Created
December 19, 2024 21:59
-
-
Save gngdb/a6bdf48127dd5fc4773b95f283ee8d62 to your computer and use it in GitHub Desktop.
Generated condensed version of https://github.com/mattjj/autodidact
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
The MIT License (MIT) | |
Copyright (c) 2014 by the President and Fellows of Harvard University | |
Condensed version Copyright (c) 2024 by Gavia Gray | |
This condensed version is based on the original mattjj/autodidact implementation, | |
with assistance from Claude 3.5 Sonnet. | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
""" | |
import numpy as _np | |
from collections import defaultdict | |
from contextlib import contextmanager | |
from itertools import count | |
# Core tracer functionality | |
class Box: | |
type_mappings = {} | |
types = set() | |
def __init__(self, value, trace_id, node): | |
self._value = value | |
self._node = node | |
self._trace_id = trace_id | |
@classmethod | |
def register(cls, value_type): | |
Box.types.add(cls) | |
Box.type_mappings[value_type] = cls | |
Box.type_mappings[cls] = cls | |
def new_box(value, trace_id, node): | |
try: | |
return Box.type_mappings[type(value)](value, trace_id, node) | |
except KeyError: | |
raise TypeError(f"Can't differentiate w.r.t. type {type(value)}") | |
class Node: | |
def __init__(self, value, fun, args, kwargs, parent_argnums, parents): | |
self.parents = parents | |
self.recipe = (fun, value, args, kwargs, parent_argnums) | |
def initialize_root(self): | |
self.parents = [] | |
self.recipe = (lambda x: x, None, (), {}, []) | |
@classmethod | |
def new_root(cls): | |
root = cls.__new__(cls) | |
root.initialize_root() | |
return root | |
class TraceStack: | |
def __init__(self): | |
self.top = -1 | |
@contextmanager | |
def new_trace(self): | |
self.top += 1 | |
yield self.top | |
self.top -= 1 | |
_trace_stack = TraceStack() | |
def trace(start_node, fun, x): | |
with _trace_stack.new_trace() as trace_id: | |
start_box = new_box(x, trace_id, start_node) | |
end_box = fun(start_box) | |
if isbox(end_box) and end_box._trace_id == start_box._trace_id: | |
return end_box._value, end_box._node | |
else: | |
return end_box, None | |
# Core VJP functionality | |
primitive_vjps = defaultdict(dict) | |
def backward_pass(g, end_node): | |
outgrads = {end_node: g} | |
for node in toposort(end_node): | |
outgrad = outgrads.pop(node) | |
fun, value, args, kwargs, argnums = node.recipe | |
for argnum, parent in zip(argnums, node.parents): | |
vjp = primitive_vjps[fun][argnum] | |
parent_grad = vjp(outgrad, value, *args, **kwargs) | |
outgrads[parent] = add_outgrads(outgrads.get(parent), parent_grad) | |
return outgrad | |
def add_outgrads(prev_g, g): | |
return g if prev_g is None else prev_g + g | |
def make_vjp(fun, x): | |
start_node = Node.new_root() | |
end_value, end_node = trace(start_node, fun, x) | |
if end_node is None: | |
def vjp(g): return _np.zeros_like(x) | |
else: | |
def vjp(g): return backward_pass(g, end_node) | |
return vjp, end_value | |
def grad(fun, argnum=0): | |
def gradfun(*args, **kwargs): | |
unary_fun = lambda x: fun(*subval(args, argnum, x), **kwargs) | |
vjp, ans = make_vjp(unary_fun, args[argnum]) | |
return vjp(_np.ones_like(ans)) | |
return gradfun | |
# Utilities | |
def subval(x, i, v): | |
x_ = list(x) | |
x_[i] = v | |
return tuple(x_) | |
def toposort(end_node): | |
child_counts = {} | |
stack = [end_node] | |
while stack: | |
node = stack.pop() | |
if node in child_counts: | |
child_counts[node] += 1 | |
else: | |
child_counts[node] = 1 | |
stack.extend(node.parents) | |
childless_nodes = [end_node] | |
while childless_nodes: | |
node = childless_nodes.pop() | |
yield node | |
for parent in node.parents: | |
if child_counts[parent] == 1: | |
childless_nodes.append(parent) | |
else: | |
child_counts[parent] -= 1 | |
# NumPy wrapping functionality | |
def primitive(f_raw): | |
def f_wrapped(*args, **kwargs): | |
boxed_args, trace_id = find_top_boxed_args(args) | |
if boxed_args: | |
argvals = list(args) | |
for argnum, box in boxed_args: | |
argvals[argnum] = box._value | |
argvals = tuple(argvals) | |
parents = tuple(box._node for _, box in boxed_args) | |
argnums = tuple(argnum for argnum, _ in boxed_args) | |
ans = f_raw(*argvals, **kwargs) | |
node = Node(ans, f_wrapped, argvals, kwargs, argnums, parents) | |
return new_box(ans, trace_id, node) | |
else: | |
return f_raw(*args, **kwargs) | |
return f_wrapped | |
def find_top_boxed_args(args): | |
top_trace_id = -1 | |
top_boxes = [] | |
for argnum, arg in enumerate(args): | |
if isbox(arg): | |
if arg._trace_id > top_trace_id: | |
top_boxes = [(argnum, arg)] | |
top_trace_id = arg._trace_id | |
elif arg._trace_id == top_trace_id: | |
top_boxes.append((argnum, arg)) | |
return top_boxes, top_trace_id | |
isbox = lambda x: type(x) in Box.types | |
getval = lambda x: getval(x._value) if isbox(x) else x | |
# NumPy box implementation | |
class ArrayBox(Box): | |
__array_priority__ = 100.0 | |
def __init__(self, value, trace_id, node): | |
super().__init__(value, trace_id, node) | |
@property | |
def shape(self): return self._value.shape | |
@property | |
def ndim(self): return self._value.ndim | |
@property | |
def size(self): return self._value.size | |
@property | |
def dtype(self): return self._value.dtype | |
def __neg__(self): return np.negative(self) | |
def __add__(self, other): return np.add(self, other) | |
def __sub__(self, other): return np.subtract(self, other) | |
def __mul__(self, other): return np.multiply(self, other) | |
def __truediv__(self, other): return np.true_divide(self, other) | |
def __pow__(self, other): return np.power(self, other) | |
# Register array box | |
ArrayBox.register(_np.ndarray) | |
for type_ in [float, _np.float64, _np.float32]: | |
ArrayBox.register(type_) | |
# Create numpy namespace | |
class AutogradNumpy: | |
pass | |
np = AutogradNumpy() | |
# Define some basic VJPs | |
def unbroadcast(target, g): | |
while _np.ndim(g) > _np.ndim(target): | |
g = _np.sum(g, axis=0) | |
for axis, size in enumerate(_np.shape(target)): | |
if size == 1: | |
g = _np.sum(g, axis=axis, keepdims=True) | |
return g | |
def defvjp(fun, *vjps): | |
for argnum, vjp in zip(count(), vjps): | |
if vjp is not None: | |
primitive_vjps[fun][argnum] = vjp | |
# Define core numpy functions and their VJPs | |
basic_funcs = ['add', 'subtract', 'multiply', 'true_divide', 'power', | |
'negative', 'exp', 'log', 'sin', 'cos', 'tanh'] | |
for name in basic_funcs: | |
setattr(np, name, primitive(getattr(_np, name))) | |
defvjp(np.add, lambda g, ans, x, y: unbroadcast(x, g), | |
lambda g, ans, x, y: unbroadcast(y, g)) | |
defvjp(np.multiply, lambda g, ans, x, y: unbroadcast(x, y * g), | |
lambda g, ans, x, y: unbroadcast(y, x * g)) | |
defvjp(np.subtract, lambda g, ans, x, y: unbroadcast(x, g), | |
lambda g, ans, x, y: unbroadcast(y, -g)) | |
defvjp(np.true_divide, lambda g, ans, x, y: unbroadcast(x, g / y), | |
lambda g, ans, x, y: unbroadcast(y, -g * x / y**2)) | |
defvjp(np.power, lambda g, ans, x, y: unbroadcast(x, g * y * x ** (y - 1)), | |
lambda g, ans, x, y: unbroadcast(y, g * _np.log(x) * x ** y)) | |
defvjp(np.negative, lambda g, ans, x: -g) | |
defvjp(np.exp, lambda g, ans, x: ans * g) | |
defvjp(np.log, lambda g, ans, x: g / x) | |
defvjp(np.sin, lambda g, ans, x: g * _np.cos(x)) | |
defvjp(np.cos, lambda g, ans, x: -g * _np.sin(x)) | |
defvjp(np.tanh, lambda g, ans, x: g / _np.cosh(x) ** 2) | |
# Testing utilities | |
def finite_difference(f, x, eps=1e-8): | |
"""Compute gradient using finite difference.""" | |
return (f(x + eps) - f(x - eps)) / (2 * eps) | |
def check_gradient(f, x, tol=1e-4): | |
"""Compare autograd gradient with finite difference.""" | |
grad_f = grad(f) | |
auto_grad = grad_f(x) | |
num_grad = finite_difference(f, x) | |
diff = abs(auto_grad - num_grad) | |
print(f"x = {x}") | |
print(f"Autograd gradient: {auto_grad}") | |
print(f"Numeric gradient: {num_grad}") | |
print(f"Difference: {diff}") | |
assert diff < tol, f"Gradient check failed! Difference: {diff}" | |
print("Gradient check passed!") | |
# Example usage and testing: | |
if __name__ == "__main__": | |
def example_fun(x): | |
return np.sin(x) * np.exp(x) | |
x = 2.0 | |
check_gradient(example_fun, x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment