chart
confirmed <- download_data_and_filter("confirmed", "United Kingdom")
deaths <- download_data_and_filter("deaths", "United Kingdom")
recovered <- download_data_and_filter("recovered", "United Kingdom")
join_and_export("uk")
join_and_export_recov("uk") %>%
rolling_average("uk")
# ---------------------
message("New cases, recoveries and deaths per day, Europe, for column chart")
european_countries <- c("Aland", "Albania", "Andorra", "Austria", "Belarus", "Belgium", "Bosnia and Herzegovina", "Bulgaria", "Croatia", "Cyprus", "Czechia", "Denmark", "Estonia", "Faroe Islands", "Finland", "France", "Germany", "Gibraltar", "Greece", "Guernsey", "Hungary", "Iceland", "Ireland", "Isle of Man", "Italy", "Jersey", "Kosovo", "Latvia", "Liechtenstein", "Lithuania", "Luxembourg", "North Macedonia", "Malta", "Moldova", "Monaco", "Montenegro", "Netherlands", "Norway", "Poland", "Portugal", "Republic of Serbia", "Romania", "San Marino", "Slovakia", "Slovenia", "Spain", "Sweden", "Switzerland", "Turkey", "Ukraine", "UK", "Vatican")
confirmed <- download_data_and_filter_multiple("confirmed", european_countries)
deaths <- download_data_and_filter_multiple("deaths", european_countries) %>%
rename(deaths = confirmed)
recovered <- download_data_and_filter_multiple("recovered", european_countries) %>%
rename(recovered = confirmed)
join_and_export("europe")
join_and_export_recov("europe") %>%
rolling_average("europe")
# ---------------------
# New cases and deaths per day, for seleced countries, for area chart
columnchart_countries <- c("Italy", "Spain", "Germany", "US", "United Kingdom", "Switzerland", "China", "Iran", "France", "Korea, South", "Belgium", "Netherlands", "Canada", "Brazil")
columnchart_africa <- c("Algeria", "Angola", "Benin", "Botswana", "Burkina Faso", "Burundi", "Cabo Verde", "Cameroon", "Central African Republic", "Chad", "Comoros", "Côte d'Ivoire", "Congo (Kinshasa)", "Djibouti", "Egypt", "Equatorial Guinea", "Eritrea", "Ethiopia", "French Southern Territories", "Gabon", "Gambia", "Ghana", "Guinea", "Guinea-Bissau", "Kenya", "Lesotho", "Liberia", "Libya", "Madagascar", "Malawi", "Mali", "Mauritania", "Mauritius", "Mayotte", "Morocco", "Mozambique", "Namibia", "Niger", "Nigeria", "Congo (Brazzaville)", "Rwanda", "Réunion", "Saint Helena, Ascension and Tristan da Cunha", "Sao Tome and Principe", "Senegal", "Seychelles", "Sierra Leone", "Somalia", "South Africa", "South Sudan", "Sudan", "Swaziland", "Tanzania", "Togo", "Tunisia", "Uganda", "Western Sahara", "Zambia", "Zimbabwe", "Eswatini")
columnchart_asia <- c("Afghanistan", "Armenia", "Azerbaijan", "Bahrain", "Bangladesh", "Bhutan", "British Indian Ocean Territory", "Brunei", "Cambodia", "Christmas Island", "Cocos (Keeling) Islands", "Georgia", "Hong Kong", "India", "Iraq", "Israel", "Jordan", "Kazakhstan", "Kuwait", "Kyrgyzstan", "Laos", "Lebanon", "Macau", "Malaysia", "Maldives", "Mongolia", "Myanmar", "Nepal", "North Korea", "Oman", "Pakistan", "Philippines", "Qatar", "Saudi Arabia", "Singapore", "Sri Lanka", "Palestine", "Syrian Arab Republic", "Taiwan", "Tajikistan", "Thailand", "Timor-Leste", "Turkmenistan", "United Arab Emirates", "Uzbekistan", "Vietnam", "Yemen", "Hubei, China", "China without Hubei", "Syria", "Japan", "Indonesia")
columnchart_oceania <- c("American Samoa", "Australia", "Cook Islands", "Federated States of Micronesia", "Fiji", "French Polynesia", "Guam", "Kiribati", "Marshall Islands", "Nauru", "New Caledonia", "New Zealand", "Niue", "Norfolk Island", "Northern Mariana Islands", "Palau", "Papua New Guinea", "Pitcairn", "Samoa", "Solomon Islands", "Tokelau", "Tonga", "Tuvalu", "Vanuatu", "Wallis and Futuna")
columnchart_southamerica <- c("Argentina", "Aruba", "Bolivia", "Bonaire, Sint Eustatius and Saba", "Chile", "Colombia", "Curaçao", "Ecuador", "Falkland Islands", "French Guiana", "Guyana", "Paraguay", "Peru", "Suriname", "Trinidad and Tobago", "Uruguay", "Venezuela")
columnchart_northamerica <- c("Anguilla", "Antigua and Barbuda", "Bahamas", "Barbados", "Belize", "Bermuda", "Cayman Islands", "Costa Rica", "Cuba", "Dominica", "Dominican Republic", "El Salvador", "Greenland", "Grenada", "Guadeloupe", "Guatemala", "Haiti", "Honduras", "Jamaica", "Martinique", "Mexico", "Montserrat", "Nicaragua", "Panama", "Puerto Rico", "Saint Barthelemy", "Saint Kitts and Nevis", "Saint Lucia", "St. Martin", "Saint Pierre and Miquelon", "Saint Vincent and the Grenadines", "Sint Maarten", "Turks and Caicos Islands", "United States Minor Outlying Islands", "Virgin Islands (British)", "Virgin Islands (U.S.)")
columnchart_europe <- c("Aland Islands", "Albania", "Andorra", "Belarus", "Bosnia and Herzegovina", "Bulgaria", "Croatia", "Cyprus", "Czechia", "Denmark", "Estonia", "Faroe Islands", "Finland", "Macedonia", "Gibraltar", "Greece", "Guernsey", "Holy See", "Hungary", "Iceland", "Ireland", "Isle of Man", "Jersey", "Latvia", "Liechtenstein", "Lithuania", "Luxembourg", "Malta", "Moldova", "Monaco", "Montenegro", "Norway", "Poland", "Portugal", "Romania", "Russia", "San Marino", "Serbia", "Slovakia", "Slovenia", "Svalbard and Jan Mayen", "Sweden", "Ukraine", "Austria", "Turkey")
area_chart_divided_by_country <- function(case_type) {
confirmed_africa <- download_data_and_filter_multiple(case_type, columnchart_africa) %>%
join_and_correct() %>%
rename(`Africa` = confirmed)
confirmed_asia <- download_data_and_filter_multiple(case_type, columnchart_asia) %>%
join_and_correct() %>%
rename(`Other Asian countries` = confirmed)
confirmed_europe <- download_data_and_filter_multiple(case_type, columnchart_europe) %>%
join_and_correct() %>%
rename(`Other European countries` = confirmed)
confirmed_northamerica <- download_data_and_filter_multiple(case_type, columnchart_northamerica) %>%
join_and_correct() %>%
rename(`Other North-American countries` = confirmed)
confirmed_oceania <- download_data_and_filter_multiple(case_type, columnchart_oceania) %>%
join_and_correct() %>%
rename(`Australia & Oceania` = confirmed)
confirmed_southamerica <- download_data_and_filter_multiple(case_type, columnchart_southamerica) %>%
join_and_correct() %>%
rename(`Other South-American countries` = confirmed)
confirmed <- read_csv(url(sprintf("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_%s_global.csv", case_type))) %>%
filter(`Country/Region` %in% columnchart_countries) %>%
rename(country = `Country/Region`,
province = `Province/State`) %>%
select(-Lat, -Long, -province) %>%
pivot_longer(-country, names_to = "date", values_to = "confirmed") %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
group_by(country, date) %>%
summarise(confirmed = sum(confirmed)) %>%
mutate(confirmed = ifelse(date == "2020-03-12", lag(confirmed) + (lead(confirmed)-lag(confirmed))/2, confirmed)) %>%
mutate(new_cases = confirmed - lag(confirmed)) %>%
select(date, new_cases) %>%
mutate(new_cases = case_when(
date == "2020-03-12" ~ (lead(new_cases)+ new_cases)*0.40,
date == "2020-03-13" ~ (lag(new_cases) + new_cases)*0.50,
date != "2020-03-12" & date != "2020-03-13" ~ new_cases)) %>%
pivot_wider(names_from = "country", values_from = "new_cases") %>%
rename("South Korea" = "Korea, South") %>%
full_join(confirmed_africa, by="date") %>%
full_join(confirmed_asia, by="date") %>%
full_join(confirmed_europe, by="date") %>%
full_join(confirmed_oceania, by="date") %>%
full_join(confirmed_northamerica, by="date") %>%
full_join(confirmed_southamerica, by="date") %>%
select(date, China, `South Korea`, Iran, `Other Asian countries`,
Italy, Germany, France, Spain, Belgium, Netherlands, `United Kingdom`, Switzerland, `Other European countries`,
US, Canada, `Other North-American countries`,
Brazil, `Other South-American countries`, Africa, `Australia & Oceania`) %>%
write_csv(sprintf("%s-per-day-selected-countries.csv", case_type)) %>%
# rolling average
pivot_longer(-date, names_to = "country", values_to = "cases") %>%
group_by(country) %>%
mutate(roll = (rollapplyr(cases, 7, mean, fill=NA))) %>%
select(-cases) %>%
pivot_wider(names_from = "country", values_from = "roll") %>%
drop_na() %>%
write_csv(sprintf("%s-per-day-selected-countries-rolling.csv", case_type))
}
area_chart_divided_by_country("confirmed")
area_chart_divided_by_country("deaths")
# -------------------------------------------
# S Y M B O L M A P S
# -------------------------------------------
# ---------------------
# J A N P H I L I P P
# source: https://github.com/jgehrcke/covid-19-germany-gae
message("Germany, cases per landkreis, symbolmap")
kreise_add <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=1677426820"))
kreise_fun <- function(type_of_case) {
read_csv(url(sprintf("https://raw.githubusercontent.com/jgehrcke/covid-19-germany-gae/master/%s-rki-by-ags.csv", type_of_case))) %>%
filter(row_number()==n()) %>%
pivot_longer(-time_iso8601, names_to = "ags", values_to = "cases")
}
kreise_cases <- kreise_fun("cases")
kreise_fun("deaths") %>%
rename(deaths = cases) %>%
select(ags, deaths) %>%
full_join(kreise_cases, by="ags") %>%
mutate(ags = as.numeric(ags)) %>%
select(ags, cases, deaths) %>%
full_join(kreise_add, by="ags") %>%
drop_na(ags) %>%
mutate(rel_nice = floor(population / cases / 10) * 10) %>%
select(lat, long, ags, agstext, NUTS3, name, cases, deaths, population, rel_nice) %>%
write_csv("germany-kreise.csv")
# ---------------------
# R O B E R T K O C H
message("Germany, cases per state, symbolmap")
states_fun <- function(type_of_case) {
read_csv(url(sprintf("https://raw.githubusercontent.com/jgehrcke/covid-19-germany-gae/master/%s-rki-by-state.csv", type_of_case))) %>%
filter(row_number()==n()) %>%
pivot_longer(-time_iso8601, names_to = "abbrev", values_to = "cases") %>%
select(abbrev, cases) %>%
filter(abbrev != "sum_cases" & abbrev != "sum_deaths")
}
german_cases <- states_fun("cases")
german_deaths <- states_fun("deaths") %>%
rename(deaths = cases)
german_population <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=1965358030")) %>%
mutate(german_name = as.character(as.factor(german_name))) %>%
full_join(german_cases, by="abbrev") %>%
full_join(german_deaths, by="abbrev") %>%
select(german_name, english_name, lat, long, cases, deaths, population) %>%
mutate(cases = as.numeric(cases),
relative = round((100 / population * cases),digits=2),
rel_nice = floor(population / cases / 100) * 100,
no_in_million = round(((cases*1000000)/population),digits=1),
population = round(as.numeric(population), 0)) %>%
write_csv("germany-symbolmap-per-state.csv")
# # they switched from a data table to a dashboard, so this code doesn't work any more:
# # load data from Robert Koch Institute
# RKI_cases <- htmltab(doc = "https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html") %>%
# rename(german_name = 1) %>%
# mutate(german_name = as.character(as.factor(german_name)),
# german_name = ifelse(grepl('Mecklenburg', german_name),"Mecklenburg-Vorpommern", german_name))
#
# # load German population from Wikipedia
# RKI_german_population <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=1965358030")) %>%
# mutate(german_name = as.character(as.factor(german_name)))
#
# merge(RKI_cases,RKI_german_population,by="german_name") %>%
# rename(cases = 2,
# deaths = 5) %>%
# mutate(cases = gsub('([0-9]+) .*', '\\1',cases)) %>%
# mutate(cases = gsub(".", "", cases, fixed = TRUE)) %>%
# select(german_name, english_name, lat, long, cases, deaths, population) %>%
# mutate(cases = as.numeric(cases),
# relative = format(round((100 / population * cases),digits=5), nsmall = 5),
# rel_nice = floor(population / cases / 100) * 100,
# no_in_million = format(round(((cases*1000000)/population),digits=1), nsmall = 1),
# population = format(round(as.numeric(population), 0), big.mark=",")) %>%
# write_csv("germany-symbolmap-per-state.csv")
# ---------------------
# Get data from the John Hokins DASHBOARD for maps
# source: https://twitter.com/mathdroid/status/1234838261995950080
all_cases <- fromJSON("https://covid19.mathdro.id/api/confirmed", flatten=TRUE) %>%
select(provinceState, countryRegion, lastUpdate, lat, long, confirmed, deaths, recovered, combinedKey) %>%
mutate(countryRegion=recode(countryRegion, `Iran (Islamic Republic of)`="Iran"),
countryRegion=recode(countryRegion, `Mainland China`="China"),
countryRegion=recode(countryRegion, `Burma`="Myanmar"),
countryRegion=recode(countryRegion, `UK`="United Kingdom"),
countryRegion=recode(countryRegion, `North Macedonia`="Macedonia"),
countryRegion=recode(countryRegion, `Bahamas, The`="Bahamas"),
countryRegion=recode(countryRegion, `Cote d'Ivoire`="Côte d'Ivoire"),
countryRegion=recode(countryRegion, `Taiwan*`="Taiwan"),
countryRegion=recode(countryRegion, `Gambia, The`="Gambia"),
countryRegion=recode(countryRegion, `Korea, South`="South Korea"),
combinedKey=recode(combinedKey, `,,France`="France")) %>%
rename(country = countryRegion,
province = provinceState)
### Renaming
all_cases$region[all_cases$country == "China"] <- "China without Hubei"
all_cases$region[all_cases$country == "US"] <- "United States"
all_cases$region[all_cases$country == "Germany"] <- "Germany"
all_cases$region[all_cases$country == "Iran"] <- "Iran"
all_cases$region[all_cases$country == "United Kingdom"] <- "United Kingdom"
all_cases$region[all_cases$country == "Italy"] <- "Italy"
all_cases$region[all_cases$country == "South Korea"] <- "South Korea"
all_cases$region[all_cases$country == "France"] <- "France"
all_cases$region[all_cases$country == "Spain"] <- "Spain"
all_cases$region[all_cases$province == "Hubei"] <- "Hubei, China"
# --------------------
# Symbol map functions
convert_lastUpdate <- function(data) {
data %>%
mutate(lastUpdate = as.POSIXct(lastUpdate/1000, origin="1970-01-01 00:00")) %>%
mutate(lastUpdate = as.Date(lastUpdate, "%m/%d/%y"))
}
select_columns <- function(data) {
data %>%
mutate(region = combinedKey) %>%
select(-province, -country) %>%
rename(cases = confirmed) %>%
select(lat, long, region, cases, deaths, recovered, lastUpdate) %>%
convert_lastUpdate()
}
merge_with_US_coordinates <- function(data) {
data %>%
full_join(add_US_states, by="region") %>%
drop_na(cases) %>%
mutate(lat = ifelse(!is.na(lat2), lat2, lat),
long = ifelse(!is.na(long2), long2, long)) %>%
select(-lat2, -long2) %>%
filter(lat != 0)
}
# ---------------------
message("Symbol map of CONFIRMED & RECOVERED cases worldwide")
add_US_states <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=1343425558"))
map_all <- all_cases %>%
select(country, combinedKey, province, lastUpdate, lat, long, confirmed, deaths, recovered) %>%
pivot_longer(-c(country, combinedKey, province, lastUpdate, lat, long), names_to = "type", values_to = "cases") %>%
group_by(country, province, type) %>%
mutate(cases = sum(cases)) %>%
mutate(combinedKey = ifelse(country == "US", paste(province, country, sep = ", "), combinedKey)) %>%
distinct(combinedKey, type, .keep_all = TRUE) %>%
ungroup() %>%
select(lat, long, combinedKey, cases, type, lastUpdate) %>%
convert_lastUpdate() %>%
rename(region = combinedKey) %>%
merge_with_US_coordinates()
# creates a world map with total confirmed cases and deaths
map_all %>%
filter(type != "recovered") %>%
write_csv("worldwide-recov-conf-symbolmap.csv") %>%
# creates a US map with total confirmed cases and deaths, by state
filter(grepl(', US', region)) %>%
mutate(type = recode(type, `deaths`="have died from COVID-19."),
type = recode(type, `confirmed`="have or had COVID-19.")) %>%
write_csv("us-state-symbolmap.csv")
# creates a world map with CURRENT cases
map_all %>%
pivot_wider(values_from = cases, names_from = type) %>%
mutate(`current confirmed cases` = confirmed - deaths - recovered) %>%
write_csv("worldwide-recov-conf-symbolmap2.csv")
# ---------------------
# Symbol map of confirmed cases in US, by county
all_cases %>%
filter(country == "US") %>%
select_columns() %>%
merge_with_US_coordinates() %>%
select(-recovered) %>%
write_csv("us-symbolmap.csv")
# ---------------------
# Symbol map of confirmed cases in US, by county, with New York Times data
# source: https://github.com/nytimes/covid-19-data
add_counties <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=1949631336"))
read_csv(url("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv")) %>%
mutate(fips = ifelse(county == "Kansas City", "99992", fips),
fips = ifelse(county == "New York City", "99991", fips)) %>%
filter(county != "Unknown") %>%
select(-state) %>%
full_join(add_counties, by="fips") %>%
arrange(date) %>%
group_by(fips) %>%
filter(row_number()==n()) %>%
drop_na(county) %>%
mutate(rel_nice = floor(population / cases / 10) * 10) %>%
write_csv("us-counties-pop.csv")
# ---------------------
# Symbol chart of current confirmed cases in CHINA
all_cases %>%
filter(country == "China") %>%
select_columns() %>%
mutate(`current confirmed cases` = cases - deaths - recovered) %>%
write_csv("china-symbolmap.csv")
# ---------------------
message("Symbol map of current confirmed cases in EUROPE")
european_countries <- c("Aland", "Albania", "Andorra", "Austria", "Belarus", "Belgium", "Bosnia and Herzegovina", "Bulgaria", "Croatia", "Cyprus", "Czechia", "Denmark", "Estonia", "Faroe Islands", "Finland", "France", "Germany", "Gibraltar", "Greece", "Guernsey", "Hungary", "Iceland", "Ireland", "Isle of Man", "Italy", "Jersey", "Kosovo", "Latvia", "Liechtenstein", "Lithuania", "Luxembourg", "Macedonia", "Malta", "Moldova", "Monaco", "Montenegro", "Netherlands", "Norway", "Poland", "Portugal", "Republic of Serbia", "Romania", "San Marino", "Slovakia", "Slovenia", "Spain", "Sweden", "Switzerland", "Turkey", "Ukraine", "United Kingdom", "Vatican")
all_cases %>%
filter(combinedKey %in% european_countries) %>%
select_columns() %>%
mutate(`current confirmed cases` = cases - deaths - recovered) %>%
write_csv("europe-symbolmap.csv")
# -------------------------------------------
# T A B L E S
# -------------------------------------------
# ---------------------
message("Table that shows the confirmed / deaths / current confirmed cases in the main infected areas and in the rest of the world, compared with the population")
# Source for population data: https://population.un.org/wpp/Download/Standard/Population/
table <- all_cases %>%
mutate(region = replace_na(region, "rest-of-world")) %>%
select(region, confirmed, deaths, recovered) %>%
pivot_longer(-region, names_to = "type", values_to = "cases") %>%
group_by(region, type) %>%
summarise(cases = sum(cases)) %>%
pivot_wider(names_from = "type", values_from = "cases") %>%
# sum up to get confirmed for the whole world
ungroup() %>%
bind_rows(summarise_all(., funs(if(is.numeric(.)) sum(.) else "World")))
# add population numbers
simple_table <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=0")) %>%
mutate(population = as.integer(population)) %>%
full_join(table, by="region", keep=TRUE) %>%
drop_na(confirmed) %>%
mutate(population = ifelse(region == "rest-of-world", 5679690897, population),
population = ifelse(region == "World", 7794798739, population),
confirmed_rel = population/confirmed,
confirmed_rel_nice = floor(confirmed_rel / 10) * 10) %>%
select(-confirmed_rel, -population) %>%
arrange(as.numeric(confirmed_rel_nice)) %>%
rename(`Total confirmed cases` = confirmed,
`One in ... people is confirmed to have or have had the virus` = confirmed_rel_nice) %>%
arrange(desc(region))
# without recoveries
table <- simple_table %>%
select(region, `Total confirmed cases`, deaths, `One in ... people is confirmed to have or have had the virus`)
table$region[table$region == "Hubei, China"] <- ":cn: Hubei ^Province in China^"
table$region[table$region == "China without Hubei"] <- ":cn: China ^without Hubei^"
table$region[table$region == "Germany"] <- ":de: Germany"
table$region[table$region == "France"] <- ":fr: France"
table$region[table$region == "United States"] <- ":us: United States"
table$region[table$region == "Iran"] <- ":ir: Iran"
table$region[table$region == "Italy"] <- ":it: Italy"
table$region[table$region == "United Kingdom"] <- ":uk: United Kingdom"
table$region[table$region == "South Korea"] <- ":kr: South Korea"
table$region[table$region == "Spain"] <- ":es: Spain"
table$region[table$region == "rest-of-world"] <- "Other countries"
write_csv(table, "country-comparison-table.csv")
# ---------------------
message("Overview table showing just current / deaths")
simple_table2 <- subset(simple_table, region=="World") %>%
rename(rel = `One in ... people is confirmed to have or have had the virus`,
Deaths = deaths,
Recoveries = recovered) %>%
select(-rel, -region) %>%
mutate(extracolumn = 1) %>%
pivot_longer(-extracolumn, names_to = "type", values_to = "cases") %>%
select(-extracolumn) %>%
mutate(relative = 100 / 7794798739 * cases,
rel_nice = floor(7794798739 / cases / 1000) * 1000) %>%
mutate(cases = format(round(as.numeric(cases) / 1000)*1000, big.mark=","),
relative = format(round(as.numeric(relative), 3), big.mark=","),
rel_nice = format(round(as.numeric(rel_nice), 0), big.mark=","),
relative = paste0("that's <b>", relative, "%</b> of humanity"),
rel_nice = paste0("or one in <b>",rel_nice, "</b> humans"))
# create a simple 2-row table and finalize it
simple_table3 <- simple_table2 %>%
select(type, cases)
as.data.frame(t(simple_table3)) %>%
write_csv("worldwide-simple-table-2rows2.csv") %>%
select(-V3) %>%
write_csv("worldwide-simple-table-2rows.csv")
# finalize the 4-row table
as.data.frame(t(simple_table2)) %>%
write_csv("worldwide-simple-table2.csv") %>%
select(-V3) %>%
write_csv("worldwide-simple-table.csv")
# ---------------------
message("Split bars chart that shows the confirmed cases and deaths in selected countries")
stacked_bar_data <- all_cases
stacked_bar_data$region[is.na(stacked_bar_data$region)] <- stacked_bar_data$country[is.na(stacked_bar_data$region)]
stacked_bar_data = stacked_bar_data %>%
select(region, confirmed, deaths) %>%
pivot_longer(-region, names_to = "type", values_to = "cases") %>%
group_by(region, type) %>%
summarise(cases = sum(cases)) %>%
pivot_wider(names_from = "type", values_from = "cases")
table_per_capita <- stacked_bar_data
# filter cases over 1000
stacked_bar = stacked_bar_data %>%
filter(confirmed > 1000 & region != "Others") %>%
rename(`total confirmed cases` = confirmed) %>%
select(region, `total confirmed cases`, deaths) %>%
write_csv("countries-over-50-stackedbar.csv")
# ---------------------
message("Stacked bar chart that shows current, deaths & recoveries in selected countries")
stacked_bar_data <- all_cases
stacked_bar_data$region[is.na(stacked_bar_data$region)] <- stacked_bar_data$country[is.na(stacked_bar_data$region)]
stacked_bar_data = stacked_bar_data %>%
select(region, confirmed, deaths, recovered) %>%
pivot_longer(-region, names_to = "type", values_to = "cases") %>%
group_by(region, type) %>%
summarise(cases = sum(cases)) %>%
pivot_wider(names_from = "type", values_from = "cases") %>%
mutate(`current confirmed cases` = confirmed - deaths - recovered)
table_per_capita_recov <- stacked_bar_data %>% ungroup()
# filter cases over 1000
stacked_bar = stacked_bar_data %>%
filter(confirmed > 10000 & region != "Others") %>%
rename(recoveries = recovered) %>%
select(region, `current confirmed cases`, deaths, recoveries) %>%
write_csv("countries-over-50-stackedbar2.csv")
# ---------------------
message("Table worldwide with all per-capita-cases")
flag_icons <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=1821874908"))
german_names <-read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=1297230128"))
population <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=0"))
table_per_capita3 <- table_per_capita_recov %>%
full_join(flag_icons, by="region") %>%
drop_na(confirmed) %>%
filter(region != "Diamond Princess" && region != "MS Zaandam") %>%
ungroup()
continents <- table_per_capita3 %>%
group_by(continent) %>%
summarize(confirmed=sum(confirmed),
deaths=sum(deaths),
`current confirmed cases` = sum(`current confirmed cases`),
recovered = sum(recovered),
code = "") %>%
select(-code) %>%
drop_na(continent) %>%
rename(continent = continent,
Deaths = deaths,
`Total confirmed cases` = confirmed,
`Current confirmed cases` = `current confirmed cases`,
Recoveries = recovered)
continents %>%
select(continent, `Total confirmed cases`, `Deaths`) %>%
write_csv("continents.csv")
continents %>%
select(continent, `Current confirmed cases`, `Deaths`, Recoveries) %>%
write_csv("continents2.csv")
table_per_capita2 <- table_per_capita3 %>%
full_join(population, by="region") %>%
full_join(german_names, by="region") %>%
ungroup() %>%
mutate(region = ifelse(is.na(code), region, paste(code, region, sep=' '))) %>%
mutate(region_de = ifelse(is.na(region_de),region,region_de)) %>%
mutate(region_de = ifelse(is.na(code),region_de,paste(code, region_de, sep=' '))) %>%
filter(confirmed != 0) %>%
mutate(no_in_million = format(round(((confirmed*1000000)/population),digits=1), nsmall = 1),
rel_nice = floor(population / confirmed / 100) * 100)
table_per_capita_en <- table_per_capita2 %>%
unique() %>%
select(region, confirmed, no_in_million, rel_nice, deaths, recovered, continent) %>%
rename(Country = region,
`Total confirmed cases` = confirmed,
Deaths = deaths,
Recoveries = recovered,
`or one in ... inhabitants` = rel_nice,
`that's like ... out of a million inhabitants` = no_in_million) %>%
drop_na() %>%
write_csv("worldwide-top-countries2.csv") %>%
select(-Recoveries) %>%
write_csv("worldwide-top-countries.csv")
table_per_capita_de <- table_per_capita2 %>%
unique() %>%
select(region_de, confirmed, no_in_million, rel_nice, deaths, recovered, continent) %>%
mutate(continent=recode(continent, `Europe`="Europa"),
continent=recode(continent, `Africa`="Afrika"),
continent=recode(continent, `Asia`="Asien"),
continent=recode(continent, `North America`="Nordamerika"),
continent=recode(continent, `South America`="Südamerika"),
continent=recode(continent, `Oceania`="Ozeanien")) %>%
rename(Country = region_de,
`Total confirmed cases` = confirmed,
Deaths = deaths,
Recoveries = recovered,
`or one in ... inhabitants` = rel_nice,
`that's like ... out of a million inhabitants` = no_in_million) %>%
write_csv("worldwide-top-countries-de2.csv") %>%
select(-Recoveries) %>%
write_csv("worldwide-top-countries-de.csv")
# ---------------------
# G R O W T H R A T E S
# for table
# ---------------------
message("growth rates for table")
all <- read_csv(url("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv")) %>%
rename(country = `Country/Region`,
province = `Province/State`) %>%
select(-Lat, -Long) %>%
pivot_longer(-c(country, province), names_to = "date", values_to = "confirmed") %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
mutate(country = ifelse(country == "China" & province == "Hong Kong", "Hong Kong", country)) %>%
select(-province) %>%
arrange(date) %>%
group_by(date, country) %>%
mutate(confirmed = sum(confirmed)) %>%
distinct() %>%
ungroup() %>%
filter(confirmed > 100 & country != "Diamond Princess") %>%
group_by(country) %>%
filter(n() > 11) %>%
arrange(country, date) %>%
mutate(confirmed = ifelse(date == "2020-03-12",lag(confirmed)+(lead(confirmed)-lag(confirmed))/2, confirmed)) %>%
slice(n()-10, n()-5, n()) %>%
mutate(pos = 1:n()) %>%
select(-date) %>%
pivot_wider(names_from = "pos", values_from = "confirmed") %>%
mutate(first5days = (5*log(2))/(log(`2`/`1`)),
last5days = (5*log(2))/(log(`3`/`2`)),
difference = first5days - last5days,
change = case_when(
between(100/first5days*last5days, 95, 110) ~ "~",
100/first5days*last5days < 50 ~ "▲▲",
100/first5days*last5days < 95 ~ "▲",
100/first5days*last5days > 200 ~ "▼▼",
100/first5days*last5days > 110 ~ "▼"
),
last5days = ifelse(!is.finite(last5days), NA, last5days)) %>%
drop_na(last5days) %>%
select(country, last5days, first5days, change, `3`, `2`) %>%
rename(region = country,
`confirmed cases 6 days ago` = `2`,
`confirmed cases yesterday` = `3`,
`doubling time in the last five days` = last5days,
`doubling time in the five days before that` = first5days) %>%
ungroup() %>%
mutate(region=recode(region, `Korea, South`="South Korea"),
region=recode(region, `US`="United States"))
all_growthrates <- merge(all, flag_icons, by="region") %>%
mutate(region = paste(code, region, sep=' ')) %>%
select(-code) %>%
rename(country = region) %>%
write_csv("growth_rates.csv")
# ---------------------
# summed up number of cases last five days vs before
# for table
message("summed up number of cases last five days vs before for table")
summed_up <- read_csv(url("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv")) %>%
rename(country = `Country/Region`,
province = `Province/State`) %>%
select(-Lat, -Long) %>%
pivot_longer(-c(country, province), names_to = "date", values_to = "confirmed") %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
mutate(country = ifelse(country == "China" & province == "Hong Kong", "Hong Kong", country)) %>%
select(-province) %>%
arrange(country, date) %>%
group_by(country, date) %>%
mutate(confirmed = sum(confirmed)) %>%
distinct() %>%
ungroup() %>%
group_by(country) %>%
mutate(confirmed = ifelse(date == "2020-03-12",
lag(confirmed)+(lead(confirmed)-lag(confirmed))/2,
confirmed),
new_cases = confirmed - lag(confirmed),
last5days = sum(new_cases[between(row_number(), n()-4, n())]),
beforethat = sum(new_cases[between(row_number(), n()-9, n()-5)]),
total = sum(new_cases, na.rm=TRUE),
yesterday = new_cases[n()],
change = case_when(
between(100/beforethat*last5days, 98, 105) ~ "~",
100/beforethat*last5days < 50 ~ "▼▼",
100/beforethat*last5days < 98 ~ "▼",
100/beforethat*last5days > 200 ~ "▲▲",
100/beforethat*last5days > 105 ~ "▲"
)) %>%
ungroup() %>%
select(country, yesterday, last5days, beforethat, change, total) %>%
distinct() %>%
mutate(country=recode(country, `Korea, South`="South Korea"),
country=recode(country, `US`="United States")) %>%
filter(country != "Diamond Princess",
total > 9) %>%
rename(region = country,
`new confirmed cases in the last five days` = last5days,
`new confirmed cases in the five days before that` = beforethat,
`total confirmed cases` = total,
`new confirmed cases yesterday` = yesterday)
all_summed_up <- merge(summed_up, flag_icons, by="region") %>%
mutate(region = paste(code, region, sep=' ')) %>%
select(-code) %>%
rename(country = region) %>%
write_csv("summed-up.csv")
# for weekly chart
all_together = merge(all_summed_up, all_growthrates, by=c("country", "continent")) %>%
select(country, continent,
`doubling time in the last five days`,
`doubling time in the five days before that`,
change.y,
`new confirmed cases in the last five days`,
`new confirmed cases in the five days before that`,
change.x) %>%
rename(`change in doubling time` = change.y,
`change in confirmed cases` = change.x) %>%
write_csv("doubling-and-summed-up.csv")
# ---------------------
# G R O W T H R A T E S F O R U S S T A T E S
# for line chart
state_pop <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=1949631336")) %>%
filter(is.na(name)) %>%
select(state, population) %>%
mutate(population = as.numeric(population))
county_pop <- read_csv(url("https://docs.google.com/spreadsheets/d/1YmIQVgr8RSim_zZ0jmZRji-1rFYN5l-ta3XbkOgePME/export?format=csv&gid=1949631336")) %>%
mutate(population = as.numeric(population))
NYT_data = read_csv('https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv') %>%
select(-deaths) %>%
mutate(fips = ifelse(grepl('Kansas City', county), 99992, fips),
fips = ifelse(county == "New York City", 99991, fips))
NYT_data_states <- NYT_data %>%
select(-fips, -county) %>%
group_by(state, date) %>%
mutate(cases = sum(cases)) %>%
distinct() %>%
ungroup() %>%
full_join(state_pop, by="state")
NYT_data %>%
full_join(county_pop, by="fips") %>%
drop_na(fips) %>%
mutate(state = paste(county, state.y, sep = ", ")) %>%
select(date, state, cases, population) %>%
bind_rows(NYT_data_states) %>%
drop_na(date) %>%
group_by(state) %>%
arrange(date) %>%
mutate(cases = (rollapplyr(cases, 7, mean, fill=NA)),
rel = 100/population*cases) %>%
drop_na() %>%
filter(max(cases) > 200 & rel > 0.015 & max(rel) > 0.5) %>%
ungroup() %>%
select(-population, -cases) %>%
pivot_wider(names_from = "state", values_from = "rel") %>%
arrange(date) %>%
write_csv("us_states_newcases.csv")
#
# chart = ggplot(ya, aes(x=date, y=rel, group=state)) +
# geom_line() +
# scale_y_continuous(trans='log10')
# ggplotly(chart)
#
# ---------------------
# D O U B L I N G T I M E S O V E R T I M E
# for line chart
message(" D O U B L I N G T I M E S O V E R T I M E for line chart")
linechart_doubling <- function(kind_of_cases, cases_threshold, days_threshold, doubling_threshold){
doubling_times_all <- read_csv(url(sprintf("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_%s_global.csv", kind_of_cases))) %>%
rename(country = `Country/Region`,
province = `Province/State`) %>%
select(-Lat, -Long) %>%
pivot_longer(-c(country, province), names_to = "date", values_to = "confirmed") %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
mutate(country = ifelse(country == "China" & province == "Hong Kong",
"Hong Kong", country)) %>%
select(-province) %>%
arrange(date)
doubling_times_all2 <- doubling_times_all %>%
filter(country %in% european_countries) %>%
group_by(date) %>%
summarise(confirmed = sum(confirmed)) %>%
mutate(country = "Europe") %>%
select(country, date, confirmed) %>%
bind_rows(doubling_times_all) %>%
group_by(date, country) %>%
mutate(confirmed = sum(confirmed)) %>%
distinct() %>%
ungroup() %>%
filter(country != "Diamond Princess") %>%
group_by(country) %>%
arrange(country, date) %>%
mutate(confirmed = (rollapplyr(confirmed, 7, mean, fill=NA))) %>%
drop_na() %>%
mutate(confirmed = ifelse(date == "2020-03-12",
lag(confirmed)+(lead(confirmed)-lag(confirmed))/2,
confirmed),
closest_to_100 = ifelse(confirmed-cases_threshold >= 0,
confirmed-cases_threshold, abs(confirmed-cases_threshold)),
confirmed = ifelse(closest_to_100 == min(closest_to_100) & country != "China",
cases_threshold, confirmed)) %>%
filter(confirmed >= cases_threshold, max(confirmed > cases_threshold)) %>%
mutate(days = ifelse(country =="China", 6:(n()+6), 0:n())) %>%
select(-closest_to_100, -date) %>%
filter(max(days) > days_threshold & days <= 70) %>%
ungroup() %>%
pivot_wider(names_from = country, values_from = confirmed) %>%
arrange(days) %>%
mutate(`doubles every day` = cases_threshold*(2^(days)),
`doubles every 2 days` = cases_threshold*(1+((2^(1/2))-1))^(days),
`doubles every 3 days` = cases_threshold*(1+((2^(1/3))-1))^(days),
`doubles every week` = cases_threshold*(1+((2^(1/7))-1))^(days),
`doubles every month` = cases_threshold*(1+((2^(1/30.42))-1))^(days),
`doubles every day` = ifelse(`doubles every day` > doubling_threshold, NA, `doubles every day`),
`doubles every 3 days` = ifelse(`doubles every 3 days` > doubling_threshold, NA, `doubles every 3 days`),
`doubles every 2 days` = ifelse(`doubles every 2 days` > doubling_threshold, NA, `doubles every 2 days`)) %>%
mutate(days = paste("day", days, sep=' ')) %>%
rename("South Korea" = "Korea, South") %>%
write_csv(sprintf("%s-doubling-times.csv", kind_of_cases))
}
linechart_doubling("confirmed", 100, 10, 1000000)
linechart_doubling("deaths", 10, 5, 103400)
# -------------
# Gregor's growth rate comparison line chart
linechart_growth <- function(case_type, cases_threshold) {
read_csv(url(sprintf("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_%s_global.csv", case_type))) %>%
rename(country = `Country/Region`,
province = `Province/State`) %>%
select(-Lat, -Long) %>%
pivot_longer(-c(country, province), names_to = "date", values_to = "confirmed") %>%
mutate(date = as.Date(date, "%m/%d/%y")) %>%
mutate(country = ifelse(country == "China" & province == "Hong Kong",
"Hong Kong", country)) %>%
select(-province) %>%
arrange(date) %>%
group_by(date, country) %>%
mutate(confirmed = sum(confirmed)) %>%
distinct() %>%
ungroup() %>%
filter(confirmed > cases_threshold & country != "Diamond Princess" & country != 'China') %>%
group_by(country) %>%
filter(n() > 11) %>%
arrange(country, date) %>%
# fix values for March 12 by averaging the days before and after
mutate(confirmed = ifelse(date == "2020-03-12",
lag(confirmed)+(lead(confirmed)-lag(confirmed))/2,
confirmed)) %>%
arrange(country, date) %>%
# compute growth rate for past 5 days
mutate(daysago = lag(confirmed, n=5)) %>%
mutate(growth = 100* (( confirmed / daysago )^(1/5) - 1)) %>%
# and take a 3-day rolling average from it
mutate(growth = (rollapplyr(growth, 3, mean, fill=NA))) %>%
select(country, date, growth) %>%
pivot_wider(names_from = "country", values_from = "growth") %>%
rename("South Korea" = "Korea, South") %>%
filter(date > '2020-02-29') %>%
arrange(desc(date)) %>%
write_csv(sprintf('%s-growth-rates.csv', case_type))
}
linechart_growth("deaths", 10)
linechart_growth("confirmed", 100)
# ------------
# NYT U.S. counties, by case growth rate
read_csv('https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv') %>%
mutate(key=paste(county, state, sep=', ')) %>%
filter(cases > 100 & county != 'Unknown') %>%
group_by(key) %>%
arrange(key, date) %>%
mutate(cases.5daysago = lag(cases, n=5)) %>%
mutate(daily.growth = 100* (( cases / cases.5daysago )^(1/5) - 1),
doubling.time = (5*log(2))/(log(cases/cases.5daysago))) %>%
summarise_all(last) %>%
mutate(state.abbr=recode(state,
Alabama='Ala.',
Arizona='Ariz.',
Arkansas='Ark.',
California='Calif.',
Colorado='Colo.',
Connecticut='Conn.',
Delaware='Del.',
`District of Columbia`='D.C.',
Florida='Fla.',
Georgia='Ga.',
Illinois='Ill.',
Indiana='Ind.',
Kansas='Kan.',
Kentucky='Ky.',
Louisiana='La.',
Maine='Me.',
Maryland='Md.',
Massachusetts='Mass.',
Michigan='Mich.',
Minnesota='Minn.',
Missouri='Mo.',
Montana='Mont.',
Nebraska='Neb.',
Nevada='Nev.',
`New Hampshire`='N.H.',
`New Jersey`='N.J.',
`New Mexico`='N.M.',
`New York`='N.Y.',
`North Carolina`='N.C.',
`North Dakota`='N.D.',
Oklahoma='Okla.',
Oregon='Ore.',
Pennsylvania='Pa.',
`Puerto Rico`='P.R.',
`Rhode Island`='R.I.',
`South Carolina`='S.C.',
`South Dakota`='S.D.',
Tennessee='Tenn.',
Texas='Tex.',
Vermont='Vt.',
Virginia='Va.',
Washington='Wash.',
`West Virginia`='W.Va.',
Wisconsin='Wis.',
Wyoming='Wyo.')) %>%
arrange(-daily.growth) %>%
filter(!is.na(daily.growth)) %>%
mutate(county.state=paste(county, state.abbr, sep=', ')) %>%
select(county.state, county, state, state.abbr, cases, deaths, daily.growth, doubling.time, cases.5daysago) %>%
write_csv('nyt-us-counties-growth.csv')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment