Created
December 6, 2019 22:38
-
-
Save godie007/744badb9f9b4202d85d0368d8d1aa27a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import cv2 | |
import requests_async as requests | |
import json | |
import time | |
import sys | |
import asyncio | |
import aiohttp | |
url = 'http://localhost:8081/' | |
sdThresh = 5 | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
#TODO: Face Detection 1 | |
def distMap(frame1, frame2): | |
"""outputs pythagorean distance between two frames""" | |
frame1_32 = np.float32(frame1) | |
frame2_32 = np.float32(frame2) | |
diff32 = frame1_32 - frame2_32 | |
norm32 = np.sqrt(diff32[:,:,0]**2 + diff32[:,:,1]**2 + diff32[:,:,2]**2)/np.sqrt(255**2 + 255**2 + 255**2) | |
dist = np.uint8(norm32*255) | |
return dist | |
# cv2.namedWindow('frame') | |
cv2.namedWindow('dist') | |
#capture video stream from camera source. 0 refers to first camera, 1 referes to 2nd and so on. | |
cap = cv2.VideoCapture(0) | |
_, frame1 = cap.read() | |
_, frame2 = cap.read() | |
facecount = 0 | |
flag = 0 | |
async def send_file(frame4,frame3): | |
try: | |
async with aiohttp.ClientSession() as session: | |
_, img_encoded = cv2.imencode('.jpg', frame4) | |
data = aiohttp.FormData() | |
data.add_field('name', 'foo') | |
data.add_field('file', img_encoded.tostring(), filename='file.jpg',content_type='Auto') | |
async with session.post(url, data=data) as response: | |
data = await response.text() | |
response = json.loads(data) | |
prediction = response["result"][0]["prediction"] | |
for i in prediction: | |
frame = cv2.rectangle(frame3,(i['xmin'],i['ymin']),(i['xmax'],i['ymax']),(0,0,255),2) | |
print (data) | |
except Exception as e: | |
print( "Error: %s" % e ) | |
while(True): | |
_, frame3 = cap.read() | |
_, frame4 = cap.read() | |
rows, cols, _ = np.shape(frame3) | |
cv2.imshow('dist', frame3) | |
dist = distMap(frame1, frame3) | |
frame1 = frame2 | |
frame2 = frame3 | |
# apply Gaussian smoothing | |
mod = cv2.GaussianBlur(dist, (9,9), 0) | |
# apply thresholding | |
_, thresh = cv2.threshold(mod, 100, 255, 0) | |
# calculate st dev test | |
_, stDev = cv2.meanStdDev(mod) | |
cv2.imshow('dist', mod) | |
# cv2.putText(frame2, "Standard Deviation - {}".format(round(stDev[0][0],0)), (70, 70), font, 1, (255, 0, 255), 1, cv2.LINE_AA) | |
if stDev > sdThresh: | |
# tic = time.clock() | |
flag = flag + 1 | |
if flag % 30 == 0: | |
futures = [] | |
futures.append(send_file(frame4, frame3)) | |
loop = asyncio.get_event_loop() | |
loop.run_until_complete(asyncio.wait(futures)) | |
cv2.imshow('bird', frame3) | |
#TODO: Face Detection 2 | |
# cv2.imshow('frame', frame2) | |
if cv2.waitKey(1) & 0xFF == 27: | |
break | |
cap.release() | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment