Skip to content

Instantly share code, notes, and snippets.

@goerz
Created May 25, 2014 03:46
Show Gist options
  • Save goerz/e75aafc357919f6166b7 to your computer and use it in GitHub Desktop.
Save goerz/e75aafc357919f6166b7 to your computer and use it in GitHub Desktop.
How to tell Mathematica that a variable represents a real number, is greater than zero, or similar conditions
(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.1'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: [email protected]
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 4250, 174]*)
(*NotebookOutlinePosition[ 4901, 197]*)
(* CellTagsIndexPosition[ 4857, 193]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[CellGroupData[{
Cell["Assumptions", "Title"],
Cell[TextData[{
"How can I tell ",
StyleBox["Mathematica",
FontSlant->"Italic"],
" that a variable represents a real number, is greater than zero, or \
simmilar things?"
}], "Text"],
Cell[TextData[{
"Certain commands such as ",
StyleBox["Integrate",
FontSlant->"Italic"],
", ",
StyleBox["Simplify",
FontSlant->"Italic"],
", etc. use the environment variable ",
StyleBox["$Assumptions",
FontSlant->"Italic"],
" to get information on the variables used in the expression. By default \
is"
}], "Text"],
Cell[CellGroupData[{
Cell[BoxData[
\($Assumptions\)], "Input"],
Cell[BoxData[
\(True\)], "Output"]
}, Open ]],
Cell[TextData[{
"For single commands one can use ",
StyleBox["Assuming",
FontSlant->"Italic"],
", this modifies ",
StyleBox["$Assumptions",
FontSlant->"Italic"],
" temporarily, i.e. only for this single expression.\nThe option ",
StyleBox["Assumptions",
FontSlant->"Italic"],
" of ",
StyleBox["Integrate",
FontSlant->"Italic"],
" is similar, it points to ",
Cell[BoxData[
FormBox[
StyleBox["$Assumptions",
FontSlant->"Italic"], TraditionalForm]]],
" by default but can be changed to any set of assumptions.\nTo modify the \
assumptions not just temporarily for one command, you can write directly to \
the environment variable.\n\nExample:"
}], "Text"],
Cell[CellGroupData[{
Cell[BoxData[
\(f = \@x\^2\/x // FullSimplify\)], "Input"],
Cell[BoxData[
\(x\/\@x\^2\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\($Assumptions = \((x\ \[Element] \ Reals)\)\)], "Input"],
Cell[BoxData[
\(x \[Element] Reals\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(f // FullSimplify\)], "Input"],
Cell[BoxData[
\(Sign[x]\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\($Assumptions\ = \((x\ > \ 0)\)\)], "Input"],
Cell[BoxData[
\(x > 0\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(f // FullSimplify\)], "Input"],
Cell[BoxData[
\(1\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\($Assumptions\ = \ $Assumptions\ && \ \((x\ \[Element] \
Reals)\)\)], "Input"],
Cell[BoxData[
\(x > 0 && x \[Element] Reals\)], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(f // FullSimplify\)], "Input"],
Cell[BoxData[
\(1\)], "Output"]
}, Open ]]
}, Open ]]
},
FrontEndVersion->"5.1 for X",
ScreenRectangle->{{0, 1024}, {0, 768}},
WindowToolbars->{},
WindowSize->{520, 600},
WindowMargins->{{179, Automatic}, {-35, Automatic}}
]
(*******************************************************************
Cached data follows. If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of the file. The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[1776, 53, 28, 0, 98, "Title"],
Cell[1807, 55, 191, 6, 50, "Text"],
Cell[2001, 63, 341, 12, 68, "Text"],
Cell[CellGroupData[{
Cell[2367, 79, 45, 1, 27, "Input"],
Cell[2415, 82, 38, 1, 27, "Output"]
}, Open ]],
Cell[2468, 86, 714, 21, 158, "Text"],
Cell[CellGroupData[{
Cell[3207, 111, 62, 1, 48, "Input"],
Cell[3272, 114, 43, 1, 51, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3352, 120, 76, 1, 27, "Input"],
Cell[3431, 123, 52, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3520, 129, 50, 1, 27, "Input"],
Cell[3573, 132, 41, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3651, 138, 65, 1, 27, "Input"],
Cell[3719, 141, 39, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3795, 147, 50, 1, 27, "Input"],
Cell[3848, 150, 35, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3920, 156, 113, 2, 27, "Input"],
Cell[4036, 160, 61, 1, 27, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4134, 166, 50, 1, 27, "Input"],
Cell[4187, 169, 35, 1, 27, "Output"]
}, Open ]]
}, Open ]]
}
]
*)
(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment