Skip to content

Instantly share code, notes, and snippets.

View goddoe's full-sized avatar

Sungju Kim goddoe

View GitHub Profile
@primaryobjects
primaryobjects / irc.py
Created March 18, 2016 03:10
A simple IRC client written in Python.
#
# [2016-03-14] Challenge #258 [Easy] IRC: Making a Connection
# https://www.reddit.com/r/dailyprogrammer/comments/4ad23z/20160314_challenge_258_easy_irc_making_a/
#
import socket
input = """chat.freenode.net:6667
dude1267
dude1267
@discorev
discorev / CBOW.ipynb
Created February 11, 2016 01:25
My implementation of CBOW in TensorFlow
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@entron
entron / imdb_cnn_kim_small_embedding.py
Last active September 16, 2023 16:23
Keras implementation of Kim's paper "Convolutional Neural Networks for Sentence Classification" with a very small embedding size. The test accuracy is 0.853.
'''This scripts implements Kim's paper "Convolutional Neural Networks for Sentence Classification"
with a very small embedding size (20) than the commonly used values (100 - 300) as it gives better
result with much less parameters.
Run on GPU: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python imdb_cnn.py
Get to 0.853 test accuracy after 5 epochs. 13s/epoch on Nvidia GTX980 GPU.
'''
from __future__ import print_function
@baraldilorenzo
baraldilorenzo / readme.md
Created January 16, 2016 12:57
VGG-19 pre-trained model for Keras

##VGG19 model for Keras

This is the Keras model of the 19-layer network used by the VGG team in the ILSVRC-2014 competition.

It has been obtained by directly converting the Caffe model provived by the authors.

Details about the network architecture can be found in the following arXiv paper:

Very Deep Convolutional Networks for Large-Scale Image Recognition

K. Simonyan, A. Zisserman

@haje01
haje01 / 도커와 AWS를 활용한 클라우드 딥러닝 환경 구축.md
Last active December 20, 2020 08:56
도커와 AWS를 활용한 클라우드 딥러닝 환경 구축

도커와 AWS를 활용한 클라우드 딥러닝 환경 구축

글쓴이: 김정주([email protected])

최근 딥러닝 관련 패키지들은 대부분 CPU와 GPU를 함께 지원하고 있습니다. GPU를 사용하면 보다 빠르게 학습 결과를 낼 수 있지만, GPU를 활용하기 위해서는 NVIDIA계열의 그래픽 카드, 드라이버 S/W 그리고 CUDA의 설치를 필요로 합니다.

이 글에서는 AWS의 GPU 인스턴스와 도커를 활용해 딥러닝 패키지(Caffe)를 편리하게 사용하는 방법을 소개합니다.


@baraldilorenzo
baraldilorenzo / readme.md
Last active January 14, 2025 11:07
VGG-16 pre-trained model for Keras

##VGG16 model for Keras

This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.

It has been obtained by directly converting the Caffe model provived by the authors.

Details about the network architecture can be found in the following arXiv paper:

Very Deep Convolutional Networks for Large-Scale Image Recognition

K. Simonyan, A. Zisserman

@ihoneymon
ihoneymon / how-to-write-by-markdown.md
Last active April 13, 2025 12:46
마크다운(Markdown) 사용법

[공통] 마크다운 markdown 작성법

영어지만, 조금 더 상세하게 마크다운 사용법을 안내하고 있는
"Markdown Guide (https://www.markdownguide.org/)" 를 보시는 것을 추천합니다. ^^

아, 그리고 마크다운만으로 표현이 부족하다고 느끼신다면, HTML 태그를 활용하시는 것도 좋습니다.

1. 마크다운에 관하여

Performance of Flask, Tornado, GEvent, and their combinations

Wensheng Wang, 10/1/11

Source: http://blog.wensheng.org/2011/10/performance-of-flask-tornado-gevent-and.html

When choosing a web framework, I pretty much have eyes set on Tornado. But I heard good things about Flask and Gevent. So I tested the performance of each and combinations of the three. I chose something just a little more advanced than a "Hello World" program to write - one that use templates. Here are the codes:

1, Pure Flask (pure_flask.py)

@osdf
osdf / gist:5133737
Created March 11, 2013 11:55
Playing with basic MCMC.
"""
Some python code for
Markov Chain Monte Carlo and Gibs sampling
by Bruce Walsh
"""
import numpy as np
import numpy.linalg as npla