Last active
April 30, 2020 13:40
-
-
Save glamp/3a6e4d618afc344aab81 to your computer and use it in GitHub Desktop.
Analysis for customer segmentation blog post
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
# http://blog.yhathq.com/static/misc/data/WineKMC.xlsx | |
df_offers = pd.read_excel("./WineKMC.xlsx", sheetname=0) | |
df_offers.columns = ["offer_id", "campaign", "varietal", "min_qty", "discount", "origin", "past_peak"] | |
df_offers.head() | |
df_transactions = pd.read_excel("./WineKMC.xlsx", sheetname=1) | |
df_transactions.columns = ["customer_name", "offer_id"] | |
df_transactions['n'] = 1 | |
df_transactions.head() | |
# join the offers and transactions table | |
df = pd.merge(df_offers, df_transactions) | |
# create a "pivot table" which will give us the number of times each | |
# customer responded to a given variable | |
matrix = df.pivot_table(index=['customer_name'], columns=['offer_id'], values='n') | |
# a little tidying up. fill NA values with 0 and make the index into a column | |
matrix = matrix.fillna(0).reset_index() | |
x_cols = matrix.columns[1:] | |
from sklearn.cluster import KMeans | |
cluster = KMeans(n_clusters=5) | |
# slice matrix so we only include the 0/1 indicator columns in the clustering | |
matrix['cluster'] = cluster.fit_predict(matrix[x_cols]) | |
matrix.cluster.value_counts() | |
from ggplot import * | |
ggplot(matrix, aes(x='factor(cluster)')) + geom_bar() + xlab("Cluster") + ylab("Customers\n(# in cluster)") | |
from sklearn.decomposition import PCA | |
pca = PCA(n_components=2) | |
matrix['x'] = pca.fit_transform(matrix[x_cols])[:,0] | |
matrix['y'] = pca.fit_transform(matrix[x_cols])[:,1] | |
matrix = matrix.reset_index() | |
customer_clusters = matrix[['customer_name', 'cluster', 'x', 'y']] | |
customer_clusters.head() | |
df = pd.merge(df_transactions, customer_clusters) | |
df = pd.merge(df_offers, df) | |
from ggplot import * | |
ggplot(df, aes(x='x', y='y', color='cluster')) + \ | |
geom_point(size=75) + \ | |
ggtitle("Customers Grouped by Cluster") | |
cluster_centers = pca.transform(cluster.cluster_centers_) | |
cluster_centers = pd.DataFrame(cluster_centers, columns=['x', 'y']) | |
cluster_centers['cluster'] = range(0, len(cluster_centers)) | |
ggplot(df, aes(x='x', y='y', color='cluster')) + \ | |
geom_point(size=75) + \ | |
geom_point(cluster_centers, size=500) +\ | |
ggtitle("Customers Grouped by Cluster") | |
df['is_4'] = df.cluster==4 | |
df.groupby("is_4").varietal.value_counts() | |
df.groupby("is_4")[['min_qty', 'discount']].mean() |
when execute
cluster_centers = pca.transform(cluster.cluster_centers_)
I got the following error
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-16-989caa1671e5> in <module>()
----> 1 cluster_centers = pca.transform(cluster.cluster_centers_)
/home/ubuntu/tensorflow/lib/python3.4/site-packages/sklearn/decomposition/base.py in transform(self, X, y)
130 X = check_array(X)
131 if self.mean_ is not None:
--> 132 X = X - self.mean_
133 X_transformed = fast_dot(X, self.components_.T)
134 if self.whiten:
ValueError: operands could not be broadcast together with shapes (5,31) (32,)
I use python3
Where is the blog post?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
this is your code running on my pc..
do you know how to fix it?