Import the library:
# Import the main fetcher:
from argopy import DataFetcher as ArgoDataFetcher
Define what you want to fetch:
# a region:
ArgoSet = ArgoDataFetcher().region([-85, -45, 10., 20., 0, 1000.])
Import the library:
# Import the main fetcher:
from argopy import DataFetcher as ArgoDataFetcher
Define what you want to fetch:
# a region:
ArgoSet = ArgoDataFetcher().region([-85, -45, 10., 20., 0, 1000.])
To get a list of WMO,CYC matching some QC position, you can do something like:
https://erddap.ifremer.fr/erddap/tabledap/ArgoFloats.htmlTable?platform_number,cycle_number,position_qc&platform_number=~%226903075|6903076%22&position_qc=~%221%22&distinct()&orderBy(%22platform_number,cycle_number%22)
This is an example where I select profiles from floats 6903075 and 6903076 having a QC position of 1
If you want to allow for more allowed QC, list them with a |
in the request:
https://erddap.ifremer.fr/erddap/tabledap/ArgoFloats.htmlTable?platform_number,cycle_number,position_qc&platform_number=~%226903075|6903076%22&position_qc=~%220|1%22&distinct()&orderBy(%22platform_number,cycle_number%22)
#!/bin/env python | |
# -*coding: UTF-8 -*- | |
import requests | |
import time | |
# Request full data: | |
t0 = time.time() | |
url = 'http://www.ifremer.fr/erddap/tabledap/ArgoFloats.csv?data_mode,latitude,longitude,position_qc,time,time_qc,direction,platform_number,cycle_number,pres,temp,psal,pres_qc,temp_qc,psal_qc,pres_adjusted,temp_adjusted,psal_adjusted,pres_adjusted_qc,temp_adjusted_qc,psal_adjusted_qc,pres_adjusted_error,temp_adjusted_error,psal_adjusted_error&platform_number=~"5900446"&distinct()&orderBy("time,pres")' | |
requests.get(url) |
#!/usr/bin/env python | |
# coding: utf-8 | |
# | |
# $ time ./Parallel_images.py | |
# Use 8 processes | |
# 107.249u 2.444s 0:17.10 641.4% 0+0k 0+0io 1056pf+0w | |
# | |
import os | |
import numpy as np |
#!/usr/bin/env bash | |
# | |
# Gerenate mp4 videos from a collection of image files | |
# | |
# Video files are saved into ./videos | |
# | |
# Folder with image files: | |
src="/home/datawork-lops-oh/somovar/WP1/data/dashboard/img/monthly" # This is an example |
def base_fct(**kwargs): | |
defaults = {'sharey':'row', 'dpi':80, 'facecolor':'w', 'edgecolor':'k'} | |
options = {**defaults, **kwargs} | |
return options | |
def fct(**kwargs): | |
defaults = {'sharey':'cols'} | |
return base_fct(**{**defaults, **kwargs}) | |
print("Default base options:\n", base_fct()) |
#~/usr/bin/env python | |
# | |
# Useful functions for xarray time series analysis | |
# (c) G. Maze, Ifremer | |
# | |
import numpy as np | |
import xarray as xr | |
import pandas as pd | |
from statsmodels.tsa.seasonal import seasonal_decompose |
To run data mining algorithms on ocean's large datasets, we need to optimise access to datasets with possibly up to 6-dimensions.
A generalised 6-dimensional dataset is [X,Y,Z,T,V,E] where:
Running data mining algorithms on this dataset mostly implies to re-arrange the 6 dimensions into 2-dimensional arrays with, following the statistics vocabulary "sampling" vs "features" dimensions. The sampling dimension is along rows, the features along columns. A large dataset can have billions of rows and hundreds of columns.
Eg: