Last active
September 21, 2019 23:41
-
-
Save goerz/7f8e27ce3e76f3b72675bdfb145e4125 to your computer and use it in GitHub Desktop.
TOC for Boris Braverman's Thesis (https://dspace.mit.edu/handle/1721.1/120364)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass{article} | |
\usepackage[utf8]{inputenc} | |
\usepackage{pdfpages} | |
\usepackage[ | |
pdfpagelabels=true, | |
pdftitle={Cavity Quantum Electrodynamics with Ensembles of Ytterbium-171}, | |
pdfauthor={Boris Braverman}, | |
unicode=true, | |
]{hyperref} | |
\usepackage{bookmark} | |
\begin{document} | |
\pagenumbering{arabic} | |
\setcounter{page}{1} | |
\includepdf[pages={1-}]{braverman.pdf} | |
\bookmark[page=3,level=0]{Abstract} | |
\bookmark[page=5,level=0]{Acknowledgements} | |
\bookmark[page=7,level=0]{Contents} | |
\bookmark[page=13,level=0]{List of Figures} | |
\bookmark[page=29,level=0]{List of Tables} | |
\bookmark[page=31,level=0]{1 Introduction} | |
\bookmark[page=31,level=1]{1.1 Optical Lattice Clocks} | |
\bookmark[page=39,level=1]{1.1.1 Systematic Errors in Optical Lattice Clocks} | |
\bookmark[page=41,level=1]{1.2 Fundamental Physics with Precision Atomic Measurements} | |
\bookmark[page=43,level=1]{1.3 Quantum Metrology and Squeezing} | |
\bookmark[page=46,level=1]{1.3.1 Previous Work on Spin Squeezing} | |
\bookmark[page=48,level=1]{1.4 Thesis Outline} | |
\bookmark[page=51,level=0]{2 Cavity Quantum Electrodynamics with Ytterbium} | |
\bookmark[page=52,level=1]{2.1 Ytterbium} | |
\bookmark[page=54,level=1]{2.1.1 Key Properties of Ytterbium-171} | |
\bookmark[page=56,level=1]{2.2 Atom-Light Interactions in Cavities} | |
\bookmark[page=60,level=2]{2.2.1 Simulating a Cavity with Lossy Mirrors by a Lossless Cavity with Additional Loss} | |
\bookmark[page=62,level=2]{2.2.2 Modeling Light Polarization and Cavity Birefringence} | |
\bookmark[page=64,level=1]{2.3 Ytterbium Atoms in a Cavity} | |
\bookmark[page=64,level=2]{2.3.1 Atomic Response in a Magnetic Field} | |
\bookmark[page=70,level=2]{2.3.2 Approximate Atomic Response for Typical Experimental Configurations} | |
\bookmark[page=73,level=2]{2.3.3 Condition for Low Saturation Regime} | |
\bookmark[page=74,level=1]{2.4 Cavity QED Simulation Examples} | |
\bookmark[page=74,level=2]{2.4.1 Cavity QED Simulations with Zero Magnetic Field} | |
\bookmark[page=76,level=2]{2.4.2 Cavity QED Simulations of Response to Probing} | |
\bookmark[page=78,level=2]{2.4.3 Cavity QED Simulations with Magnetic Field Along Cavity Axis} | |
\bookmark[page=81,level=2]{2.4.4 Cavity QED Simulations of Atomic Coherence Effects} | |
\bookmark[page=82,level=1]{2.5 Classical and Quantum Fisher Information} | |
\bookmark[page=84,level=2]{2.5.1 Fisher Information in States of Light} | |
\bookmark[page=88,level=1]{2.6 Measurement of the Atomic State} | |
\bookmark[page=88,level=2]{2.6.1 Fisher Information of Cavity Light About the Atomic State} | |
\bookmark[page=90,level=2]{2.6.2 Dispersive Atom Counting} | |
\bookmark[page=93,level=2]{2.6.3 On-Resonance Atom Counting} | |
\bookmark[page=94,level=2]{2.6.4 Two-Color Probing} | |
\bookmark[page=99,level=1]{2.7 Back-Action of Probing Light on Atoms} | |
\bookmark[page=99,level=2]{2.7.1 Atom Phase Shift by Probing Light} | |
\bookmark[page=101,level=2]{2.7.2 Spin Squeezing by Cavity Feedback} | |
\bookmark[page=103,level=2]{2.7.3 Interaction-Based State Readout} | |
\bookmark[page=104,level=1]{2.8 Spin Squeezing and Metrological Gain} | |
\bookmark[page=106,level=2]{2.8.1 Measurement Variances for Squeezed States} | |
\bookmark[page=110,level=2]{2.8.2 Squeezed Clock Stability} | |
\bookmark[page=115,level=2]{2.8.3 Ultimate Clock Performance with Entangled States} | |
\bookmark[page=117,level=1]{2.9 Beyond Spin Squeezing} | |
\bookmark[page=117,level=2]{2.9.1 Spin Carving} | |
\bookmark[page=119,level=2]{2.9.2 Schrödinger Cat States and Beyond by Unitary Squeezing} | |
\bookmark[page=125,level=0]{3 Experimental Cavity} | |
\bookmark[page=126,level=1]{3.1 Theory of Free-Space Optical Cavities} | |
\bookmark[page=130,level=2]{3.1.1 Symmetric Cavities} | |
\bookmark[page=131,level=2]{3.1.2 Asymmetric Cavities} | |
\bookmark[page=132,level=2]{3.1.3 Limits to Finesse for Cavities with Small Waists} | |
\bookmark[page=133,level=1]{3.2 Key Parameters of Experimental Cavity} | |
\bookmark[page=135,level=1]{3.3 Characterization of High Reflectivity Mirrors and High Finesse Cavities} | |
\bookmark[page=135,level=2]{3.3.1 Mirror Transmission Measurement} | |
\bookmark[page=136,level=2]{3.3.2 Cavity Free Spectral Range Measurement} | |
\bookmark[page=137,level=2]{3.3.3 Cavity Finesse Measurement} | |
\bookmark[page=141,level=1]{3.4 Construction of Experimental Cavity} | |
\bookmark[page=141,level=2]{3.4.1 Experimental Cavity Structure} | |
\bookmark[page=143,level=2]{3.4.2 Experimental Cavity Assembly and Alignment Procedure} | |
\bookmark[page=145,level=2]{3.4.3 Micromirror Fabrication and Characterization} | |
\bookmark[page=149,level=2]{3.4.4 Dielectric Mirror Coating} | |
\bookmark[page=150,level=2]{3.4.5 Etching of Dielectric Coatings} | |
\bookmark[page=154,level=2]{3.4.6 Deposition of SiO2 and Annealing of Micromirrors} | |
\bookmark[page=155,level=2]{3.4.7 Mitigation of Clock Shifts Due to Electric Fields} | |
\bookmark[page=158,level=2]{3.4.8 Micromirror Testing and Selection} | |
\bookmark[page=159,level=2]{3.4.9 Cavity Properties Versus Alignment} | |
\bookmark[page=164,level=2]{3.4.10 Epoxying of Cavity Components} | |
\bookmark[page=168,level=2]{3.4.11 Wiring of Experimental Cavity} | |
\bookmark[page=172,level=2]{3.4.12 Insertion of Cavity Into Vacuum Chamber} | |
\bookmark[page=173,level=2]{3.4.13 Final Adjustment of Experimental Cavity Alignment} | |
\bookmark[page=173,level=1]{3.5 Characterization of Experimental Cavity} | |
\bookmark[page=173,level=2]{3.5.1 Finesse of Higher Order Transverse Modes} | |
\bookmark[page=174,level=2]{3.5.2 Coupling of Cavity Light to Single-Mode Fiber} | |
\bookmark[page=176,level=2]{3.5.3 Temperature Stabilization of Experimental Cavity} | |
\bookmark[page=181,level=2]{3.5.4 Tuning of Alignment by Temperature} | |
\bookmark[page=183,level=2]{3.5.5 Tuning of FSR by Temperature} | |
\bookmark[page=184,level=2]{3.5.6 Cavity Frequency Stabilization} | |
\bookmark[page=185,level=2]{3.5.7 Cavity Birefringence} | |
\bookmark[page=190,level=2]{3.5.8 Cavity Photothermal Effects Due to Absorption in Dielectric Coatings} | |
\bookmark[page=193,level=0]{4 Apparatus} | |
\bookmark[page=193,level=1]{4.1 Vacuum System} | |
\bookmark[page=194,level=2]{4.1.1 Ytterbium Oven} | |
\bookmark[page=196,level=2]{4.1.2 Heated Window} | |
\bookmark[page=198,level=2]{4.1.3 Vacuum Pumps} | |
\bookmark[page=199,level=2]{4.1.4 Vacuum Chamber Bake} | |
\bookmark[page=201,level=1]{4.2 Lasers} | |
\bookmark[page=201,level=2]{4.2.1 399 nm Laser System} | |
\bookmark[page=202,level=2]{4.2.2 556 nm Laser System} | |
\bookmark[page=210,level=2]{4.2.3 578 nm Clock Laser} | |
\bookmark[page=214,level=2]{4.2.4 759 nm Magic Wavelength Optical Lattice Laser} | |
\bookmark[page=220,level=2]{4.2.5 Repumping Lasers} | |
\bookmark[page=221,level=1]{4.3 Reference Cavities for Laser Stabilization} | |
\bookmark[page=222,level=2]{4.3.1 Commercial Ultrastable Cavity} | |
\bookmark[page=225,level=2]{4.3.2 Homebuilt 4-Axis Reference Cavity} | |
\bookmark[page=227,level=1]{4.4 Magnetic Field Control} | |
\bookmark[page=227,level=2]{4.4.1 MOT Coils} | |
\bookmark[page=229,level=2]{4.4.2 Magnetic Bias Field Coils} | |
\bookmark[page=230,level=2]{4.4.3 Fast AC Magnetic Coil} | |
\bookmark[page=230,level=1]{4.5 Optics Setup} | |
\bookmark[page=230,level=2]{4.5.1 MOT Optics} | |
\bookmark[page=232,level=2]{4.5.2 Cavity Coupling Optics} | |
\bookmark[page=236,level=2]{4.5.3 Imaging Optics} | |
\bookmark[page=236,level=1]{4.6 Experimental Control System} | |
\bookmark[page=239,level=1]{4.7 Data Analysis} | |
\bookmark[page=239,level=2]{4.7.1 Real-Time Data Analysis} | |
\bookmark[page=240,level=2]{4.7.2 Off-Line Data Analysis} | |
\bookmark[page=241,level=0]{5 Results} | |
\bookmark[page=241,level=1]{5.1 Atom Cooling and Trapping} | |
\bookmark[page=242,level=2]{5.1.1 Two-Color MOT} | |
\bookmark[page=243,level=2]{5.1.2 MOT Imaging and Position Measurement} | |
\bookmark[page=246,level=1]{5.2 Loading of Atoms into Optical Lattice} | |
\bookmark[page=246,level=2]{5.2.1 Continuous Non-Destructive Atom Counting} | |
\bookmark[page=248,level=2]{5.2.2 Loading Efficiency for Different Lattice Powers and MOT-Mirror Distances} | |
\bookmark[page=250,level=2]{5.2.3 Lattice Loading Near the Micromirror Surface} | |
\bookmark[page=251,level=2]{5.2.4 Lattice Modulation Spectroscopy} | |
\bookmark[page=251,level=2]{5.2.5 Atom Temperature Measurement} | |
\bookmark[page=252,level=1]{5.3 Optical Pumping} | |
\bookmark[page=254,level=1]{5.4 Rabi Flopping of 171Yb Nuclear Spin} | |
\bookmark[page=255,level=1]{5.5 Ramsey Spectroscopy with 171Yb Nuclear Spin} | |
\bookmark[page=256,level=2]{5.5.1 Ramsey Spectroscopy with Spin Echo} | |
\bookmark[page=256,level=1]{5.6 AC Stark Shift by Probing Light} | |
\bookmark[page=258,level=2]{5.6.1 Dependence of Phase Shift on Lattice Depth} | |
\bookmark[page=260,level=1]{5.7 Atom Number Measurement} | |
\bookmark[page=260,level=2]{5.7.1 Atom Number Measurement by Chirp} | |
\bookmark[page=263,level=2]{5.7.2 Observation of Measurement-Based Spin Squeezing} | |
\bookmark[page=265,level=1]{5.8 Cavity Feedback Spin Squeezing} | |
\bookmark[page=269,level=0]{6 Conclusion and Outlook} | |
\bookmark[page=271,level=0]{A. 3-D Printed Optical Shutters} | |
\bookmark[page=277,level=0]{B. Four-Axis Reference Cavity for Laser Stabilization} | |
\bookmark[page=277,level=1]{B.1 Reference Cavity Design} | |
\bookmark[page=278,level=2]{B.1.1 Temperature Stabilization of Reference Cavity} | |
\bookmark[page=281,level=1]{B.2 Design Considerations for Stable Reference Cavities} | |
\bookmark[page=285,level=0]{C. Electronics} | |
\bookmark[page=285,level=1]{C.1 Real-Time Atom Counting Circuit} | |
\bookmark[page=288,level=1]{C.2 Coil Current Driver for Large AC Magnetic Fields} | |
\bookmark[page=293,level=1]{C.3 Four-Point Measurement Temperature Controller} | |
\bookmark[page=295,level=0]{D. Maximum Likelihood Estimation and Fitting} | |
\bookmark[page=295,level=1]{D.1 Fitting Probability Distributions with MLE} | |
\bookmark[page=299,level=2]{D.1.1 Likelihood Function and Goodness of Fit} | |
\bookmark[page=300,level=1]{D.2 MLE Fitting of Gaussian and Lorentzian Distributions} | |
\bookmark[page=302,level=1]{D.3 MLE Weighted Averaging of Data} | |
\bookmark[page=303,level=1]{D.4 Classical Fisher Information and the Cramér-Rao Bound} | |
\bookmark[page=307,level=0]{List of Acronyms} | |
\bookmark[page=313,level=0]{Bibliography} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment