Created
March 30, 2015 09:45
-
-
Save gmarkall/0fb1b62ffea16673d460 to your computer and use it in GitHub Desktop.
Numba CUDA + MPI example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
from mpi4py import MPI | |
from numba import cuda | |
import numpy as np | |
mpi_comm = MPI.COMM_WORLD | |
# Input data size | |
total_n = 10 | |
# Process 0 creates input data | |
if mpi_comm.rank == 0: | |
input_data = np.arange(total_n, dtype=np.int32) | |
print("Input:", input_data) | |
else: | |
input_data = None | |
# Compute partitioning of the input array | |
proc_n = [ total_n // mpi_comm.size + (total_n % mpi_comm.size > n) | |
for n in range(mpi_comm.size) ] | |
pos = 0 | |
pos_n = [] | |
for n in range(mpi_comm.size): | |
pos_n.append(pos) | |
pos += proc_n[n] | |
my_n = proc_n[mpi_comm.rank] | |
my_offset = pos_n[mpi_comm.rank] | |
print('Process %d, my_n = %d' % (mpi_comm.rank, my_n)) | |
print('Process %d, my_offset = %d' % (mpi_comm.rank, my_offset)) | |
# Distribute input data across processes | |
my_input_data = np.zeros(my_n, dtype=np.int32) | |
mpi_comm.Scatterv([input_data, proc_n, pos_n, MPI.INT], my_input_data) | |
print('Process %d, my_input_data = %s' % (mpi_comm.rank, my_input_data)) | |
# Perform computation on local data | |
@cuda.jit | |
def sqplus2(input_data, output_data): | |
for i in range(len(input_data)): | |
d = input_data[i] | |
output_data[i] = d * d + 2 | |
my_output_data = np.empty_like(my_input_data) | |
sqplus2(my_input_data, my_output_data) | |
print('Process %d, my_output_data = %s' % (mpi_comm.rank, my_output_data)) | |
# Bring result back to root process | |
if mpi_comm.rank == 0: | |
output_data = np.empty_like(input_data) | |
else: | |
output_data = None | |
mpi_comm.Gatherv(my_output_data, [output_data, proc_n, pos_n, MPI.INT]) | |
if mpi_comm.rank == 0: | |
print("Output:", output_data) | |
MPI.Finalize() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment