Created
July 6, 2013 09:12
-
-
Save gnufied/5939337 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require "benchmark" | |
require "prime" | |
class Integer | |
# http://en.wikipedia.org/wiki/Miller-Rabin_primality_test | |
def prime? | |
n = self.abs() | |
return true if n == 2 | |
return false if n == 1 || n & 1 == 0 | |
# cf. http://betterexplained.com/articles/another-look-at-prime-numbers/ and | |
# http://everything2.com/index.pl?node_id=1176369 | |
return false if n > 3 && n % 6 != 1 && n % 6 != 5 # added | |
d = n-1 | |
d >>= 1 while d & 1 == 0 | |
20.times do # 20 = k from above | |
a = rand(n-2) + 1 | |
t = d | |
y = ModMath.pow(a,t,n) # implemented below | |
while t != n-1 && y != 1 && y != n-1 | |
y = (y * y) % n | |
t <<= 1 | |
end | |
return false if y != n-1 && t & 1 == 0 | |
end | |
return true | |
end | |
end | |
module ModMath | |
def ModMath.pow(base, power, mod) | |
result = 1 | |
while power > 0 | |
result = (result * base) % mod if power & 1 == 1 | |
base = (base * base) % mod | |
power >>= 1; | |
end | |
result | |
end | |
end | |
n = 4 | |
Benchmark.bm(7) do |x| | |
x.report("For milner") { n.times { | |
107565456790871.prime? | |
} | |
} | |
x.report("For prime class") { n.times { | |
Prime.prime?(107565456790871) | |
} | |
} | |
end | |
user system total real | |
For milner 0.000000 0.000000 0.000000 ( 0.002970) | |
For prime class 10.520000 0.370000 10.890000 ( 11.033578) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment