Created
August 7, 2017 03:23
-
-
Save glhfgg1024/cbaad3779e0c70b1644118549982f5f7 to your computer and use it in GitHub Desktop.
tensorflow convert fully connected layer to convolutional layer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def vgg16_fc_convolution(in_put, out_channel, layer_name, use_relu=True): | |
with tf.variable_scope(layer_name): | |
input_shape = in_put.get_shape() | |
assert len(input_shape) == 4 | |
height, width, in_channel = input_shape[1:] | |
print(height, width, in_channel) | |
weights = tf.get_variable(name="weights", shape=[height*width*in_channel, out_channel]) | |
biases = tf.get_variable(name="biases", shape=[out_channel]) | |
reshape_weights = tf.reshape(weights, | |
shape=[tf.to_int32(height), tf.to_int32(width), | |
tf.to_int32(in_channel), out_channel]) | |
convolution_output = tf.nn.conv2d(input=in_put, filter=reshape_weights, strides=[1, 1, 1, 1], | |
padding="VALID") | |
output = tf.nn.bias_add(convolution_output, biases) | |
if use_relu: | |
output = tf.nn.relu(output) | |
return output |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment