Skip to content

Instantly share code, notes, and snippets.

@goerz
Last active September 22, 2023 23:23
Show Gist options
  • Save goerz/fcf1f08084021bd34af4a44e80db8a18 to your computer and use it in GitHub Desktop.
Save goerz/fcf1f08084021bd34af4a44e80db8a18 to your computer and use it in GitHub Desktop.
Ramsey Fringes
.ipynb_checkpoints
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"id": "c1e7a1c6",
"metadata": {},
"source": [
"# Analytical Ramsey Scheme for a single TLS"
]
},
{
"cell_type": "markdown",
"id": "209e63b4",
"metadata": {},
"source": [
"Here, we derive the exact analytical expression for Ramsey fringes."
]
},
{
"cell_type": "markdown",
"id": "34f5077a",
"metadata": {},
"source": [
"## General solution of the TLS dynamics"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f18a8014",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.115048Z",
"start_time": "2021-12-15T20:18:38.788137Z"
}
},
"outputs": [],
"source": [
"from sympy import Function, symbols, sqrt, Eq, Abs, exp, cos, sin, Matrix, dsolve, solve, S, lambdify\n",
"from sympy import I as 𝕚, pi as π"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3b105080",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.119356Z",
"start_time": "2021-12-15T20:18:39.116205Z"
}
},
"outputs": [],
"source": [
"g = Function('g')\n",
"e = Function('e')\n",
"t, τ = symbols('t, tau', positive=True)\n",
"Δ = symbols('Delta', real=True)\n",
"η = symbols('eta', positive=True)\n",
"Ω = symbols('Omega', real=True)\n",
"g0, e0 = symbols('g_0, e_0')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ab1ae1a2",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.257742Z",
"start_time": "2021-12-15T20:18:39.120296Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}- \\frac{\\Delta}{2} & \\eta\\\\\\eta & \\frac{\\Delta}{2}\\end{matrix}\\right]$"
],
"text/plain": [
"Matrix([\n",
"[-Delta/2, eta],\n",
"[ eta, Delta/2]])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ĥ = Matrix([\n",
" [-Δ/2, η ],\n",
" [ η, Δ/2]\n",
"])\n",
"Ĥ"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3a143ff7",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.264379Z",
"start_time": "2021-12-15T20:18:39.259532Z"
}
},
"outputs": [],
"source": [
"TDSE_system = [\n",
" g(t).diff(t) + 𝕚 * (Ĥ[0,0] * g(t) + Ĥ[0,1] * e(t)),\n",
" e(t).diff(t) + 𝕚 * (Ĥ[1,0]* g(t) + Ĥ[1,1] * e(t)),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8de91d9c",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.485308Z",
"start_time": "2021-12-15T20:18:39.265230Z"
}
},
"outputs": [],
"source": [
"sols_gen = dsolve(TDSE_system, [g(t), e(t)])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6585e577",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.488681Z",
"start_time": "2021-12-15T20:18:39.486412Z"
}
},
"outputs": [],
"source": [
"effective_rabi_freq = {\n",
" Ω: sqrt(Δ**2 + (2*η)**2)\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8522457f",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.493109Z",
"start_time": "2021-12-15T20:18:39.489502Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\Omega = \\sqrt{\\Delta^{2} + 4 \\eta^{2}}$"
],
"text/plain": [
"Eq(Omega, sqrt(Delta**2 + 4*eta**2))"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Eq(Ω, effective_rabi_freq[Ω])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c2dfd03b",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.496224Z",
"start_time": "2021-12-15T20:18:39.494086Z"
}
},
"outputs": [],
"source": [
"find_Ω = {\n",
" sqrt(-Δ**2 - 4 * η**2): 𝕚 * Ω,\n",
" sqrt(Δ**2 + 4 * η**2): Ω\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f8a12b4e",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.518886Z",
"start_time": "2021-12-15T20:18:39.497346Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(t \\right)} = - \\frac{C_{1} \\left(\\Delta - \\Omega\\right) e^{- \\frac{i \\Omega t}{2}}}{2 \\eta} - \\frac{C_{2} \\left(\\Delta + \\Omega\\right) e^{\\frac{i \\Omega t}{2}}}{2 \\eta}$"
],
"text/plain": [
"Eq(g(t), -C1*(Delta - Omega)*exp(-I*Omega*t/2)/(2*eta) - C2*(Delta + Omega)*exp(I*Omega*t/2)/(2*eta))"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sols_gen[0].subs(find_Ω)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2a52c22a",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.532208Z",
"start_time": "2021-12-15T20:18:39.521343Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(t \\right)} = C_{1} e^{- \\frac{i \\Omega t}{2}} + C_{2} e^{\\frac{i \\Omega t}{2}}$"
],
"text/plain": [
"Eq(e(t), C1*exp(-I*Omega*t/2) + C2*exp(I*Omega*t/2))"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sols_gen[1].subs(find_Ω)"
]
},
{
"cell_type": "markdown",
"id": "9ab9ceda",
"metadata": {},
"source": [
"## Analytical solution for initial-value Rabi cycling"
]
},
{
"cell_type": "markdown",
"id": "01f123fe",
"metadata": {},
"source": [
"We specialize the above general solution to an arbitrary initial state with complex amplidues $g_0$, $e_0$."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "e1974e0e",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.534907Z",
"start_time": "2021-12-15T20:18:39.533006Z"
}
},
"outputs": [],
"source": [
"boundary_conditions = {\n",
" t: 0,\n",
" g(t): g0,\n",
" e(t) : e0,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e7df8424",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.537754Z",
"start_time": "2021-12-15T20:18:39.535775Z"
}
},
"outputs": [],
"source": [
"find_4ηsq = {\n",
" Ω**2 - Δ**2: 4 * η**2\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "e7728cd3",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.540200Z",
"start_time": "2021-12-15T20:18:39.538608Z"
}
},
"outputs": [],
"source": [
"C1, C2 = symbols(\"C1, C2\")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "222a0d0e",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.576117Z",
"start_time": "2021-12-15T20:18:39.541203Z"
}
},
"outputs": [],
"source": [
"_integration_constants = solve(\n",
" [sol.subs(find_Ω).subs(boundary_conditions) for sol in sols_gen],\n",
" [C1, C2]\n",
")\n",
"integration_constants = {\n",
" k: v.subs(find_4ηsq)\n",
" for (k, v) in _integration_constants.items()\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "4d77fae4",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.584091Z",
"start_time": "2021-12-15T20:18:39.576911Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle C_{1} = \\frac{\\Delta e_{0} + \\Omega e_{0} + 2 \\eta g_{0}}{2 \\Omega}$"
],
"text/plain": [
"Eq(C1, (Delta*e_0 + Omega*e_0 + 2*eta*g_0)/(2*Omega))"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Eq(C1, integration_constants[C1])"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "dc6840c5",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.591769Z",
"start_time": "2021-12-15T20:18:39.585384Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle C_{2} = \\frac{- \\Delta e_{0} + \\Omega e_{0} - 2 \\eta g_{0}}{2 \\Omega}$"
],
"text/plain": [
"Eq(C2, (-Delta*e_0 + Omega*e_0 - 2*eta*g_0)/(2*Omega))"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Eq(C2, integration_constants[C2])"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "e2d29370",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:39.594899Z",
"start_time": "2021-12-15T20:18:39.592612Z"
}
},
"outputs": [],
"source": [
"def simplify_sol_g(sol_g):\n",
" rhs = (\n",
" sol_g\n",
" .rhs\n",
" .rewrite(sin)\n",
" .expand()\n",
" .collect(𝕚)\n",
" .subs(effective_rabi_freq)\n",
" .simplify()\n",
" .subs(find_Ω)\n",
" )\n",
" return Eq(sol_g.lhs, rhs)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "822134f7",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.513094Z",
"start_time": "2021-12-15T20:18:39.596017Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(t \\right)} = \\frac{i \\Delta g_{0} \\sin{\\left(\\frac{\\Omega t}{2} \\right)} + \\Omega g_{0} \\cos{\\left(\\frac{\\Omega t}{2} \\right)} - 2 i e_{0} \\eta \\sin{\\left(\\frac{\\Omega t}{2} \\right)}}{\\Omega}$"
],
"text/plain": [
"Eq(g(t), (I*Delta*g_0*sin(Omega*t/2) + Omega*g_0*cos(Omega*t/2) - 2*I*e_0*eta*sin(Omega*t/2))/Omega)"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g = simplify_sol_g(sols_gen[0].subs(find_Ω).subs(integration_constants))\n",
"sol_g"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "ad5a524b",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.578969Z",
"start_time": "2021-12-15T20:18:40.513930Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(t \\right)} = - \\frac{i \\Delta e_{0} \\sin{\\left(\\frac{\\Omega t}{2} \\right)}}{\\Omega} + e_{0} \\cos{\\left(\\frac{\\Omega t}{2} \\right)} - \\frac{2 i \\eta g_{0} \\sin{\\left(\\frac{\\Omega t}{2} \\right)}}{\\Omega}$"
],
"text/plain": [
"Eq(e(t), -I*Delta*e_0*sin(Omega*t/2)/Omega + e_0*cos(Omega*t/2) - 2*I*eta*g_0*sin(Omega*t/2)/Omega)"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e = (\n",
" sols_gen[1]\n",
" .subs(find_Ω)\n",
" .subs(integration_constants)\n",
" .expand()\n",
" .rewrite(sin)\n",
" .expand()\n",
")\n",
"sol_e"
]
},
{
"cell_type": "markdown",
"id": "a0031412",
"metadata": {},
"source": [
"For example, when starting from the ground state:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "18dd7664",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.589735Z",
"start_time": "2021-12-15T20:18:40.579790Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(t \\right)} = \\frac{i \\Delta \\sin{\\left(\\frac{\\Omega t}{2} \\right)} + \\Omega \\cos{\\left(\\frac{\\Omega t}{2} \\right)}}{\\Omega}$"
],
"text/plain": [
"Eq(g(t), (I*Delta*sin(Omega*t/2) + Omega*cos(Omega*t/2))/Omega)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g.subs({g0: 1, e0: 0})"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "46519322",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.598528Z",
"start_time": "2021-12-15T20:18:40.590564Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(t \\right)} = - \\frac{2 i \\eta \\sin{\\left(\\frac{\\Omega t}{2} \\right)}}{\\Omega}$"
],
"text/plain": [
"Eq(e(t), -2*I*eta*sin(Omega*t/2)/Omega)"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e.subs({g0: 1, e0: 0})"
]
},
{
"cell_type": "markdown",
"id": "66d3d6a6",
"metadata": {},
"source": [
"For the population dynamics, we find:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "adac4258",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.601442Z",
"start_time": "2021-12-15T20:18:40.599346Z"
}
},
"outputs": [],
"source": [
"def abs_sq(eq):\n",
" lhs = eq.lhs\n",
" rhs = eq.rhs\n",
" return Eq(Abs(lhs)**2, (rhs * rhs.conjugate()).expand())"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "ddf3df11",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.613240Z",
"start_time": "2021-12-15T20:18:40.602537Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left|{g{\\left(t \\right)}}\\right|^{2} = \\frac{\\Delta^{2} \\sin^{2}{\\left(\\frac{\\Omega t}{2} \\right)}}{\\Omega^{2}} + \\cos^{2}{\\left(\\frac{\\Omega t}{2} \\right)}$"
],
"text/plain": [
"Eq(Abs(g(t))**2, Delta**2*sin(Omega*t/2)**2/Omega**2 + cos(Omega*t/2)**2)"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"abs_sq(sol_g.subs({g0: 1, e0: 0}))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "711ce2ca",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.620805Z",
"start_time": "2021-12-15T20:18:40.614210Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left|{e{\\left(t \\right)}}\\right|^{2} = \\frac{4 \\eta^{2} \\sin^{2}{\\left(\\frac{\\Omega t}{2} \\right)}}{\\Omega^{2}}$"
],
"text/plain": [
"Eq(Abs(e(t))**2, 4*eta**2*sin(Omega*t/2)**2/Omega**2)"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"abs_sq(sol_e.subs({g0: 1, e0: 0}))"
]
},
{
"cell_type": "markdown",
"id": "81be6429",
"metadata": {},
"source": [
"## Initial π/2 pulse"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "517f680d",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.623679Z",
"start_time": "2021-12-15T20:18:40.621715Z"
}
},
"outputs": [],
"source": [
"T = π / (4*η)"
]
},
{
"cell_type": "markdown",
"id": "f2537c56",
"metadata": {},
"source": [
"For the ground state amplitude, we find:"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "80389842",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.635951Z",
"start_time": "2021-12-15T20:18:40.624636Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(\\frac{\\pi}{4 \\eta} \\right)} = \\frac{i \\Delta \\sin{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} + \\Omega \\cos{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega}$"
],
"text/plain": [
"Eq(g(pi/(4*eta)), (I*Delta*sin(pi*Omega/(8*eta)) + Omega*cos(pi*Omega/(8*eta)))/Omega)"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g_πhalf = sol_g.subs({g0: 1, e0: 0}).subs({t:T})\n",
"sol_g_πhalf"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "314b31e9",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.656658Z",
"start_time": "2021-12-15T20:18:40.636794Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(\\frac{\\pi}{60} \\right)} = \\frac{\\sqrt{2}}{2}$"
],
"text/plain": [
"Eq(g(pi/60), sqrt(2)/2)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g_πhalf.subs({g0: 1, e0: 0}).subs(effective_rabi_freq).subs({Δ: 0, η: 15})"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "956d4dc9",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.667181Z",
"start_time": "2021-12-15T20:18:40.661476Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(\\frac{\\pi}{60} \\right)} = 0.707106781186548$"
],
"text/plain": [
"Eq(g(pi/60), 0.707106781186548)"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g_πhalf.subs({g0: 1, e0: 0}).subs(effective_rabi_freq).subs({Δ: 0, η: 15}).evalf()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "b9116739",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.700618Z",
"start_time": "2021-12-15T20:18:40.668121Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(\\frac{\\pi}{60} \\right)} = 0.70709443987448 + 0.00471402272699148 i$"
],
"text/plain": [
"Eq(g(pi/60), 0.70709443987448 + 0.00471402272699148*I)"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g_πhalf.subs({g0: 1, e0: 0}).subs(effective_rabi_freq).subs({Δ: S(1)/5, η: 15}).evalf()"
]
},
{
"cell_type": "markdown",
"id": "34e21538",
"metadata": {},
"source": [
"For the excited state amplitude, we find:"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "63f34d44",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.707861Z",
"start_time": "2021-12-15T20:18:40.701521Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(\\frac{\\pi}{4 \\eta} \\right)} = - \\frac{2 i \\eta \\sin{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega}$"
],
"text/plain": [
"Eq(e(pi/(4*eta)), -2*I*eta*sin(pi*Omega/(8*eta))/Omega)"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e_πhalf = sol_e.subs({g0: 1, e0: 0}).subs({t:T})\n",
"sol_e_πhalf"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "3241362d",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.718923Z",
"start_time": "2021-12-15T20:18:40.708748Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(\\frac{\\pi}{60} \\right)} = - \\frac{\\sqrt{2} i}{2}$"
],
"text/plain": [
"Eq(e(pi/60), -sqrt(2)*I/2)"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e_πhalf.subs({g0: 1, e0: 0}).subs(effective_rabi_freq).subs({Δ: 0, η: 15})"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "ef72d6f8",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.725976Z",
"start_time": "2021-12-15T20:18:40.719887Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(\\frac{\\pi}{60} \\right)} = - 0.707106781186548 i$"
],
"text/plain": [
"Eq(e(pi/60), -0.707106781186548*I)"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e_πhalf.subs({g0: 1, e0: 0}).subs(effective_rabi_freq).subs({Δ: 0, η: 15}).evalf()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "fce69638",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.738319Z",
"start_time": "2021-12-15T20:18:40.726962Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(\\frac{\\pi}{60} \\right)} = - 0.707103409048722 i$"
],
"text/plain": [
"Eq(e(pi/60), -0.707103409048722*I)"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e_πhalf.subs({g0: 1, e0: 0}).subs(effective_rabi_freq).subs({Δ: S(1)/5, η: 15}).evalf()"
]
},
{
"cell_type": "markdown",
"id": "11a3a1ee",
"metadata": {},
"source": [
"## Free time evolution"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "927e6556",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.741250Z",
"start_time": "2021-12-15T20:18:40.739208Z"
}
},
"outputs": [],
"source": [
"timeshift_free = {g(τ): g(τ + T), e(τ): e(τ + T)}"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "3ab1d21d",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.794898Z",
"start_time": "2021-12-15T20:18:40.742005Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(\\tau + \\frac{\\pi}{4 \\eta} \\right)} = g_{0} e^{\\frac{i \\Delta \\tau}{2}}$"
],
"text/plain": [
"Eq(g(tau + pi/(4*eta)), g_0*exp(I*Delta*tau/2))"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g_free = (\n",
" sol_g\n",
" .expand()\n",
" .subs(effective_rabi_freq)\n",
" .subs({η: 0})\n",
" .subs({Δ: symbols(\"Delta\", positive=True)})\n",
" .subs({t:τ})\n",
" .rewrite(exp)\n",
" .expand()\n",
" .subs({symbols(\"Delta\", positive=True): Δ})\n",
" .subs(timeshift_free)\n",
")\n",
"sol_g_free"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "9660e6bd",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.832672Z",
"start_time": "2021-12-15T20:18:40.795811Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(\\tau + \\frac{\\pi}{4 \\eta} \\right)} = e_{0} e^{- \\frac{i \\Delta \\tau}{2}}$"
],
"text/plain": [
"Eq(e(tau + pi/(4*eta)), e_0*exp(-I*Delta*tau/2))"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e_free = (\n",
" sol_e\n",
" .expand()\n",
" .subs(effective_rabi_freq)\n",
" .subs({η: 0})\n",
" .subs({Δ: symbols(\"Delta\", positive=True)})\n",
" .subs({t:τ})\n",
" .rewrite(exp)\n",
" .expand()\n",
" .subs({symbols(\"Delta\", positive=True): Δ})\n",
" .subs(timeshift_free)\n",
")\n",
"sol_e_free"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "274a8f4f",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.836193Z",
"start_time": "2021-12-15T20:18:40.833637Z"
}
},
"outputs": [],
"source": [
"Ψ_πhalf_ideal = {g0: sqrt(2)/2, e0: -𝕚*sqrt(2)/2}"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "845df709",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.845565Z",
"start_time": "2021-12-15T20:18:40.837241Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(\\tau + \\frac{\\pi}{4 \\eta} \\right)} = \\frac{\\sqrt{2} e^{\\frac{i \\Delta \\tau}{2}}}{2}$"
],
"text/plain": [
"Eq(g(tau + pi/(4*eta)), sqrt(2)*exp(I*Delta*tau/2)/2)"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g_free_ideal = sol_g_free.subs(Ψ_πhalf_ideal)\n",
"sol_g_free_ideal"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "9738aaaf",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.853014Z",
"start_time": "2021-12-15T20:18:40.846798Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left|{g{\\left(\\tau + \\frac{\\pi}{4 \\eta} \\right)}}\\right|^{2} = \\frac{1}{2}$"
],
"text/plain": [
"Eq(Abs(g(tau + pi/(4*eta)))**2, 1/2)"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"abs_sq(sol_g_free_ideal)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "24d2d62c",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.862936Z",
"start_time": "2021-12-15T20:18:40.854187Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(\\tau + \\frac{\\pi}{4 \\eta} \\right)} = - \\frac{\\sqrt{2} i e^{- \\frac{i \\Delta \\tau}{2}}}{2}$"
],
"text/plain": [
"Eq(e(tau + pi/(4*eta)), -sqrt(2)*I*exp(-I*Delta*tau/2)/2)"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e_free_ideal = sol_e_free.subs(Ψ_πhalf_ideal)\n",
"sol_e_free_ideal"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "ae8a1a26",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.869899Z",
"start_time": "2021-12-15T20:18:40.864169Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left|{e{\\left(\\tau + \\frac{\\pi}{4 \\eta} \\right)}}\\right|^{2} = \\frac{1}{2}$"
],
"text/plain": [
"Eq(Abs(e(tau + pi/(4*eta)))**2, 1/2)"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"abs_sq(sol_e_free_ideal)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "8ad4f8c0",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.872614Z",
"start_time": "2021-12-15T20:18:40.870839Z"
}
},
"outputs": [],
"source": [
"Ψ_πhalf_actual = {g0: sol_g_πhalf.rhs, e0: sol_e_πhalf.rhs}"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "ecae2215",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.891550Z",
"start_time": "2021-12-15T20:18:40.873439Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(\\tau + \\frac{\\pi}{4 \\eta} \\right)} = \\frac{i \\Delta e^{\\frac{i \\Delta \\tau}{2}} \\sin{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega} + e^{\\frac{i \\Delta \\tau}{2}} \\cos{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}$"
],
"text/plain": [
"Eq(g(tau + pi/(4*eta)), I*Delta*exp(I*Delta*tau/2)*sin(pi*Omega/(8*eta))/Omega + exp(I*Delta*tau/2)*cos(pi*Omega/(8*eta)))"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g_free_actual = sol_g_free.subs(Ψ_πhalf_actual).expand()\n",
"sol_g_free_actual"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "3b77b4f5",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.904372Z",
"start_time": "2021-12-15T20:18:40.892556Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(\\tau + \\frac{\\pi}{4 \\eta} \\right)} = - \\frac{2 i \\eta e^{- \\frac{i \\Delta \\tau}{2}} \\sin{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega}$"
],
"text/plain": [
"Eq(e(tau + pi/(4*eta)), -2*I*eta*exp(-I*Delta*tau/2)*sin(pi*Omega/(8*eta))/Omega)"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e_free_actual = sol_e_free.subs(Ψ_πhalf_actual).expand()\n",
"sol_e_free_actual"
]
},
{
"cell_type": "markdown",
"id": "a4893cf8",
"metadata": {},
"source": [
"## Final π/2 pulse"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "eff4669c",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.907073Z",
"start_time": "2021-12-15T20:18:40.905174Z"
}
},
"outputs": [],
"source": [
"Ψ_free_actual = {g0: sol_g_free_actual.rhs, e0: sol_e_free_actual.rhs}"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "134afcaf",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:40.911311Z",
"start_time": "2021-12-15T20:18:40.907906Z"
}
},
"outputs": [],
"source": [
"timeshift_final = {g(T): g(2*T + τ), e(T): e(2*T + τ)}"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "18ad8190",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.004047Z",
"start_time": "2021-12-15T20:18:40.912305Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle g{\\left(\\tau + \\frac{\\pi}{2 \\eta} \\right)} = - \\frac{\\Delta^{2} e^{\\frac{i \\Delta \\tau}{2}} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}} + \\frac{2 i \\Delta e^{\\frac{i \\Delta \\tau}{2}} \\sin{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega} + e^{\\frac{i \\Delta \\tau}{2}} \\cos^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} - \\frac{4 \\eta^{2} e^{- \\frac{i \\Delta \\tau}{2}} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}}$"
],
"text/plain": [
"Eq(g(tau + pi/(2*eta)), -Delta**2*exp(I*Delta*tau/2)*sin(pi*Omega/(8*eta))**2/Omega**2 + 2*I*Delta*exp(I*Delta*tau/2)*sin(pi*Omega/(8*eta))*cos(pi*Omega/(8*eta))/Omega + exp(I*Delta*tau/2)*cos(pi*Omega/(8*eta))**2 - 4*eta**2*exp(-I*Delta*tau/2)*sin(pi*Omega/(8*eta))**2/Omega**2)"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_g_final = sol_g.subs(Ψ_free_actual).subs({t:T}).expand().subs(timeshift_final)\n",
"sol_g_final"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "fc230d1c",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.058510Z",
"start_time": "2021-12-15T20:18:41.004992Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left|{g{\\left(\\tau + \\frac{\\pi}{2 \\eta} \\right)}}\\right|^{2} = \\frac{\\Delta^{4} \\sin^{4}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{4}} + \\frac{2 \\Delta^{2} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}} + \\frac{4 \\Delta^{2} \\eta^{2} e^{i \\Delta \\tau} \\sin^{4}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{4}} + \\frac{4 \\Delta^{2} \\eta^{2} e^{- i \\Delta \\tau} \\sin^{4}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{4}} - \\frac{8 i \\Delta \\eta^{2} e^{i \\Delta \\tau} \\sin^{3}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{3}} + \\frac{8 i \\Delta \\eta^{2} e^{- i \\Delta \\tau} \\sin^{3}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{3}} + \\cos^{4}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} - \\frac{4 \\eta^{2} e^{i \\Delta \\tau} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}} - \\frac{4 \\eta^{2} e^{- i \\Delta \\tau} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}} + \\frac{16 \\eta^{4} \\sin^{4}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{4}}$"
],
"text/plain": [
"Eq(Abs(g(tau + pi/(2*eta)))**2, Delta**4*sin(pi*Omega/(8*eta))**4/Omega**4 + 2*Delta**2*sin(pi*Omega/(8*eta))**2*cos(pi*Omega/(8*eta))**2/Omega**2 + 4*Delta**2*eta**2*exp(I*Delta*tau)*sin(pi*Omega/(8*eta))**4/Omega**4 + 4*Delta**2*eta**2*exp(-I*Delta*tau)*sin(pi*Omega/(8*eta))**4/Omega**4 - 8*I*Delta*eta**2*exp(I*Delta*tau)*sin(pi*Omega/(8*eta))**3*cos(pi*Omega/(8*eta))/Omega**3 + 8*I*Delta*eta**2*exp(-I*Delta*tau)*sin(pi*Omega/(8*eta))**3*cos(pi*Omega/(8*eta))/Omega**3 + cos(pi*Omega/(8*eta))**4 - 4*eta**2*exp(I*Delta*tau)*sin(pi*Omega/(8*eta))**2*cos(pi*Omega/(8*eta))**2/Omega**2 - 4*eta**2*exp(-I*Delta*tau)*sin(pi*Omega/(8*eta))**2*cos(pi*Omega/(8*eta))**2/Omega**2 + 16*eta**4*sin(pi*Omega/(8*eta))**4/Omega**4)"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pop_g_final = abs_sq(sol_g_final)\n",
"pop_g_final"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "b8c73f5d",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.120208Z",
"start_time": "2021-12-15T20:18:41.059489Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle e{\\left(\\tau + \\frac{\\pi}{2 \\eta} \\right)} = \\frac{2 \\Delta \\eta e^{\\frac{i \\Delta \\tau}{2}} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}} - \\frac{2 \\Delta \\eta e^{- \\frac{i \\Delta \\tau}{2}} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}} - \\frac{2 i \\eta e^{\\frac{i \\Delta \\tau}{2}} \\sin{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega} - \\frac{2 i \\eta e^{- \\frac{i \\Delta \\tau}{2}} \\sin{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega}$"
],
"text/plain": [
"Eq(e(tau + pi/(2*eta)), 2*Delta*eta*exp(I*Delta*tau/2)*sin(pi*Omega/(8*eta))**2/Omega**2 - 2*Delta*eta*exp(-I*Delta*tau/2)*sin(pi*Omega/(8*eta))**2/Omega**2 - 2*I*eta*exp(I*Delta*tau/2)*sin(pi*Omega/(8*eta))*cos(pi*Omega/(8*eta))/Omega - 2*I*eta*exp(-I*Delta*tau/2)*sin(pi*Omega/(8*eta))*cos(pi*Omega/(8*eta))/Omega)"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol_e_final = sol_e.subs(Ψ_free_actual).subs({t:T}).expand().subs(timeshift_final)\n",
"sol_e_final"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "54448e1a",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.165692Z",
"start_time": "2021-12-15T20:18:41.121065Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left|{e{\\left(\\tau + \\frac{\\pi}{2 \\eta} \\right)}}\\right|^{2} = - \\frac{4 \\Delta^{2} \\eta^{2} e^{i \\Delta \\tau} \\sin^{4}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{4}} + \\frac{8 \\Delta^{2} \\eta^{2} \\sin^{4}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{4}} - \\frac{4 \\Delta^{2} \\eta^{2} e^{- i \\Delta \\tau} \\sin^{4}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{4}} + \\frac{8 i \\Delta \\eta^{2} e^{i \\Delta \\tau} \\sin^{3}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{3}} - \\frac{8 i \\Delta \\eta^{2} e^{- i \\Delta \\tau} \\sin^{3}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{3}} + \\frac{4 \\eta^{2} e^{i \\Delta \\tau} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}} + \\frac{8 \\eta^{2} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}} + \\frac{4 \\eta^{2} e^{- i \\Delta \\tau} \\sin^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)} \\cos^{2}{\\left(\\frac{\\pi \\Omega}{8 \\eta} \\right)}}{\\Omega^{2}}$"
],
"text/plain": [
"Eq(Abs(e(tau + pi/(2*eta)))**2, -4*Delta**2*eta**2*exp(I*Delta*tau)*sin(pi*Omega/(8*eta))**4/Omega**4 + 8*Delta**2*eta**2*sin(pi*Omega/(8*eta))**4/Omega**4 - 4*Delta**2*eta**2*exp(-I*Delta*tau)*sin(pi*Omega/(8*eta))**4/Omega**4 + 8*I*Delta*eta**2*exp(I*Delta*tau)*sin(pi*Omega/(8*eta))**3*cos(pi*Omega/(8*eta))/Omega**3 - 8*I*Delta*eta**2*exp(-I*Delta*tau)*sin(pi*Omega/(8*eta))**3*cos(pi*Omega/(8*eta))/Omega**3 + 4*eta**2*exp(I*Delta*tau)*sin(pi*Omega/(8*eta))**2*cos(pi*Omega/(8*eta))**2/Omega**2 + 8*eta**2*sin(pi*Omega/(8*eta))**2*cos(pi*Omega/(8*eta))**2/Omega**2 + 4*eta**2*exp(-I*Delta*tau)*sin(pi*Omega/(8*eta))**2*cos(pi*Omega/(8*eta))**2/Omega**2)"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pop_e_final = abs_sq(sol_e_final)\n",
"pop_e_final"
]
},
{
"cell_type": "markdown",
"id": "a289b0f6",
"metadata": {},
"source": [
"We can find an \"ideal\" expression in the limit $\\eta \\gg \\Delta$. That is, $\\Omega \\approx 2\\eta$ and $\\Delta/\\eta \\rightarrow 0$:"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "2b604197",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.235618Z",
"start_time": "2021-12-15T20:18:41.166651Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle p_{g} = \\frac{1}{2} - \\frac{\\cos{\\left(\\Delta \\tau \\right)}}{2}$"
],
"text/plain": [
"Eq(p_g, 1/2 - cos(Delta*tau)/2)"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pop_g_final_ideal = Eq(\n",
" symbols('p_g'),\n",
" pop_g_final\n",
" .subs({Ω: 2*η})\n",
" .rewrite(sin)\n",
" .expand()\n",
" .subs({Δ/η: 0})\n",
" .rhs\n",
")\n",
"pop_g_final_ideal"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "1d3e1dbb",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.283290Z",
"start_time": "2021-12-15T20:18:41.236586Z"
}
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle p_{e} = \\frac{\\cos{\\left(\\Delta \\tau \\right)}}{2} + \\frac{1}{2}$"
],
"text/plain": [
"Eq(p_e, cos(Delta*tau)/2 + 1/2)"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pop_e_final_ideal = Eq(\n",
" symbols('p_e'),\n",
" pop_e_final\n",
" .subs({Ω: 2*η})\n",
" .rewrite(sin)\n",
" .expand()\n",
" .subs({Δ/η: 0})\n",
" .rhs\n",
")\n",
"pop_e_final_ideal"
]
},
{
"cell_type": "markdown",
"id": "f539d7f9",
"metadata": {},
"source": [
"Note that his is simply $\\cos(\\Delta\\cdot\\tau/2)^2$:"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "4d523a7f",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.320231Z",
"start_time": "2021-12-15T20:18:41.284067Z"
}
},
"outputs": [],
"source": [
"assert (pop_e_final_ideal.rhs - cos(Δ*τ/2)**2).simplify() == S(0)"
]
},
{
"cell_type": "markdown",
"id": "183d8091",
"metadata": {},
"source": [
"## Ramsey Fringes"
]
},
{
"cell_type": "markdown",
"id": "3463e435",
"metadata": {},
"source": [
"The \"Ramsey fringes\" result from plotting the excitated state popultion for varying detunging $\\Delta$ and fixed pulse amplitude $\\eta$ and time-of-flight $\\tau$."
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "171e232c",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.634127Z",
"start_time": "2021-12-15T20:18:41.321301Z"
}
},
"outputs": [],
"source": [
"from matplotlib import pylab as plt\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "ed7ad234",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.760360Z",
"start_time": "2021-12-15T20:18:41.635227Z"
}
},
"outputs": [],
"source": [
"pop_e_func = lambdify([Δ, η, τ], pop_e_final.subs(effective_rabi_freq).rhs)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "7c603cb9",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.764743Z",
"start_time": "2021-12-15T20:18:41.761310Z"
}
},
"outputs": [],
"source": [
"pop_e_ideal_func = lambdify([Δ, η, τ], pop_e_final_ideal.subs(effective_rabi_freq).rhs)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "d6b9f363",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.769374Z",
"start_time": "2021-12-15T20:18:41.765831Z"
}
},
"outputs": [],
"source": [
"def plot_ramsey_fringes(\n",
" Δ_min=-1,\n",
" Δ_max=1,\n",
" η=1,\n",
" τ=10.0,\n",
" N=101,\n",
" ax=None,\n",
" label=None,\n",
" figsize=(10, 6),\n",
" func=pop_e_func,\n",
" legend=None,\n",
"):\n",
" if ax is None:\n",
" fig, ax = plt.subplots(figsize=figsize)\n",
" Δ_vals = np.linspace(Δ_min, Δ_max, N)\n",
" p_vals = func(Δ_vals, eta=η, tau=τ).real\n",
" ax.plot(Δ_vals, p_vals, label=label)\n",
" ax.set_xlabel(\"Δ\")\n",
" ax.set_ylabel(\"pₑ\")\n",
" if legend is None:\n",
" legend = label is not None\n",
" if legend:\n",
" ax.legend()\n",
" return ax"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "76cf826a",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.885107Z",
"start_time": "2021-12-15T20:18:41.770309Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFzCAYAAAB2A95GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACmxklEQVR4nO29d5xdV3nu/6y9T5kqjTQadcmSu407tgEbEkw1AUIauSaFQCCEG9LI/d2Q5Iabe0MIpJEEcCjhOtRASGgGDAYbY4O7XLAtW5bVNeoz0oymnrL3+v2x99p7lXftkeyZOVPe7+ejz8ycfXY5ZzTnPOd53/dZQkoJhmEYhmEYZnYJWn0BDMMwDMMwixEWYQzDMAzDMC2ARRjDMAzDMEwLYBHGMAzDMAzTAliEMQzDMAzDtAAWYQzDMAzDMC2g1OoLOF1WrFghN23a1OrLYBiGYRiGmZKHHnpoQErZR22bdyJs06ZN2LJlS6svg2EYhmEYZkqEEHt927gcyTAMwzAM0wJYhDEMwzAMw7QAFmEMwzAMwzAtYN71hDEMwzAMM3s0Gg309/djcnKy1Zcyp2lra8P69etRLpdPeR8WYQzDMAzDeOnv70d3dzc2bdoEIUSrL2dOIqXE4OAg+vv7sXnz5lPej8uRDMMwDMN4mZycRG9vLwuwAoQQ6O3tPW23kEUYwzAMwzCFsACbmmfzHLEIYxiGYRhmThOGIS677DJcdNFFeP3rX4+hoaFWX9K0wCKMYRiGYZg5TXt7Ox599FE88cQTWL58OW688cZWX9K0MGMiTAhxkxDiqBDiCc92IYT4sBBihxDiMSHEFTN1LQzDMAzDLAxe9KIX4cCBAwCABx54ANdccw0uv/xyXHPNNXj66acBAJ/+9Kfxcz/3c3j961+PzZs346Mf/Sg+9KEP4fLLL8cLX/hCHD9+HADw4Q9/GBdeeCEuueQS3HDDDQCAsbEx/OZv/iauuuoqXH755fjGN74BAHjJS16CRx99NLuOa6+9Fo899thzeiwzOR35aQAfBfBZz/bXADgn/fcCAB9LvzIMwzAMMwf5v9/ciicPnpzWY164dgn+4vXPO6X7RlGE22+/HW9729sAAOeffz7uuusulEol3HbbbfizP/szfOUrXwEAPPHEE3jkkUcwOTmJs88+G3/zN3+DRx55BO9+97vx2c9+Fn/4h3+ID37wg9i9ezeq1WpW4nz/+9+Pl73sZbjpppswNDSEq6++Gq94xSvw9re/HZ/+9KfxT//0T9i+fTtqtRouueSS5/TYZ8wJk1LeBeB4wV3eAOCzMuE+AD1CiDUzdT0MwzA+xutNHBiaaPVlMAzjYWJiApdddhl6e3tx/PhxvPKVrwQADA8P441vfCMuuugivPvd78bWrVuzfa677jp0d3ejr68PS5cuxetf/3oAwMUXX4w9e/YAAC655BL86q/+Kj7/+c+jVEp8qe9973v44Ac/iMsuuwwvfelLMTk5iX379uGNb3wjvvWtb6HRaOCmm27CW97yluf8uFqZE7YOwH7t5/70tkP2HYUQ7wDwDgDYuHHjrFwcwzCLh1/91P14ZN8Q9nzwta2+FIaZ05yqYzXdqJ6w4eFhvO51r8ONN96I3//938d73/teXHfddfja176GPXv24KUvfWm2T7Vazb4PgiD7OQgCNJtNAMC3v/1t3HXXXbj55pvxvve9D1u3boWUEl/5yldw3nnnOdfxyle+Et/4xjfw5S9/GVu2bHnOj6uVjfnULKek7iil/KSU8kop5ZV9fX0zfFkMwyxEfvtzW/CiD9xObntk3xCAJHDR5nP37sGmP/k2JurRTF4ewzCnwNKlS/HhD38Yf//3f49Go4Hh4WGsW7cOQNIHdjrEcYz9+/fjuuuuw9/+7d9iaGgIo6OjePWrX42PfOQj2evBI488ku3z9re/Hb//+7+Pq666CsuXL3/Oj6eVIqwfwAbt5/UADrboWhiGWeDcuvUIDg0XByk2IleE/b8f7wYAHBzmciXDzAUuv/xyXHrppfjSl76EP/7jP8af/umf4tprr0UUnd4HpSiK8Gu/9mu4+OKLcfnll+Pd7343enp68N73vheNRgOXXHIJLrroIrz3ve/N9nn+85+PJUuW4K1vfeu0PJZWliNvBvC7QogvIWnIH5ZSOqVIhmGYU6HejPHv9+/Fr77wDJTDZ/f5crIZoVIy9+1uS9aBG5lskvvcuf0YejsruGjd0md1ToZhpmZ0dNT4+Zvf/Gb2/fbt27Pv3/e+9wEA3vKWtxg9W6oHzN724x//2DlXe3s7PvGJT5DXcfDgQcRxjFe96lWn+xBIZjKi4osA7gVwnhCiXwjxNiHEO4UQ70zvcguAXQB2APhXAL8zU9fCMMzC5+uPHMD/+eaT+NgPdz7rY0w23E/S3W3JZ9UT43Vnm5QSv3HTA3jdR9wXcoZhFhaf/exn8YIXvADvf//7EQTTI59mzAmTUr5piu0SwLtm6vwMwywuOqvJy9lDe08426heL4paI3ZuUyLs+Kgrwg6fPL114hiGmb+8+c1vxpvf/OZpPSYn5jMMM284OjKJD35nG6LYFVWlMJn12X5kxNk2WqNLiTYTpBOWlCMHx2rOtq0HkrykJW3059lbtx7Gdx7nLguGYWhYhDEMM2/4s68+gY/fuRP37hx0tjXTpnpKSB0fc10sCqocWU17xAaJY5ycbAAAlnaUyeP99ucewn//wsOndG6Gmcucqpu8mHk2zxGLMIZh5g21ZiKSGrFbNmwStykmtTJjTLho1P2y46bijipVNtNj8fsTs5Bpa2vD4OAgC7ECpJQYHBxEW1vbae3XyulIhmGY0yIMkpIj9WZQbyYiiQog1AVaI45RDULy+JQT1oiSfakSqBJo/N7ELGTWr1+P/v5+HDt2rNWXMqdpa2vD+vXrT2sfFmEMw8wbApFILMr0Uq6UEK4M0wVUI5Koel75KBFWT0VYkxBhUYH7xjALhXK5jM2bN7f6MhYkXI5kGGbekBphmTul04yKnDBNhDX9wonqJ8udMH85kmEY5tnAIoxhmHmDcrnGiSWEVNo9YYRZTpgppvTSJtX3pY5LCa68HMlijGGY04dFGMMw84ZQibACx4rywprackR1S4TpSxVNNk+zJ0w15hPX2iTcOoZhGB0WYQzDzBtUSPUk4YTlPWHufnZPmI4uvMiesKa/J0wJLcoI00ublIBjGIZhEcYwzLyhuBzpd56M6UjrfpEmyiihlTlhxOLeuRPmbpvQrrFGOGwMwzAswhiGmTeopvrxhpuAX9SfpTtRdasxP9LuT2WIFfWEqeNSTpcuFKn8MYZhGBZhDMPMG2qpgJqgnLDU7bLLjYA1HWk5Ybrwosy0ounIonOOsxPGMMwUsAhjGGbeoHq2yHJk0+9KFfWENQ0R5gqtwpyw9FhUKXRCc+vYCWMYhoJFGMMw8wblhNWIrK9m5koV53nZU4u6QIuIUqYqcxZNRzYJJ0y/RnbCGIahYBHGMMyc4u4dA3jn5x4i+7OUE1bUu0U7YbkgsiMqYnlq5UhyOlIJP8JB06+DcsK++nA//uIbT7gnZBhm0cDLFjEMM6f41U/dDyDJAuuy1hdSTfX0Oo65WJJSGssX6U7V6ZYji3LC1G1SJt+rtS3t+9eI6Is/+vJPAAD/9w0XOdsYhlkcsBPGMMychAo7rRVkdullSFswFSXmT9WYX5QT1oj8xzVEWMFSScMTDe82hmEWNizCGIaZk9hlQyAXNjHRu9XQ+75iv9tVGFFBHTcrcxaXHItEGNVrpug/Me7dxjDMwoZFGMMwcxIq9kGJmaL0emq72ffld8mKSo5F/WLJ+f3HpXrYlraXAQAHTky4B2YYZlHAIoxhmDlJgyjhZU5YwWLagJtub2yTfrFEiTsl4KZ0wmK/w0Ydt7st6Xcb4nIkwyxaWIQxDDNn0NPuqagJJXqaZHCqLnr8pUE7UX8qx6rQfTOiL07vuOoyeF1Jhlm8sAhjGGbO0JyimT3OnDB3X905K+oJs7WdUaq0BJqUslAs6SXQ0+0JU+elBhAYhlkcsAhjGGbOUNToDuiulD+sNfnedqW0yUlLEBmlyoJ+MSqQ1VwOqUj4FYgwdsIYZtHCIoxhmDlDw3CW/KKH2FSYit8sKA1GRU37BduS8/i3x1OIMHVoStwxDLM4YBHGMMycYSonTAkbqkleFz2uE1YklrT7Sf82cu3IguNOJeDULeyEMczihUUYwzBzBt39InPCsklFd98i0WM4YXZjvvS7ZGa0RXEJ1DluwTmBfECAe8IYZvHCIoxhmDmD4YRZjflxrDfJU05Y/n1Rk7wrlgp6yaaImSgUd1NGX/i3MQyzOGARxjDMnKGoJ2yq8l4sJUrp2o2OExbp28z99J8dJyz9uRQIb0+Y75xTRVTkC4OzE8YwixUWYQzDzBlOeRkgT39WpRSk+7pul9rmc6zKofAGuVZKgccJm/q4vuttaAuOMwyzOGERxjDMnEF3heyesFPJ3VKCiOoJ821T4qkSBt7m+krJ3WYf197cnKIcqYQiT0cyzOKFRRjDMHOGZpETppcjCeESy0RIJcdxBZza5mvap4SWOowSaFTaftlzXL0ESblk+ZqULMIYZrHCIoxhmDmD7gpRjfkKygnTBZHdZtVMtwnhCqI4K0cSIkzm29Q57O2V7JxFYa3m9TQKkvYZhlk8sAhjGGbOUJRAfyo9YeUwaZKnnKcwEAiF22AfaSLM19dVLSmHzXXKSuk5nYwx6XfCdOHFThjDLF5YhDEMM2fQM7N8PWGhZ1JRSomScqzspYniZIoxEMLp3dKFliOytJ4w/b76djUdSfWEhek2u+9LF5jUygAMwywOWIQxDDNnOJWesEpITypGmiBye7diBIFAEPjDWiulwF3SKDZFGCXSyp5yZBxr8RWFThiXIxlmscIijGGYWSWOJf7vN7dix9FRZ5vRE+ZxwsqhIHO3olh3rOxzAqGYuhzpKyn6xF0stXIk0ROWuG+uQKtr/W4Nj6v3ge88hScPnnS2MQyzcGARxjDMrHJgaAL/dvcevP0zDzrb9KlGX09YpRR6Euj10qArpoQAAqKUGRsxFPYxk68lT2O+lBKlgC6Bqj60UuA6d4YTRpQjT4w38Ik7d+Gtn37A2cYwzMKBRRjDMC3h5GTTuU13wnyOVbXkNtADqQjzlQalRCAEwkA4+6pzJjEUfvctOY59znwbFV8Rekqg+s9UYv7JiQaAxL1jGGbhwiKMYZhZRTXcT9QjZ5sZ6+B3rMieMG060i0rwjsdmcVQEDlh6mfldlFCK3PC7OWQpEQYBJ4SKP2YFUOpCGuvhM42hmEWDizCGIaZVWqNVIQ1KBGWqxM3LiL5WgkDSEk3wmdN8o5jJRGk5UjfdGQldLflOWE+J0x6IyqiSCIM6GlOY3FvshxZBwB0VErONoZhFg4swhiGmVVqTVd8KYqywJRAy5rvqSb5wFeOBISgm+SLliaynTBbGEqZB7k6LlnaL0aJsKnKkUOpCGsvsxPGMAsZFmEMw8wqtaY/kkFvxneT7ZOvZc80YiT9Ya0ydcJCQSzSbfSE+UuV1DljmWeBUQIuUE5YweLelBM2NM7lSIZZDLAIYxhmVikSYXpjfNFi2tR2vRxJiaVAiKQc6TkuvWxR8rWcRVTA2i79ojDOnTDfOQG6J+xEKsLayvwSzTALGf4LZxhmVqmfghOWuFLmtigrRybukOMuaf1ZtliK4nw60iljxkl8RYnICdNT+gHancv70AgnLHXf3OWO9OBZ9/mYTPvlKJeMYZiFA4swhmFmlVPpCasQMRR6Yz5g5mtJKZP+LE9mVyyRlAaJScVmLJMg14B214A8J4yKmsj7xdzHkkRUEE6Y9jgpoaVyxIpcQ4Zh5j8swhiGmVXUdCSFEh/Vgib5SsmdRsxDVYt6wlJBRDhogW9x71OZjvT0hCVrRwZ0T5jMM898cRtAsWBlGGb+wyKMYZhZRXd3qNwtIJ1U9AScVoi+L33pIYCejgyy6UjzeuLUCStyrHwlR33ZIsol80VUqGugJjKBvCzLThjDLGxYhDEMM6vo7o6tP5p6OZJwltQ2wBRhp5LnJUQixNy+r2RtyBLVL6bWjiSElpSmQPM6YQUOW7UUOGtkJsdKy5EFriHDMPMfFmEMw8wqurtjN6XnwanEpOIpiDDfGo/KCaMmFfV1Jd0G+uRrtialdrl5hphH+MUSofA5YbmAoxYjV9fB5UiGWdiwCGMYZlbRpyPtpnRdTFHThgBQCUPjZ/17b9lQTSp63K4wEAiEIANXATqs1V7cmyplZhEVnsdCTWQC+fNSNEnKMMz8Z0ZFmBDieiHE00KIHUKIPyG2LxVCfFMI8RMhxFYhxFtn8noYhmk9urvji24oEe6Rum85bczX982CXH1REprQ8mWIhYJYtshy30wRZpZAqeZ7kQo/+3FmmWfEUkmA3pjPIoxhFjIzJsKEECGAGwG8BsCFAN4khLjQutu7ADwppbwUwEsB/IMQojJT18QwTOvR+5yaVj+UWmibLA1ajfm6axU55UhY+ybLFtGulLakkdcJc0uO6q75At6uoPQKP80Js903gCMqGGaxMJNO2NUAdkgpd0kp6wC+BOAN1n0kgG4hhADQBeA4gOYMXhPDMC1GFxa0KwWElCBy1nE09wNwSssW2dORapsQAlJa4q4gJ8xu2rfFlHLfSOGnXS81HckRFQyzOJhJEbYOwH7t5/70Np2PArgAwEEAjwP4Ayklf/RjmAWMXrZrEGU65Vj5csJUOdJozJ8yoiIpOQpBBbnmjlXyc75N3bVMCC07Q6zIfbN73/QeNqocqZ4XKkOMYZiFw0yKMEHcZr+ivBrAowDWArgMwEeFEEucAwnxDiHEFiHElmPHjk33dTIMM4voAimKbMcqcasCwrHSJycB05WKLFfKjagomo5U29TPrhMWUuXI9PpCT0q/4b55oi9805EqokJKV1AyDLNwmEkR1g9gg/bzeiSOl85bAXxVJuwAsBvA+faBpJSflFJeKaW8sq+vb8YumGGYmUd3sKiICt8Uo92fpW/OJhUDuklerQ/pm44UaTlS/Wyfk8oCU/cLBRAIqhyZCz/X1cuv1xZogDk1Sk1PMgyzMJhJEfYggHOEEJvTZvsbANxs3WcfgJcDgBBiFYDzAOyawWtiGKbF6KKCar4PAlq4yMztcp0n5RapVHxff1bisLnuWyC0cqSmC/MypyvQ1PeBp/leCcogELCXh8yOS6wMYD8vVM8YwzALg9JMHVhK2RRC/C6AWwGEAG6SUm4VQrwz3f5xAO8D8GkhxONIypfvkVIOzNQ1MQzTenTNYfdKSc098i3gTQkivWxIx1BorhQh0BL3Lf85O66VE0a5byJd8og+rkAopDd/rBzQERUswhhmcTBjIgwApJS3ALjFuu3j2vcHAbxqJq+BYZi5xSmVIz15XkDeg0U1yat4i8Jli4heM8MJIxy2Qicsm7r0O2xFYa1kYn6kryrAIoxhFiqcmM8wzKwyVTlSCSlfOZKaRpSZIKLzvnJB5JYqpYTZE6aXI7Nes6KeMOXcmY8zKa0mx3UnJ/XpSH9ERXI9LMIYZqHCIoxhmFlFFxXuskVprAM5UZh8pZYQUiJHJd/7+rPIdRxVnpfIf9b3A/QsMPd6sugLck3KZOrSKUdqDhsZUcFOGMMsCliEMQwzq8SGE2Yl5k8hlgA9LoLqCUNajqT7s4p6twLiuLpj5WxLz6mmLinROFU50pdrRjluDMMsPFiEMQwzq+ilOdKVEnRfl+4eAXbZUC9HerLAAkH2bin3TZUjI8oJK1i2yOe+JY8FnkEB02GzhZbufrETxjALFxZhDMPMKoYTZifJqxIeUd7L1mosWEIoXyYI1r7+/DE9VFU/T3JcdU5/hliQuW/u41QOm21mKSFaIeI2gOR5yYQfizCGWbCwCGMYZlZRPViA6/JImYsar3tUUI5Uzfe+kqMQcARRXjY0z2Oe0y0bmu4bsVSStjA4dT36ce1rasYSlVKQfc8wzMKERRjDMLNKFMvMAWpaY4OqHFnUmE/1hNnBqb70eqpUmYWqqnKktj0PiKXKkbkIC0Wxw+btCSPWwQSSXrlqyZ3IZBhmYcEijGGYWSWWfpdHZXYVNeZTPWFKy6l1J519Y5UTRq0rKbPAVcB0pfLlhagSaPJVlRwdcZe5b/51MMvEcYFkTc1qKTTuyzDMwoNFGMMws0pklNpMdSLTBnpywjFrkieWLdKDUwv6s6gpRilV0r55LP37QvctddHI6ciAzi3LwmOJhn8AaMQxqmV2whhmocMijGGYaefQ8ATO/NNv4yf7h5xtsYRWjqR6t3yJ+cnXPLPLjYsIgqTvi5qADIPUlSIFWl6OtEuOKoJC3Vehrk9kyyGZx9WHAahyZKj3oRGOYFE58vp/ugsfuf0Z53aGYeYXLMIYhpl2vrf1CGIJfHnLfmdbXCAwTqUcGRLukb5skW99SFWOpBb3FmnTvn1NTtO+kdKP7JxkY75EVo50lkqS+ULl+mNTNGOtHEnkhG07PIJ/+P5253aGYeYXLMIYhpl2BkdrAIDezoqzLdJ6whoe4RIQjlXmShEN9Hl/Fjz7+oNTk3Pm4k5aJUfTJfOXQCnRqBYGd4Rf6oT5ssmkhCZULQXHMMyCgUUYwzDTzuBYHQCwtMMVYYYTFtk9Ycl6i2FABbnmTfDJz6cRF6GJKTpDTJDlSBXkSjXtG435QkDCdfWENzE/de2IbDLVJ5f3hJnXa0+UMgwzf2ERxjDMtDM4mogw2wEC0p4w33RkwfJCkeVK6ZuNuAiqB0vLCfOVDQOiHCmzc6r7usJPLf5ta6O84d/vklHnVN9nfXOWE1Zr5j83WJAxzLyGRRjDMNPOWL0JwBQMiiiWZORD8nOeu0W7WbRY0hfwtkWPlDIrR/oyu4Sn5Kh61AKibJgNA3gW6dbdNzcxPwmspVw9e11JW8Dpz+nQeAMMw8xfWIQxDDPtqF4nSoTFUmYTjraRYyzgTURJmGVDohwZuCVHfY1HankhmSb4Uw5bLPPsMfWzvg3I3S7vouFEYn5kndNcBzP5WvEML9SaUfa97ZIxDDO/YBHGMMy0o5rJdcGQb5OZy0MJFyVOpHRjKAItW8tXjgwCfwO9IDO78v0AN39MaGVDu2kfyMuRTvRFnMdXUJlnykGzn4fYKkc6IqyRCy874oNhmPkFizCGYaadRjMRB7pgUMRSaqn3dFyEmlQ0So52OdKTXm+XHLNtmrizz+mbgJRplETuWBUMA3jKkZRAy8qRBa7eqZQj69wTxjDzGhZhDMNMO43MCaNEGFDKnDBrW2zGRUSGIIIRUeF3u4QVX5E7VrRYQjbFmJyHygkjypFWH5rf1SPCWLUljezHoh6zb11JoxzJThjDzGtYhDEMM+2oqT1vOZIQWYBZjgTsXimZpd4nP+vbkq/KRTP7unTHilq2yF7A29w3EICgyoZ6ThixPqQSd75ypB5RQYm7zAmTfieMpyMZZn7DIoxhmGlHOTS+cqRaU5GeKMx7pez+LDO93iwbAiqslQ5yVeGosd1rlsVi5D/r+wohit03tVSSpK+HPmd+rYB9vcU9YZONXNiyCGOY+Q2LMIZhpp16gROmmtKp/KzIKg2SgmjKsFZBLu6tlzJ17WfHUNhN8v51JWGc0z5mvs28f/I4ZbZQuX3OKSMqGroTxuVIhpnPsAhjGGbayZwwKidMpotX++Ii9EBWvTQY543ugOUeaf1ZYWBmjEmjdyu9v9VrFhSVQEW+rqSvHOlOZCZfzZKj6ZQZ0RfEmpTlkA601Z9TTs9nmPkNizCGYaadrCeMKEdGMbJyJBWc6hNLqicsX+MRxjYAWeiqflRTLFH9ZPkaj+45LWeOSLanes2M6yH635IBBDqiwm7Mt5v6dXeRpyMZZn5TavUFMAyz8GhkTphbjkzCUZPSILU+pL5Wox1DUSTQALo/y97m7gvvpGK+lqV/GEDtq1cG9VKltG5Tj0vorh5xvZVTcsK4HMkw8xkWYQzDTDvKCZuknDCZrw9JTSqGAZ3ZlQen0gINyNPtDccqc6V8qfjmce1t/jKmEndAKOgg10AgE2FOOdJYwNvsQwPgDbStcWM+wywYWIQxDDPtqF4lalkdvRHeyc+ymuSl5S75thklR0E30IeeoNf8uPk15Me1XTIY25JzuuXIKLue3Amjjlu0HFLWE2a5Xboz1rCb6hiGmVewCGMYZtpR5Ui73AhoGVlEY74eX2HvH2WTivlx8v2Sr1QulynQaIetaJsqYdqRGnZArNFcrw0DyMxFsx6nJ6Iin450r8e+b4MYfGAYZv7AIoxhmGlHJebb/UxAIkZUkrx3kW5PDIU+xRhRpUFimSDbsQLMqUs3okLfV2a325EaefO9O2RAliMtoSUKHieQL+BtP4f64+YFvBlmfsMijGGYaSWKZVYCpJww1ZSeZGu5AkN3pchyJNUkb+VyUT1WQnfR7Mb8wBPWGuf72JEa6n4hUY7UhwHs29RjKVoZAPDnhOlijnPCGGZ+wyKMYZhpRW8WJ52wOM/Icqcjpdm7ZTlPgbc0qG53j2uEqhLOk1q2yJeKnzthtrjLj2uXVvXyqH2b/lh8sRiAX4TpvfjcmM8w8xsWYQzDTCu6MPA5YaonzNYQcVycij9laTCAM3WZNckH8DTY24tp69tgnNOXBeaNxRBwblPPi9DOGVnbAKAU0gt4G+VIdsIYZl7DIoxhmGlFL5HZAkLKpFQp0rUa6bUjabEUxfntdmnQcLtE0QLe+XXk2638MWtNSlWmTIQfcc7Af85QFJcjqYgK9X0pcLfZ18dhrQwzv+HEfIZhphUVT9FeDskwViDvo7Ib81UqPiWWVIYY4JYGI815spvkpSHC6HBUITCl+2a7XUXnpIYBnNKqlocWWYMCat8wcJ+jZjpdCrATxjDzHRZhDMNMK8qdaSsHzvSeEhgqMd+uViq3yyeWpipH5pld0LYh2xYSDpudP2bvq9y3MBBkRAXZmK8PA3iWWUpKoOaxqOulYjzKYSJUuSeMYeY3LMIYhplWlDtDO2H51KAQ7rqITmK+MTWoCSLhL0cK4bpOyTbkoofIH6O2mcMA/ub7IBDkIty+tP1Imr1v/vwx9zmK0sGGchhkUSAMw8xPuCeMYZhppZE5YaEzHak7VnaoqtpetD6kut1phI9z4RJa0RdKpxQtWxQEpzIM4CtzutuMYQC45UgpJUJBlyMzhy2gn6MoTq63LAQaTS5HMsx8hkUYwzDTimrMr5ZDSJkIpGxBblWO9ERUuMGptCByU/GTr3Q5UhNLRCREYTkyzpvrhafkSC1bpIvNoolMKqIiykqZ6jkynqKsb06Ay5EMM9/hciTDMNOK6gOrEonvWbZW4AoXIBdEuSsFY98wc6X8cRFBQMdFGOGohMOmypFU0z6QlkD1BnqjBGqXR92JTFNowYio8F8vSCcsFAJhEJA5bAzDzB/YCWMYZlpRTk4ltXlIgZGJJXNfWxD51nEUTlyETPO6XEEUW2JJvy0/py8uIp+a9JYjg+LwWOqxqN43MiA2C4F1M8+y61UCjUUYw8xr2AljGGZaKVr7MO+VSkQPFUSqrw9pZnZBK0fSWV8AFRehuWSeaUS9X8xpzE9fJV1xZ5YjfcMAvqWJzPgK8zlQxw0JtzBzwoiID4Zh5hcswhiGmVaUoFAiLIp0l0cTLqTL4y9HRlZwqq9p3xYu0hI16v7mNk0sES4ZACdc1oiSsMJjzb6u/Fj246R71Mx+MrvtK4rTUmUg2AljmHkOlyMZhplWMicsVE6YtoyR1Z/l9oQVlyPNnDD9nHl8hRDCcrOQ7SMsV0oPRhWedRyFfk6Pw2ZPa6pv9eBZu6lfaMLPCJ6N833DwC056kGv7IQxzPyGRRjDMNOKEg2ZE0YIIlVOs2OunOnI2HWPAMqVMvO8JOFKBUQ5MtbEkn8B7/yazUEBsxxpx17k56QdNn1QgI6ocF099Xh806UMw8wvWIQxDDOtKHeG6gnTk+SFALFsEazMrnyblHZwqnncfHKS7gnTe83UZrNfzCOWMofNdckAeoqRasy3xaivHJlfU1qOtEWY1jdnCzSGYeYX3BPGMMy0osRGOXSdsHzZorSPihBolGOlvjfKkdYEZO6SmcJFaoLIFj1yKrEUm+VIX7J9UWQGlYofWeVIeoJUpEslwUAJTmqwgWGY+QU7YQzDTCtKRFSJcmRRT5guPqj8rMgQRP74iqKwVrW/ug59m28JId19o0qr1LJFdqnSfh6kzIWUfn/1OPN94U6Qpgt4U037DMPML1iEMQwzrdjTkU1LfAC5cLHdLMAsG1LZWoDrSkmZp/L7MrvMZYtsEUYn5uuxGEHgBrLmAq2oVEmVOS2BRonGoCAnLHX1uBzJMPMbFmEMw0wrdlhrRLg8iQtEL1wthBZiSmRrAbQrpW+jG+j1cFQYX/UoCTvvK4/FcEuK5jnpx6KO6zhsQb6MkrnWpSkMycb8gHbJGIaZX3BPGMMwz4rvPnEIP3z6qHO7G9aqRVRkPWGUkNLLkeZtyfd+Vyq2XCk6OFWLi0i36wJNpOe1xZLwibt0iACYIshVrZtJHJcqVdoTm84EaXpeyiUDgOHxBv72u9t4XUmGmQewCGMY5lnxzs8/jLf824PO7ZkTRkZUmOLEt7yQr2Fd6OU/S7joOWGAXnJM7qP6qPTb9HUa1bmpsmF2TrsEql2PcU6jr4suR6rGe3tbpLlo5ARpLBGmrh7lhP3Vt5/Ev/xwJ25/yhXIDMPMLWZUhAkhrhdCPC2E2CGE+BPPfV4qhHhUCLFVCHHnTF4PwzAzjxvW6nelzIZ0d6LQLiv6yn+6ILL3LSoN6uXI5LiuYxWK/D5OqTLdL7QcLXNyMr9+c186lFZqjmAyHWkKrWYcZ4n5lAg7NloDAJTVhTMMM2eZsZ4wIUQI4EYArwTQD+BBIcTNUsontfv0APgXANdLKfcJIVbO1PUwDDM7ZBEV1HSkHVFBiQ9fyrzUHCtimSDdsVL7hshFjF4aVPvqyxap+/hiMey4CLs8qh9XzybLRaH5PPjWq9RT/KlA1jhdtkhAGKVexVitCSAXeAzDzF1m0gm7GsAOKeUuKWUdwJcAvMG6z68A+KqUch8ASCnZP2eYecZ4vWn8rERDlWjM18WJHURqLCFE9kpZ5UhPv5gdb2GWOdNzEdvUV0NoFcRiqKyv5Jzm4zOyyTxTl2ZKv3ZOtW/gTpCqaw8DgVIoDJdRMVqLAADj9cjZxjDM3GImRdg6APu1n/vT23TOBbBMCPFDIcRDQog3UwcSQrxDCLFFCLHl2LFjM3S5DMOcKnqJ7NhIzdhmN+YXL1vkbjMzu/Rzwij/OeVILb4CALE+pBuOGjtOmJvnFWRCyz2n3kumX6+ZTWZeh9pubCOnI+FMkKrjZJOThAhTTth4jUUYw8x1ZlKEUWa4/YpRAvB8AK8F8GoA7xVCnOvsJOUnpZRXSimv7Ovrm/4rZRjmtKg18zLYwGjd2FaUE6YLopDI3QJUTlhym28dx8CaGjTLhua++jJAvpwwcwKSdtiSHjZ4t+nH0109fwisyKIxqKgOlTHmlCNT8RcG9ALekw3lhDWdbQzDzC1mMiesH8AG7ef1AA4S9xmQUo4BGBNC3AXgUgDbZ/C6GIZ5juilrnrT7EvK1o7MypH59szlCZI4CCpN35cyr/d92VODdk5YcptZGjSCU2MYX/XeLrPvK3fYwkCgqcU+2KJQPyc16Wm6Xabw8z4PRAyFWsDbl5hfSi9qjMuRDDPnmUkn7EEA5wghNgshKgBuAHCzdZ9vAHiJEKIkhOgA8AIAT83gNTEMMw3oLoudR6WEVuaERa7AUP1QVLJ9qDXQO43wgd4kT/eL+WIoqGnE3HVCdh83FsPvkglb+KVPRe7q6S6Z/li09H/HEVTXIhz3DUjFaCAQBiDLkeqaJliEMcycZ8acMCllUwjxuwBuBRACuElKuVUI8c50+8ellE8JIb4L4DEAMYBPSSmfmKlrYhhmetCdMFuEFeeEJV+zyT+iF0qPkvDncrnCxS4N2jEUVJO8HpmhvrpJ/Eivy03it3PCipwwqhyp9rUb/tXttvum9k2EqpshBuS/jzEuRzLMnGdGly2SUt4C4Bbrto9bP/8dgL+byetgGGZ6KRJhSlCUqZwwvUmeSL1PtvkCTq1yJNHorvYH3MwuIdxlgpycMOKaQk0s2UIq1PbTz2XmhJnXI6U0XDR7QEGP8bCFqtoepuVcyglTvw92whhm7sNrRzIMc9qM13KXpR65IgEAqqkTRrk8KguMmo5UAgOAE2FhZnZ5nCU7syt2xZ06rpsT5q7jaPRuecqRvhKoEG4qftajZpQ58+fPWOTc2qaOo4YXaCcsuY17whhm7sMijGGY02aioTlhnsb8MrWAt+Z22dN91ALeuiCSMu/popYX0vO89H11ceeWI/Pjqa9mRIW5Te/PMmMx7HOmYlO462DasRjCLkca0Reu2xWlyxZRk5MAUM+cMC5HMsxch0UYwzCnjV5i9DXml0IqpNR0pQwnjHCs7KV+9NJgZO3rTirm+wG+ZYtsJ6x4YXBbLDnLFqnjUmtHxqYo1IcMnJUBNMfPFlqqMZ/KCZNSZr+Php3yyjDMnINFGMMwp01UIMKynLDUCTP7nZKvypWikuJ1xyqytgeB5krZ/VmB6YTlERVUr5k0HkfeE2b3fZnndKY1nVgM89xCFK9lqfa1BaU+6WlHVGSN+Z5+MXUTtaQRwzBzCxZhDMOcNroTVvOUI5UTFlnuEZBEQoSBfyrQbqAHzBiKorgIe8kjcjoyi5LIt6mvdok0O6d1vbpLlpUcs+Z7tY/b36aXKtV93PgKrWnf25jv5oTVtRvYCWOYuQ+LMIZhThs9gNV+s1elwdASQ4DrSpHrShKOlfo+0BwrX9kw7yezjzt1TlhIliNzcacLNGnETJjnjLRz2v1tbh+a6xbqAwhuY77MGvNtgdZo5j/b0RYMw8w9WIQxDHPa6AGsTjkydXLs2AbAXM7HTqc3Q0qVgMu3671SthNmNNBbyxbpJUdflETuotnCT+vPssuRsf+cuttl94Tl14PsPkUOG92YL5y+OMB0wqjFvRmGmVuwCGMY5rTRRQPVmB8IQTphdkQFVaoMAlfUqO/NtSP92/R9s0iIIL+moulI/3HdxnzhOaeeP2b3tylHTJUcbYdNOV3qPv5ypCvQGlyOZJh5BYswhmFOG91lqROJ+boTRpYcU0E0VTlSZkJKphEVdJlOX15IOIJI6zXzNu1DOy59Ttd9c8uR1HF9AbG6iyatx6I7fnbzvRoIoHLCdBHG5UiGmfuwCGMY5rQxpiObllOTigjl9NgThQCyBaiT7YmAoqYYI08DPVU2dJcQMr8G2jl9Tpi+NJF7TjMnLJbQJjKt41IBsbErCtVzYZZsLeFnaalmHKMUCgi4JUclwgLB5UiGmQ/M5ALeDMMsUFRPWBgIuhyZlhsBN/UeyNdF1G+LjGyt9Fiqr4vK87Ia/u3MLrfvy80Js/uz9CZ5RywVTEe615tfpxNRYcdiCDsgVlvcm2i+V71oYeDmhNVTQdxRKTm/F4Zh5h4swhiGOW2UaGgvh/7GfKInzChHevKzgiARKEIQoapGdIN5PbpjBegxFK4rlUdJ5NvUV0f4ebPJiGWL7HMG1ERm8nPmolkDCvbyTE5PWCrS7BUHgNwJa6+ExvAEwzBzExZhDMOcNqrU1VYOUbdzwmLLAaIa8wWxnE9MCaLkPk6el+NKmW6WflzTYaPLkbogKixH6qXV2O+EkXEbHofNSf+X5jltQyufjkzEm56lpvrzOiquOGYYZu7BIoxhmNNG5YS1VwKnMT+OU6cmmwo0BQaQN+Ynt3ka1rXGc3e9RbdJ3u3PcvcVnigJagKS2maHx2ahqk70Rf5Y7IlMJ6WfiqhQuWW22FRCVXMSzf48JcK4HMkw8wEWYQzDnDbNqcqReiYXuT5kLpbshvW8H0p4BZobqmoGnOr7yDRKQghK+PkFERVfYZdW9f30ffQ+NOXQKUGZRWYUiDDftmzFAc1p1EWuEsSdlZAb8xlmHsAijGGY0yZK1zeslkI6MV9ziOhli/TgVHObLmzUrmQDfUHAqbpNHd+3xqNdcgy1aUR7jUc3FgP+c2qlVX9/G31cvSfMFn6R5oTZSzABeTYY94QxzPyARRjDMKdNM5YoBQKlULg9YdJe+1DbZkQ3JLfZTfK5C5Tfnww4tcSJ7Urposcv0Owyp5b1pfWS2dvU8d1li+jmez2GQu8Xsx9ncgwYItbOEFO3K8dQF7lZY345RIMX8GaYOQ+LMIZhTps4DWQtBaYYAvLGccBddkefRrTLabEleoKgoBxJLHnkJuYj++oKtPxajXNS05HacX1TjL5ypL5v5DhsesO/KSh9Tfv6YAM1fZqViSshpHSXNWIYZm7BIoxhmNMmccKCpNxovdHby+6YIgLZ7XYDfV6OTO6ji56pJwr1xnx1LtcJs923fHmh/LpsIaUf15lizKYqfcfNtzsumUdQRrrDZkVUZEI1oKdP1ffVUnJB3JzPMHMbFmEMw5w2UeaEBU5Wle6EhYLuCdMb8+1sLUr0UAGndk+Y0ISLuk3tG3ocK7fMWdC0H1DLFsE4bqSdU22zr3cqQWmXOenGfJCN+Xp0iP4zwzBzE162iGGY06YZxyilzfX2G30U6w4RlWyfTio6cRHJz1RQqTOpSJYj6ZKjmbuVXmPBBGTeo+ZuM/uzis6ZCym1XZlSU0VUKIEL+HvqkgW8XSdMRYcoJ4zXj2SYuQ07YQzDnDa5E+YunZOUBpPvnelIItk+X7bIbpKnSoPI7mM7bEXBqUI7pp735S5N5J6TyhBT2/3nzIWovW8WUVGQxJ+n9E+94oD5/CZflRNmT64yDDO3OG0nTAjxFgArATwqpfzetF8RwzBznmaUTEcGgnLCzPKfbsZEer8Y4R4BpgCxU+aVcLMXvdaztexFuqV2TnVN/pywovBY17Fyli3Sz6mXIwN/OTIMBOpRfl9D3AX51KU+EeprzHecMJ6QZJg5zbNxwvoAHAFw1jRfC8Mw84QolghDvxOWN+ZbKfO6QLMiFuzoBl1o2aVBIcwle+LYFFLqXMlx4ZQGi5YmcvvQkG2LtXNKaTbX64/BLkfqj8WeyBTUkIFV5nTcQj1nTRe5Vk9Yo8lOGMPMZZ5NT9gmJE4YwzCLlGYqpsJAOG6L64SZpTZ7eaFc9CT30R2tLMjVKlXqDfahMJ0nWxBFlitFNd9n+xITmSHh3KljBFp5NHkMSiyZws8srab7GFlgdMlWLzmW9GsSwhGxQN6IX1UijJ0whpnTnJIIE0K0AfgdAC8G0APgOwC+OHOXxTDMXEb1hFERFZGWmB/Y05GxNOIgALc/K4uoCNxtoeawqdtDCDPWgSwNmk6YNycsKCpH5ucMIKZctsicjnRDaXVB6STxa0s3JfuY15s05pu36c9TW9aYz04Yw8xlTtUJ+yyAEQAfSX9+E4B/BPDGmbgohmHmNsl0ZJCEtVoRFbFMMsSAtNHdm+dlxTo4PWHCmWJ0e7D0Rnh1H5jbYrscqSfxwzinMM5pi0Jb3LlTl3n51OxD0yc93YBYS0jFEqVURNmZZ3o5MlsgnQhrzZwwno5kmDnNqYqw86SUl2o/3yGE+MlMXBDDMHOfKM7Xf4wstyWKJaqlvJymb7ZLlUBehnRCTI3eLU85UssY8y8hdOpN8rpLpqf7A67QMicy7XO6fWiR9Th9Df+6UKVKqwDSoYjk/raAA/LGfE7MZ5i5zak25j8ihHih+kEI8QIAd8/MJTEMM9eJ4hiltDHfCWuV9IQjYC8hpG6jBZHZu4V0m1uOVNttEaaLHmEJIj1DzDjuFNOR9vX6QmBd4ac39FPlSK1kKwnHz8oYC4S74gCQO2GVbDqSRRjDzGVO1Ql7AYA3CyH2pT9vBPCUEOJxAFJKecmMXB3DMHOSZtoTFhA9YckEZPK93TOWrDmZbwPMZHvACjH1ZIhRgihvzIexTWoN9OoYbkRFfly3bJge1xZa2kSmKwqlI/ycNSk1t0t/CqXUnj+itKr28TlhQgDlgJ0whpkPnKoIu35Gr4JhmHlFFCc5Yb4FvIuW3fHFL2TlSEOc2C6Z3yHy9YvpTfv2NbklR6GVR02xRPZ9Za6dO+kZWudUZVnbYROWW2g8f1Yga7ZsUaCd03LCSlqQK+eEMczc5pREmJRy70xfCMMw84fMCRNuWKueE+b0O+mTk0S2VrJPcl891sHO87IdIind6Au95KgLIjIuQnO0fNlk2XG1MmfxskX5c0K5b2ZKv1myDazHQjX1531xlsgNBEqhKVIZhpmb8LJFDMOcNokTFpBOmN4r5ZQjNVfKLu+5ayrCSczPohssh4haQijS9hWWIJKOqFHbihfa1s8ZUTlhWj+ZU460QmB1ARfZQtUzgKBHdWQZYroIi/L8NoCdMIaZ6/AC3gzDnDbKCQtDuhwZam6XMR1pOFb5/QF3TUWqHOmPqKBywvSyoT2paIu7/Li+KUa7h42ayDSyyYw+NHcxcmPtSE0rmdOR6nkzRWMoBFmOzJwwQqAxDDP3YBHGMMxpE8VxIsIE5YRpTef2dKTu8njiF6hyJLWkEaCV//RliwJ3m7GEUFBQ5iQCYoV2PfrtRjmSTOnXhF/gPpZ8GMBc2imSRH+b7aIFwnHJADNEF+DpSIaZ63A5kmEYL7/12S34jwf3Obc3o9xxcSIqiqYjpRvW6jTC6+VI2z2y4i10R8suG+qCSC9HmtEXBeVIomxoX69zTm3IwGzMJ4SUpxwptX1D4Yo7QJUjYdymno8wCLKwXFsgD47WcP0/3YVth0+CYZjWwyKMYRiSA0MT+P6TR/CerzzubFPTkUGQZG45030Fyxb5sr7c5ntKEKX3IZr6HXGnlwZPMSfMLFUivU76euO4eNkiXfiZpVXzuLpLlj9H5n3svjlvY34aAeJzwh7aewLbDo/gvV9/AgzDtB4WYQzDkNy7cxAAcEZvh7PN6T0ypvvMxnx72SI7ZsLudzJcKas/yxY9upjKS3j5NaptSpSo4xflhOkTjvq2onIkHV/hm8h0G/59IjZ7LFYPm7cxXxuYSH42G/PV1ORP9g+DYZjWwyKMYRiSkxMNAEBnxW0d1Z0w9bO+zWg6d8plVqmNEBjAVGXD/Hh2An3eL+aWKvNrgnEfugQ6dTkyDGBsy85JrFfpGzKwIyp0AWcvcq6GBkLNCXOcRt0Js5aUGqtFye08NckwcwIWYQzDkEw0kjdsXSAokp6w3HFp2m6XZzqSzsCC8dVIzLcFUWCKk1hKYkFsW9yZcRF6OKoSNXqDfZS5WeY2KhXfG7dhlyOJx6KH1hoiVhKBtrZbqAktOyesFASZ42X3hI3Xm8ZxGYZpLSzCGIYhqTWUa+KKMOWEhUQDuL5ItzMdqTezBzD21ScnAXOK0U2Zz0UPFfmg7yNJJ6yoMR/ebfrturijYjHMEqjWa2YLP60Eqo7rCNWinDBt52b6HKrn3/7dKScsCFiEMcxcgCMqGIYhUU7YRD1ytjVjiTAU2RSkrxxpT0caAs0qtcWWcDmVcmQspdu7ZTlW+jCAOq8uloQwA2LtIFdfNpmxbJEtKKXpNgWB6ZLp1xsIFIS1uo8FsHLCrAiQUhCQ/WKA7oSBYZg5ADthDMOQTDYS+2UsfePWieI4ccJC1wkz8rOInjDb5dET6H0p83bvlh7dYJcN6cW9fU3ydu9WLhrVcZ0eNm1S8dSXLRLZY5Cam6W+mssWmSLWfixA4mRRgazN9Pn1RVSMpYKaQ1wZZm7AIoxhGBLlhI3XPE5YGtYKUE5Y8r3thElJlffcbWrfXPCY++gLeNshr7ZYSsp7+XF1t4te4xHZNv24titllg3dbbagtKMvqEXDk8fqiju1r+6EUW5XrMrEvp6wWiKoG5FEM+LmfIZpNSzCGIYhmUxFWD2KUW+ab9iqrEhFVEROY77VdG4LF60nzAk4dRwgmPtq5chTjYsILCfMEEtaidTXh0ZNZDpDBlZ/W2AISks0aouGJ+c2BwX0x6J6vEJtMlXfN3fCPD1hWml5sskijGFaDYswhmFIlAgD3L4w1ROWRVREphujT/fpTedmWKspIuylfoRRGrTKkdq+kmh0T/ZJr8cpOdJ9Xfq+ScO/2buV97DRIa/6Y7H72+xzAvAH2kqqJyz9qomw3IXMrz8fmFDbTKE1rpWWqV4/hmFmFxZhDMOQqJ4wABi1+sJU2St3XPL76m5XKGCVI91ke70HS5/aC0Vxsr3a11s21PLH9EQGXdzZTft0/phbcnSDZalzmo/FTsy3pyOpAQW73KsvWxT4li0SYsrpSMAU2QzDtAYWYQzDkExob9INrXQlpUx7wgLHzZJpo7yRuxXbLg9danP6swJzG5CLHaE5RHaGmN3wHxPTkbq4M0qgRv4YjONRws+/bJHZ36b3fVErAxj7EouRU+tZ2mG36tiqVBkItydMLyuzCGOY1sMijGEYEr1c1dBqXup9XS97NTVnCTAnCs3pSGrCEdm+TjnSExehx1tEtiAKXEFUtGyR7pLppcw8kwvOce3Jyan70OgJR/34ZinTvB5bwHmXLdJctFIQOE6Y/nucYBHGMC2HRRjDMCSTzQiVVA3UtTdvVXqkhIBeLlNf7em90GquN7K1POVIW/TorlS2zRI9vglIIcycsMASaOpxuG4Xsn1cZ05ACDNjzJ9Nps7lNvyrc/tS+iPtsfoa833PPZCIMPU71cvNDMO0hhkVYUKI64UQTwshdggh/qTgflcJISIhxC/N5PUwDHPqTNYjLGlP8pwbWuO9emMvEREVThp8QQaWPomovrpxEXQ5kmqgtxvs/XERdtlQGPup8/nyx8w+NLvvSztuYB7XFqr5dGTuvtnlXHuR86wcGbj9Ymp77oQJZ+3IeiSz3yk7YQzTemZMhAkhQgA3AngNgAsBvEkIcaHnfn8D4NaZuhaGYU6fWjNGZ1WJMN0J00pioeviJNuS+4bC7Qmz+6j8TfJFzezJz1SURL5vfh9fcCoVqgoAMp5C+KVPhxMu6xOURh8a3fAfEY/FXoxcdxp9yxbpIteejmxEMbrS32mNRRjDtJyZdMKuBrBDSrlLSlkH8CUAbyDu93sAvgLg6AxeC8Mwp0kjitFRSUWY1tCt4igoJ8xdTDsXUIAZX0GGqlo9YfaaiWpzoAkQ5Q6ZE5DmpOIp54QVCKKicqQ6Z6SJRn8shn3c3H1z+tCsGAr9+bUXKlffq+e1FAiyJ6w9/Z1Sa4IyDDO7zKQIWwdgv/Zzf3pbhhBiHYCfB/DxogMJId4hhNgihNhy7Nixab9QhmFcmrFERyUEYPeEpUIhDJxQUD3HCkjLkZ7GcXuNx1hKI9leDzGNHXFHlSPpHiy34b940XB1Lba4M4Sf1fumzq8EVmSHtRJDBo7DFktnACGwnyOyMT8/TzOOM3eS7AlrxtnvtMGJ+QzTcmZShAniNvuj1z8BeI+UstAXl1J+Ukp5pZTyyr6+vum6PoZhCmhGUnvDdnvC9KVzlDhwGvOtINKYmI6MNMcqdBwrsxzppO1rjpUtiPJypNXwH5jlyNAQaJQrRQk/8/7qmnw5YQHh6rnrQ/oHEJznVwjDtVPokRslQoTVtd+p3S/GMMzsU5rBY/cD2KD9vB7AQes+VwL4UvpitQLAzwghmlLKr8/gdTEMcwo04hjtZdc1UdORVESF7Vg505FSug5QQTky8pUjNXFib1Pfe/PHCsuR6rj+PrQ4dpctAtQQQvK91MSQup8tKO2py1iL27Cb9t3GfK3cqz2/zXRhdQAIQ3o6Uv1OmzE7YQzTamZShD0I4BwhxGYABwDcAOBX9DtIKTer74UQnwbwLRZgDNN6VPQDVbpS791Uc7jthNnTkSpMNNmWHk8TGLqQCgNzchIwxV2yr7tNfZ+7UkX9WW4JVF2TV/gZYsnn3JnHNbbZpUrNTXSb9k2hqpdz1fPgOI1T5IRR7ibDMK1hxkSYlLIphPhdJFOPIYCbpJRbhRDvTLcX9oExDNM6lOhSTdx60nrmhIWaCIvMfie9+d5xwjylNne9Rf90pB6OaifbJ9/rDpu7bJG+zXbf1O1Fwi8rgXrdLqscGfjPaU5duoMN+nMUxfY5hd8J8+SEdRATrwzDtIaZdMIgpbwFwC3WbaT4klK+ZSavhWGYU0e9QXcW9YQRTliWE2Y4YYnjpMRPVmpzypGuOHGnLvNtyfnciUJ1bfo0oi3QpCbuSEFElCPV3aKYnsi0RaMjCnVnzgqlVc+hs+KAFchqO2z2BGRkOGHCKDlKKdGIJDrK3BPGMHMFTsxnGMZBvUFT5Uj1pp8s4J28hPhywvJYB2T3C21RI3OXx+7PcrK1iGZ2O9lefR9r53QmFY0Gen1bfj5b+OlLJdkxE/Y5k4b//Li6KHQT/NN9Yj0Wwzy+LkbttS6NHLYCJ6xh/065J4xhWg6LMIZhHNQbtCpH6iIsd2uCTGzZa0c6E5B6P5SKqEgn/PS+r9DooyrK1kJ2XEoQmW5XUZnTXV5I3e5bGNyIxbCuV3qOawwDxKdxTi1NH0gFpdUTZvfcqWPbLpldYmYnjGFaD4swhmEcbCes1qSdsDBVIXpfF2A25gPFMRTUmolq30iax1X6Q7leknCs7OM6E5CB5rBZPVZCE1pFwo9qzA8DLYYitp05sxxpPwfq9uz5I86ZPX9WKdN0wqTXCVN9fW3l5HfW5J4whmk5LMIYhnFQIqydKEdG+gLeqViwnbCsMd/qaYqkvWB2cVyEPhWobtOPb7hHnn2nWpPSV470LVskiab9/Jza1KVejrTcN+OcmlD1OYlq36YmstS+hhMm9bUjA8PtUr/DSilAORRoWE37DMPMPizCGIZxUOXIailAGAizJ0xftig0JxwzERGYIkJf4Nt0u6xypCWI8m3JbXZcRKQ30Af0cadatshehFvt4+aE+bepa9OjOopcPVOIInv80nosmTOn5bDZ12s7YXoEiOGEpb/DchikAo2dMIZpNSzCGIZxyIVW6poQ05EB4YQ55bQsAyvd1+n7MicgfdORcWwfF9n5yODUgklFYfSamdOGuejxB8RGxOLearvUxZ3X8TNLstR0pD0MoA8ZODlhmpbStyc5YflG9TushO7vlGGY1sAijGEYB+V8lUKBchhYOWF6T5jZeO9ELFA9TZYAMSIqLIdId6yS20xXSnpcKbsR3o6S0Kcu7YZ+dbuT2aUHuaZPh7Nskaccacdi2JOcyXUSPXXq+fP2zZnnjKUZb6HrrIbmhJXDgHPCGGYOwCKMYRiHrH8oDFCx3rD1VHzVnxSl233Tfcqxko4AgeVY5deQTwb60+ujOBcoutDSS4PuMAC8TfvmpGJ6Gyn8CCcs8Jc5bVfP6BcjpiPzBbzNnrDYdsKILDVz7cj896aEdDkUKIWCpyMZZg7AIoxhGIfM7QoFKiVLhGmlSiUS8sb85D62cIljN4hUfW8u5+OfGhRCFydIt+XlSNthMwJZfed0HCt3UrGoHFkcfaEdN7DKkURPGCX87Mb8SLrPnxKb6neg+vTCQJCN+eVS0hPGOWEM03pYhDEM45CVI4MAJat/qKmJqZLl1OT9YsjuA5ixDrZwMeIrCHESpan4VKyDUY60BZG2+Lfpkvn7s4R2Tlkg/OgSqDmgYJcqgTyQlRKb5nSkvS3f33bRlCi2+/FKIR3WWgoEyuyEMcycgEUYwzAO6g26HApnIehIc8lCywmzhYA+HWnnbgG2IHLzvNQxi4QLVRo0m+8LglytaU09Fd93Tqo8qrbr57TLhtljsXvUtOZ7t5yLbD/1eB0RazthWU9YYIiwbM3PIEApNJv2GYZpDSzCGIZxyBfpDpLkdWPZIi0nLJt+pBvz9elIKlQ1dKIk8m256HHdLH3dySgTRJ7GfOK4/pwwUxBR16NcMv02dX7vOS2h5S1HWouR24uc2435SUCsNO6TT0eaifmmsObpSIaZC7AIYxjGQS9dJa4J4YRRYa2Wk6PiKE65HEmU8NTSRIbgISMq6KlBZ6JQ6EGubnyFeoyRNEuKhvCzxJJ6rL5sMqELLeucoSa07MXInUXOqYgKywnzJebnDmbg9PkxDNMaWIQxDOOQuyaUE5aLqSAQ5pI8dp6XXjaMCbEk9IW2XTcLSIQLtQi32hZbwwDqe30i05cTFls5YeoYar/QI/zotSP9pVW9HBkRPWqAKVTVbZko1ASlT8TaQbmJE6bnhMXZ7aWAe8IYZi7AIoxhGIe8HJnGGRCOClX2csqRZJ5Xfh4758oOcgUAGbsZYrpDRPVnqdIg1YeWNO3TjpVRNiwSft5ypD7p6e6rSpmGYMz60OBMetqLnNuBtvqkZ3TKTljibrITxjCth0UYwzAOKlOqEgYoW2sQ2g3gdklR3abfR0+DtxvWzViHUyxHamVD36SiL88rDPQ1Kd3AVXVOb9nQK+6shcoD93oTcefupx4LVeYsmiDVhZaz7qTVE9bQRFrZEtYMw7QGFmEMwzjoOWGhVdaKtPiK5KsuBJL72E6YMcVYUE6jJhWV80Q37ftLg4ZAswSR4b4RpUF1TtNdg7EtOY95TiXOfCGwkihHBtbjdB6L1vcVxe6KA7YIK2k5YZEunvXYEV47kmHmBCzCGIZxaBbkhKlv9QlIuzE/tHLCjCV5LEdLCRcpbbFkizBKoNHHVROQviiJXCy5C2In1yLTdSWJHjUtz4tatsi3liWglSOp40pf31z+HMWxKdB0J6xp7etMR2pOJK8dyTBzAxZhDMM4NKw4A7O3KG/wVl/1XihAL4ml+0jplMuS7aeQXh9TTfvqWnK3y8wYs3K3CLGkjk0OA8R0HERynbkoohLzyfKoIRp905EgJ0gNt8sWcEG+PqR6TMqhDIMgOx5gD1twThjDzAVYhDHMImZgtIa7th9zbjdywqwmbjcUdOrG/GQ6MtnfW4709IQpd0lv2hdCpC6a33nShwEol0wd2w55VdfihrXm1+MrRybxFdS25KskJj3t+ApnX6v53hRwufBVIksfmCDFcyhQLgWkE7b/+Dge3HPcuZ1hmJmBRRjDLGLe/pktePNND2C83jRut5e4Md7MtW2AGRgaWc6T3tdllyrV/fIMLJ975JYj9X0ph01tK56cdBv+9d4t6Qi0vBxJu11m1hdVyozUYwncc/rLkcIIw/U15tvrWaptSqQav9NAkNORP/V3d+CNH7/XuZ1hmJmBRRjDLGK2HT4JANgzMG7crpeuQmvZItsJ05c1ykSEEgJEEKkvVNUWPWZiPggRljtW9nFFOqkoyWlDaMeVTkM/QE8xqsfsE3fKYaMmJ+3JyqKFytV57HMCyWMqWeJO7WOHtaqvbuN+0udH5YSpa681I2cbwzDTD4swhlnEtJdDAMDewTHj9mYcQ4i0idtyTZQboy9sHVlOmJ5zpW6nXB49osJXjlRBr5Yecprv7YZ1b0SF1ghvp+KbvWamKFTbfY6Vcth8a1kCeVO/GZmRn5N29fLn1XYE9UW67bDWMJ2SVOKsofXyTbV25NGTNe82hmGmDxZhDLOIUSJstyXC6lGMcqoOSlY5smmVxEraQtF5JETyVZ+OpJrOhZGBBX+ZzlOO1ANOi8qRRmnQarD3l0DNpv3sevVeM6OB3s4mO7XHYk6BwtlX9bcBxQt422GtthPWdMqRphM2NF7Pvj9ychIMw8w8LMIYZhEzWkt6wYbGG8btzUiinPUWmU3cURw7azxmQkqVKk9xOtKMX/D0YKXlyDCwRVhxWKvehyYM0ZOeLxVEek6YvWh4YL1ChqnwK2rMVwYTvQSTK/xCYQo0gM48A1K38JTDWpODKCdMLyOXQjcn7IT2f+AIO2EMMyuwCGOYRUozinFyMhFhdmN+M4pRShVUkq5uTkeWPE6YbzoyjiUZ62BHVJguD7Lb7eBUIJ8apKYR7WWL7OlIQBNaheVIV/jp/W3CcrR0IWWGwObHjXx9aJ4sNb0nLD6NsFbXCYtRSsvIpVBkCfoK/f/A4BiLMIaZDViEMcwiZbyRN1+P181G7EYsUfYkr0exzPqNADOs1S7/hZoQ8IkloxzpcYhs9yg5jlWOtAScOQwAY5s6rjcnLC0NhsQ51TJK+v3VcX0rA+hTl+56lclX3S20nTt9+tTOCZtqMlUJ6CiWmUCrEGtHTmj/Bybq3JjPMLMBizCGWaQUvekmrolywoKsqRtwJ/T0sNbMCVNN+1pjfkSJEyGMcqQdJZHcrvKxzOsvKkcqh83XY6WuyZnIzMQSvO6blL4sMJFNcurXb5/TzR/LBZrPLcwa82NXqOY9YWaIbmg5YY1IaktNBcbjAEwhbotyhmFmBhZhDLNImSh4021G0ihrmaGfblaVu2yRKQSkNlEYWi6QPvln95qp26nSYC60fOXI/Jx2lAQAyNh137JyZCbQfH1odPN9UZArkJYcnelIJZZocRcKM6JCz1kLQ5Gt12mv25k5YVEu0rLfafpVd8P0/wOTDRZhDDMbsAhjmEXKeIETlpQj8wW6G1Ee+pn0hOUvHUlzePJmbkc35In58LpSeU9Y0XSkW45UfV/0Oo52Az0t7uz+LKNJnsgJc2MxrLKhZzrSFpShtZ++zd63qBxpRHykvwM9MV8dF0h+p+q2shVfAQATjbwnjJ0whpkdWIQxzCJlInU7yqHAGNWYr97MUzGmN4A7TljmtuS3JV+Tn43pSDsxXxMYlGMVp31f9qSi6vvK+7OsbXo5Uj+nJk6klROmT2Ta16P2VdOa7jnNciQ1DEBFX9DTka7DBigXzSpVxr7n3hRaeolZfdUnJMdq+f+HCXbCGGZWYBHGMIsU5X4t76y4TpiVEwaYUQclnxtjleL06Uhq8i8RS8n30ipH6hOFZDnSnkYk8rNoZykXWnbzfeZYxf5ypApcpR6LHkqr76ov/m2XI83nKH9sxmPxNeZr25qOE2aKZz3frZyVIzUnLP0/0NtZ5cZ8hpklWIQxzCJFRRL0dlbd6cgon44sWY5KFMf+9QtTgaGEjt4c7l+SJ3fYfA3rkZw6ONVdb9EX5IrsuHYqvjMd6WSTicxBA+yJTP+yRbagtCccASAqaPjXe8JMJ0zLaLNErt0T1tR/p6HKEHN7wpZ3VpzIEoZhZgYWYQyzSFElp94u9023Gec5YXbpqhkRi0grkUA4Nep2On7hVBLzlUtmXn8YmH1fZilTiSzzOvTvlStl9JLpjpWkJjL9i4aLVPjlU6DmfkAu/KilkqRP3Gnra8axK+DU+ZTYsnvC9DJynv2WfG00tenIRhPVUoCuaonLkQwzS7AIY5hFiio5reiqOm+6SZyBOUnX1N7MXScsb8wnl+vxOWGqj4rMEEu++pct8q/j6CxbZAk0AFnel98lc903JYiosmEYnMqyRUQeGpml5i/3Oo35thOmesKy31vyu2lofX5ZOVJzwibqEToqIdorIZcjGWaWYBHGMIsUJbyWd1bQiKQRV9DUe8IyJ8zTExboMQmuQAPSRnfVOE5EVND9YpqA80wq6jlh9nFjj/tm96lR5cgodjPE1Dn0PjRhDxlIugTqlCPJEijd1G+4hdbzUNKdsPQ+vrUj9bBW+3cKJCKsvRyivRyyE8YwswSLMIZZpKgeoJ72MgCg3rSWJrIypZSjYvc0JUvnpKnsvuZ6Y/IvvwbVR0UGuVqlQWpS0VeOVDlhVPipuWyR/5x2/1V+vfTyQvmyReZ59PuRifnEdKQu7lTZFVBOmPsc6Dls9moFSpw1YpmtJ0nlhNWaMarlEB2VkCMqGGaWYBHGMIuUyUaEQACd1RIAU4SZ6epug7ebE6Y15geu+EjcLE/ZMHW63G3J16nKkTIVaHbsg9m7pe0X5Me1YyimKoGqzK7Ic73esFZjOtJ25pA9R96py9SZi2J37Ugg2e46YdZ0ZBRni7JTOWH1ZoxKGKCNy5EMM2uwCGOYRUqtGaNSClApJS8DdaccSU/SUSXH2HBqPP1O3ulIPWk/vz4lVNQEJDWpmC2I7RFolMOmO092LIYdF2Fnkzmp+EQ5ki6B5s9PbLlZ2XNUMEhgbCMmK5t6P5mV0WZEizjlyPx3Xo9ilEsC1VJgCHKGYWYOFmEMs0ipN2NUS2EuwgwnLDYS8wH9zTxf/gZQyxYpgWYJCC0YlZ4o9G+zS3hOOVLkwal275ZIHTbVn2WXDZNrKlo0HJ6cMHM5JLMxf+oSKOWwmdfjirukHJk/R3Y/njquvT3MnDA11aqFtRI5YY0occKqpRA1FmEMMyuwCGOYRYpywqqEE9aw1o4E9DUI3RgKVU5MIhTyc+jlMp840cUS2StFrPEIJEKF6rHKjqsNAxSXOfP9zHKke86kSV4PpbUEZewpR2oOWxS7U5dhIIySLRXWSqbpE+VIdS6njKw5YRUVUWH1hKn/D/Uozn4nDMPMHCzCGGaRonqA1Buy2ZgfoxxYmVIqJ8yajizpTphV3tNLbUWLU2e9UIEpatS+dsp8chxBxkyocxgOW4EwtHPLlDtHuW95DEV6HktQqmZ/9bP9PGSZZ9QSTHr51HITjeeIjADJYz5yJyx3yQCzl48Ka603Y1Q0Z5TdMIaZeViEMcwipdaMUNV7wnQRpjlhel+X+uoEhmpOGNV/JSXtHqmIiqLpyKncLkqg5aVBfzmSKoGq+8aZ8POXI11RaE6Bnk7Dv15atZ8HW6CRPXcyd8LssFajjGxt08uRiSgXmTPKIoxhZh4WYQyzSKmn5SfldJnlSHftyIaRE5a/dJQCf5ho1pCul9oc9yifjqQXvXajJNSxpaQb84UwG/5tUaOuSf9ZP29Rr1kk3ZiOfD//FCiQT0CejrgLi46rCWRVWqWWjAJMYa1+t027J6wUoFoOASQinWGYmYVFGMMsUupRbDhhDTsnLDDfsHUnzHas1JSdE6FgiITkNmfyT+t3MjKwNLFEBaeqfWWRQCsQRKoUZ++r93bZQivUhJ+bpm+6Wb7QWqp8mvWEEefM+tAIEZsPEkhjgW6ADtl1F2U3pyOTxnzXGWUYZmZgEcYwi5S6FVFRi+xyZHK7emNXS9zoZS0gd46AdL1Fo68r77Gi1lTMIiqIWAehCQyyhKfFRRQJNP0x6OdX4oQURNKzbJHmSoXONnPZIn2zHVHhOmx5WdZt2s+Fn3rc+jYgEVj2upJq2SI9J0xtV/1+TjlSG9TgciTDzDwswhhmkZLlhBGN+Y04zwkrW45KHJuiphQKM0OM6LEyypFERAWVQJ/3hPnS69XkpE+g0SVHtyfMfF705Yd84s6XW2bETBDuW1Y+tR22QCXfgxB36vmD8xzpZc6m9dzbPWGNWGrZb+m2yGzML2tOWK3BIoxhZhoWYQyzSFE5YXb5STlIqpyVlxQLnLBs7UiiNBgIo2GdiqigSm16lARVclSOFRX5oO5qxzbo3zc8jflC6D1W9mPJlzSyJyftpZL8SxNR05wiW8DbEX7p80cF2tqLf9NBufnv1ckJiyknLOkJ03sEGYaZGViEMcwiJYuosESYiqIol1RPmNmYb7/Z64tI22nwQNpYrgktYbld5rqSrnDRm851ApFPQFLb1L7qPPr1JNvi9HrcfWWBWJLpOV0nLHft1M/u9fgctuLJSSlBNubbESD27wXQnDCtHFnJGvOtnjC9HMmLeDPMjMMijGEWKepN184By0SYJ1PKzglLIirotQ2BvO/L64TpzezE5J/K3iKDU72TijCumQprLe4JS0QPJdD8SyUpseo2/BvrVU4xHRmG1vWI3OlS16dfK5BOXcp8gW59mz4daS9Fpa5VSpkMamiinHvCGGbmmVERJoS4XgjxtBBihxDiT4jtvyqEeCz9d48Q4tKZvB6GYXJqjYhcO1KJE29ifmS92RtREtR0nxIR5v2BpLSmCwzTPUJ6XE9wqoDXsRKZIHJLeFP3hOXndMRdoMdXuOLNOKend4uO20hKunZfV35OT06YeixSpr8X93qUExbF+bCFnRPWTEvQ5TAvR7IIY5iZZ8ZEmBAiBHAjgNcAuBDAm4QQF1p32w3gp6WUlwB4H4BPztT1MAxjopwwpxyZukclJ85AywnT3JqSNoXXjIhYB22KEbCmI7VeqGQbUY6cKjiVTLY3G88pJ6xBnBPIe7vocmQq/IjeLXVX5b5Ra0fmgbXu9WaTk6RAmzonLJJmfpvthDW0Xj47J0z97pOcMI6oYJjZYiadsKsB7JBS7pJS1gF8CcAb9DtIKe+RUp5If7wPwPoZvB6GYTRqzTQnLDTLT+qNuRwoJ0yVIz2J+cIUAm62ljkd6RMR6r72cZXzZDtEKj+LFmjJV6r5PigQaOoa1NQlWY4k+q/041BlzqliMbIYD890aawFz9L9bWmZU3tFL2ULeEty2EKIXDCqsqQZUcE9YQwz08ykCFsHYL/2c396m4+3AfjODF4PwzAadU9ERV6ONEtXSrTY05Hqe684sctpwhURSgRQ05HS63bl5Ui/IPIftxm5okZtzyYyKffNt6C4En7kOf2PU/2sFvd2nz977U2iMT8VWroTpk+INjN3M9+3HARZOVJ3wrgnjGFmj9IMHlsQt0niNgghrkMiwl7s2f4OAO8AgI0bN07X9THMokVKmThhYYAgECgFIm/MT9+w3Uwpmfc0UW5WpESY+dnOccICd18lBsyA01xgeMt0HoHm9H1p+6ptqgeOdNi8IbDaFKOzCLe/Dy20rody2GIJCM9xjaWdiOcvb/g3H0cpEIjiOBfWdr5b+hwowWX0hPF0JMPMODPphPUD2KD9vB7AQftOQohLAHwKwBuklIPUgaSUn5RSXimlvLKvr29GLpZhFhNKKCjXo1IKXCdMTUdq5UjlZulv5spcyZwwqt8pdY9sl0cdp065R5nAUBlXrgjLli3yulJuD1ZouWS+4NTCKUZJJear3jmqD83sq6OuVz1/JUuF6ROZyfXl2zIXMga5bxiIxAmz3E21r7oe9fxXtXIk54QxzMwzkyLsQQDnCCE2CyEqAG4AcLN+ByHERgBfBfDrUsrtM3gtDMNo5G+6ietRKQXZbcoRKxHp6lnvlqa0wtDsPbKdsCDQF9o2ryObKGy6rpRejmxSgsgQS57jEm6XLYjsXLPc7fIFxPoT/JNzumVOEahttPum3C7fY0nOqYRqYOwHpEMRsesWlgKBKMrLkWW9HBkGTixJhRPzGWZWmbFypJSyKYT4XQC3AggB3CSl3CqEeGe6/eMA/jeAXgD/kpYImlLKK2fqmhiGSdB7gIDkzdcOa63YcQbaFKPphJl9Sa6oEYUTjvo5vWGtZCO8P+BUFLhdwhJLvvR6KlRVNdBTCf5FDf9TlSPDNGtNwHULhUDWL6YfC9p91fNgu4WZE0ZkjJXDgJyOLIUBAsE9YQwzG8xkTxiklLcAuMW67ePa928H8PaZvAaGWex8/r69mKhH+K2fOjO7TU2+keVIJbRS10QIkYqEWHszN8taQL4AtVMS02IoqIZ0wFOO1KYjqanLTNwVlCOLli2imvaB3GHzpder9H9XoNkOG9WY75uOVIugu+cMtYnM5Pq0ben3XicsDBDF0gngTbaJrP+vrvWEAYlDak9HPt4/jC9v2Y8/fMU56O2qgmGY5w4n5jPMAubg0AT+/OtP4P23PAWpFjWE5nyEmhNmlyMtodWMaCfMbsynHCJv7lbmHhFhrVrKfBz7JxVlQZN8JoiIuIgGsU1dg+96s9IgKdDS45L9bUgfp286ElkW2FQ5a1RpVTmNPicssoQ14HfCAKBaDpycsK883I/P3bcXn7lnDxiGmR5YhDHMAubQ8ET2/cnJZva9eoNVwZxUY77dP6RHHZhL5yRf88ZywsmJ6WlDO6KCcqxUP5m/d2tqQaSLNNsJo6Yu1fW6U5eqHEk7VlM9ltyZsx9LHuPhliMTsVm0bJHq+7IFpZqOpPrU9InYWmSJsFLglCOPjkwCAA4MTYJhmOmBRRjDLGCOnKxp3+dvnjXbCdMa85tWYj6QOipaY77RE2aFglJul5reoxwgoLgcme1LulISkTQXBdf3pbLAnMwucgLSFwKblyOnCmulztnMFg2nSqt0w38YwMhZCygRlrqF1DXp4rmsT0eGeU5Yg/j/YIuww8PJ/x8lxhiGee6wCGOYBYwuvA4NEyKMbMx3hVY5FGhoUQe+1HY7yDW5r38tRiXg1LnJhbaJqUAg76OS0o3FKI6LgPE4qXBUXwisSq+nJifthn9q0rMoIFZ6nER9sME+rr6AdzOO3QiQUGTLSQHu71Q9P3pERfI1dMqRmQjThD3DMM8NFmEMs4A5OqI5YZoIc6YjyXKk6YRFEd1bZKa2E7EORqgq7YRRDetCJEvrUOGnyX3VgtiU++Y/riPQvA3/xLJFaXo9HeRqHzffZj8WKoYiX3rIvR4VxaHum+2n9YT5Bh/06Uhjzc+0zw+gGvMDozE/jmX2f4mdMIaZPliEMcwCZmCkhu5qMgQ9PNHIbredDz0zilriphQEaGjTkf6lc1wnTOjTkd6yoWdSUYjCUNWipn3fcZ2yoWdSkQqBFWmeFxnWagk/ykXzlSOFmDoElhSU+nNPRFSUgqR82qSGLbTfudOYb5Ujx+pNNGOJ7rYSTow3sv0YhnlusAhjmAXMaK2JVUvbIAQwMqmJMNWYr4W11qxypB5nUA7t6UjdJUu+FrkxcRq46ouoyCcKzesPhZiydysqWLYoX8Bb3wbjcdqTlaHI16ukBgn8Ya3+xnz1MzWtaR+XKinqx6WcsFgmJUdXqAZeJywpR0rj2Lozqoe1jtaSoY51Pe3Jz9qQB8Mwzx4WYQyzgBmtNdHdVkJXtYSRWv7GSeaEeRLzAbNcpn7Ot9mJ+a7AUIGrpdDdBgB1b36WFiXhCTEtmlRsRjGEMJ2nojR9dQ2qEZ5cXihWafpw9lPn9F1vk5jWVD/HcTJkQDl+QC6cjTUpMycMZFhrKbB7wvTYkcBZO7Ki9YTVNLdrJBVda5a2GT8zDPPcYBHGMAuY0VoTXdUSuqsl443TzgmrhnpPmDtJp8qVUybmE0IgERggnbDAccIKypGke0Q30KsffVOVU58zScWnrjeeKv3f53ZpPVjeNSljd8hAPZ814nnIy5ExGdaqesIaRIm5rE1HKgFe0XvCtAW81f+dtakTdlJzVRmGefawCGOYBcxYrYnOSgldbSWjhFTUmJ+VI/WeMDVlpyYVicb8ZhyTjeVhILwZYiVLEFHhqNm0ZkgJInjyvPI+KuqY+nPghsvqgbWeJnkywT/5qkSj09QvhFYepYYBVDnSXYRbv1476wtInTBCcKqcsMhXYrYS8zMRVjanI1U5UokwdsIYZnpgEcYwC5jRySa60nLkqFaOPLXGfL3vK/CuHanEkSpHkhELsX8RboBeOxJIhEzdI9CEwCksWxQTPV+qBOovR+b9YgXlSKK5Hkga/gNBNd/ni3BTwlBmPXVwtgHFIbCRlGhERLk3dd+okN2SlZhfCkT2eCuh2Ziv+gnzciQ7YQwzHbAIY5gFTFaObCsbb5yq6brICTMypdKwVmpdRHW/ZuRf6ifLwPL1hDX9JbwG4QCp+8qsNAhnP/VYnGOGfmcJUCLM44QZ5UhY+yVf65Gb15U9Fk9EhRJ3lMNW5ITpOWFRLA2nC8gdTMrdLAf52pGNKM7+LwDJSgq6CBvNesLYCWOY6YRFGMMsUKSUGKtH6KyG6GozG/PrxDRclpjvyQkz1iC0GryBvNnfFzZaVGqjlhdSxypyrGJPCU9vkrdFobo+n8MW6OckjqsW9y6a9LSPqfZVQqoUusf1pfSXikSYFZQbOk5YYK0daS3g3cydMP33beeE5eVIdsIYZjphEcYwC5TJRtKj1VUtO435zrJFaZO2Sl4XwnyzTxZ7pp0w9X3N12Ml8mWLKIEG+CcVw0D4e7eEPpFpPnZ1GKpZPRB+UaOOm18PnG1KULrBs5r7RjhhhQ6bSJdDKlpVgGzMT76qCBDfdCR13lIYGIn5uhNmL1uk1h1dtYSnIxlmOmERxjALFOVedFVDdFZLGK+ZjfmVMMiEhHoDrkfJYs9UWauZhrEC7vI3QC7CyGWLPMvq6MIFoCcgqWgGIBdlyVJJPieMyN0qcJbUvsohCq2TqolMKV3BqK6h3nQX0k6O6+99y9bBJKc54b1eIyg3kuTz4M0J08qjtfT/g0ItWyTT9SrHa010VEK0lUNUSoHRX8gwzLOHRRjDLFDG0jfKzmoJHZUQ440oe1OtNaOsKR/IHbFGFKMZxU7vllrihlw70nLCKKEVTSUwfOIkFP6yodZg711MO44L+sWm7gmj0vTVdKTT8K+JO/tx5Md1++2S4yJbH5IKXAXo5zd/nEkMBfV7i7SVDuzEfDXJ2Yik8f+hWjLdt/FGhI5KEuxrD3kwDPPsYRHGMAuU3AkroaNSgpRJiRJInTCr/KRub0Tu0kOlIMgiKAC3VAkgy5WiRE2cujHu9F4q/jwCrhTkAwOuy4N0XzqbDKAjKoQQCITmLBGTlUVlQ8DTaxb6RaF6bD73LRlegLekCBRHVKjGfMeFTB3MJlmOzCMz6s3I6QkDcuE3UY/QnoqwzmqI8XreL8YwzLOHRRjDLFBMEZa8gY7Xk9u8IiyK0YilsQ3Iy5HqTbtM5IRN5YTFnjR94NR6wnzlyMYUTphXEHmWLSqKqNAXHC+aYqQa8/W4DV+MRyzpnDWAjtTIypEqooIQcLGemK/93iqaE2b/f8hEWCrax+tNdJSTNUg7K+yEMcx0wSKMYRYodjkSQOZg2I3YygVpNBPXxHad8nIktRD01CIsyaoqcqzogNNSIPKGf185sumW4fSeMEoQJeKOdu6SKAlaLAmjzEkLysQJc05pHJd0C30l2/RnymkUQiRLO2VLTbnTp3pPmO52lYIgm8i0/z+oNUWzcqThhJUyMc8wzHODRRjDLFAyJ6wtKUcCuQirNWKzJyxzwiI0idBP1T9EOSp2RIUtIspaKXOqxnxqe90jXHTR4wtrbURu75a6Zl/0hRAgp0CT4/rFne6E0Y35eeYZVVpVJUXncU41+CD8Zc587UgqrDV97uMYjaY0G/PLZol5op73hHVWSxitcTmSYaYDFmHMvKTWjPB3t27DsZGas01KiX/8/nb85TefbMGVzR2McmQ1eQMdU+VIO5IgzHuAGrE0HBMgdcJSx0S/P6A5YQ2PWArzxPzTLUeWCiIqRCa03B42o1TpnVT0peK75b785/ycdpUzEzUR3ZivlyMpsZksweQ6ftnakc0IgaCWWcrdwrInJ0yVkamp1mYkUYtilKlyZDN3wjIRVgkzl3Wxctf2Y3jn5x7CwaEJcvun796NR/cPze5FMfMSFmHMvOT7Tx7BjXfsxF/c/ISzbf/xCfzz7c/gprt3L+pQyTFdhJWTN9AJVY50IgnUdKQqR7pN50aDt1HWKi5HqigEMlTVmlSk+qH8DfRpU7p0Q1X1NSmpcmQpDPIhA4+LRj2WPNdMOqU/vYGe7EMT/nUwhRFoa+2XHmuyETvnVMfNBbB7TVEaLVIKhJFtpty4ZiSd/w8VuzG/EaE9dVPtuJPFyJe37Md3tx7GZ+/d62zbPTCG//PNJ3HDJ+9twZUx8w0WYcy85O4dAwCAJw6cdLbtODaSff/04RFnezOKcfTk5Mxd3BxhdLIJIYCOSpITBuTCzG7EVs5XMh1JCYxkbUkqbyrUnBr952zftJRZtIB3rekKP3UsXxI/VVqztxXFRWTfe1w0gI6oABJHy72eVNQQfV3OOcmFtlVYq5tNBgCTjQhl4rGUpniOVBnZEcdaObJuRZZkPWGpCBurNTMhv1giKibqEYbG6+Q29bqy89ios+22J48ASETzZIPLtkwxLMKYecnOo2MAgMPDk4hTYaDYcTR/YXyKEGH/8P3tuPqvb8fh4YUtxEZrETorJQghsqbqifRNIckJC7P76hEVzTh2ylp58nra4K0JhXJBjpXat+npd1JipOZzj9IyHUAn5uv301Gi0ieIdLHiuyYA7jJA6Y/UOpj6MUnhR0RL6NeghKptdmXRF57nSF9mic4JS35vTolZy4ZzG/PNPj89oqKjEmKsnmfOLVRu+OS9uOwvv+88zlozwq6B5PVn51FXhO07Pp5933+CLlcyjIJFGDNnufGOHXj++76PvYNjzraDw8mLWz2KcWzU7AvbOziOpe1llAKBw8Pui+Bn7tkDAPjqI/3Tf9FziLFaE53V/I0zuU2JMDqiopG6Jm45MjCnI0NTcAiR94R5S5kx5R7lAsMWCcmxAue+CrO05nfJKEFErb+Y3V8Xd8S6kr5zFjloznEJVyoTqk7Dfy5yqedIL9n6csIiT5ArkJQjG01pCG8l0GuNJDVfD2vtrJYQxdJY1mihMThaw0/6hwEg+6o4erKGKJZY0VXBvuPjzofAA1qf2CHi9ee3P7cFr/vIjxaFm8hMDYswZs7yd7c+jcGxOu7eMWjcHsUSh4cnceGaJQCA/hPjxvbjY3Ws7K5iRVcVR0+aAm2yEWUTgtsOuS7ZQmK01kRXWobMpyOnbsyvR27vUSISYm90QznIF3x2S21BOqHnz8CqNSNHJOjbqeNSqf369eT7OYe1RJp/my+sFXDjIKZ0wox9XZHr64srTfEcBUJok5NuKTNKG/Od31mBE6bnxtVTh05vzAewoJvztx/JHa7H+oeMbepD34Vrl6IZSwxNmH2n/SfGs9cmu3F/shHh1q1H8MSBk3hwz/EZuHJmvsEijJmTnBjLezHsF8GB0RqascSVm5YBAA4MmWXFwbE6lnVW0NdddVwy/UVRLxssRMbqugizcsKaMapGI3be69SMzCZtIC8L1qKkVEktXp0JAY/jUif6voxGdyJLorhsqJ3fvp7QL5ac43r6vqhzlgoEmikKnVOaTplneIG6HqMxn3iOwgCFz70aqLD31Uu2SWN+Xp7Wy5FqmKNDa8wHsKBT8/cdz913u6SoPtgpoWVPaB8cmsQVZ/RAiOR7nW1ae8RC/xDInBoswpg5ydNH8heo7UfMF6sjaVP989YmL4K6YFM/93ZWsLLbdcLUC+qZfZ3Yv0BEWDOK8Z9b9jtNwGO1ZvbGWQ4DVMIgzwmzy5HpG3CjGZPLC+VLE9FCoBT6Q1WVCJpsRt6csOQcp1c2FAW9W3oDO9XMXiSIisqG5lSo3wmbqhzpOFa6c3eabmEpCLI8L99xqUBbPVLDScwv57/vsfT/jCptK2Fvl9Pu2n4Mu4hG9fnIvuPjCAOBM3o7HKc9d8KS158B7YPeZCPCaK2JNUvbsaKrmr1WKZ7RXsu2HXaHipjFB4swZk6ieiku29CDI5aQOp6Krs0ruiBE/rO+fbnHCVP9Gi86sxeDY/UFUVL59uOH8D//6zG871tmLtpoLcpcCwBor4SY0JYtosNaY9KVUkJgou4TAiI7trPkURYXQaxtWOA6AfQUJrXv6UxO6vcXAq6rV3BN5dB/3Kn60Iryxwofp/b8Uc9RORTZwIXvuNT0qZ4TVo9iVKiesGac/V5VREWHNWkLAPsGx/Hmmx7ADZ+8z7m++cj+4xNY29OGM3o7HSfs2MlJCAGcv7o7+VlzwobGk9Lkso4KejsrGLRem9Qw0BUbe7wZY8zigkUY01I+fPsz+M7jh5zbB0aSF6+L1y3FkZPmBOSJdGy8r7uKJW3l7GcgSR0/MZ44YSu6qhgcrRn7HhpOXkAvWb8UgFtKeHDPcTzvf38Xf3/r09P3IGeY76Uj8T9OYzsUY7Umuqp5iakznWoDqIiKvGTYjOjpSCCZriQb6MMgEwJ2KdMUGJa407bRTef+xnz9UE4+Vqg/Nve4ShBRjlVxOdLNR6PuSx23SDQa4q6gBFomXMiy9ty7Ya2qlBmRsSNAPjHrW9BdDXOoXrCuLPg3d15v3XoYAHB0pOY403OVHUdHcPFf3Io//erjzraB0RpWdrdh7dI2p6Q4MFbHso4KVnW3ZfdVqA+EyzrK6O2qOB8QD52cxPLOCjYu78BhIiZnYLSGP/ryo4siQodJYBHGtIx9g+P40Pe3479/4WHHkTo2WkO1FOCcVV1oxhIDY/kL3Ykx9WmzjOWdFZwYzxtjhyYaiCWwrLOCZZ0VxBIYmcyPfXyshp72MlYtcV9AAeC2p45grB7ha48cmPbHO1PsPpb0r/SfmMim5AA1HWk7YfTakcZ0ZOzmhCkhk4gwnxMWGffNtoW6kDL3KxImyXbte2vfoGDfot6t5JqS22bCsfIdVwj6vsk16oMEp+nqhUH23Pt62CgnTB1rnHAw9Z4wtcqC3ROm/83qeVk75klJ8o5txzBSa+KLD+xzJhwHR/MPcifG68b2ofE6lnWUsaS9hFIgDLdL5Yot66xgeWfyIVDnyPAkVi9pw6olbThysubEX/z9rU/jqw8fwCfu2jXdD5eZo7AIY1rGD7Ydyb5/8pDZH3FspIa+7ipWp2JJz/Q6MV5HIIAlbWUs6ygbn7zVJ8/lnRUs6yhn99e3L09fXAFgYNT8pPrw3hMAkrKl/QI6Vzk0PIGOSogolsawgT4dCSRvnmP1ZpZHpTdi6wnpjSh2+qgMR4VsDi8QYUb/ld8lI9PgC8TJqYol6rhFTlhoOGx+x8p9nJrY9CwafirX63OzknO4x62E+XPvKyMnThjd56ecLmMpqkAgEMn/h/GaasxX05FuT9iuY2NYtST5m1IfCuY6+nSiyv1SDI7V0dtVQW9XBVHqritOjDWwrKMCIQSWdVaMQNfjSoT5ypEnJ7F6aSLC6s04K18qtqSvPz9+xnS1mYULizCmZeifmO3m+4HRGlZ0VbGScKyOp+WAIBBY1mFa/ur73s4qlnVWktu0F8nkE24Vfd1V57gAsPPYGDYsb0+ujwhinGtM1COcGG/gmrNWAAD2pG8mzShGrRmbTlg5xHg9yoI9VfM1kL8BJ+VIqjE/fzOnnLCikliRKzWlY1XYQF90XLfUSh2XDD89xeOeTkO/fVx3jUx/+dR0worLkb7JVGqyUm1TTpi+dqQQAtVSmIiwhtmYn01HaiJs9+AYXnx2H8qhcATNXGXXwBjWL1N/6/nrT97SUM0+rOli6sR4HT0dyWvLso6y8fqjXPllnYlLPzLZNNzpYyM19HVVMydeL0nWmhF2p8/d7oGxbFktZmHDIoxpGTuOjuKyDT3orIR45ogpeJQT1psKKd2xOjFezwSW80k0LVsu76xgefpCaTtlyzsrWJ4d15xsOj5Wx9WbegEA++dB2rUaYLh8Yw+ApCcHyN2NTssJG683M9ekvZw7YUIIlEORliPdnDC9f4h2rPJke1tElEO/cBFCZAKQzAnTQ2GdMl3+PTVRqO5OOXfq/lSGmN4T5k56+h0rIUQmbIrKkYEgssBO0WGjhGo5DLLn3reUUq3piuciJwxI3NF6M87EVl6ONHvColhicLSGdT1t2LCsY15MHUspcWhoAldvXg7AjKEYnmggiqXpmFvN98plX9ZRydojgPy1ZllH/hqjXDQpZfL601XJPgQOaq9rSni9+OwVqEfxvHgemecOizCmZeweGMNZfV3Y2NvpjoErEdaVvJDpL1bHx+qZwFrWUTadLqMcqV4EG+a+XRWUwwA9HWVDhKlx8uefsQxCYF68CB5Ky7QXrUsGDdTjGa2rxbtzodVeSZww5ZroIgxA5nzUm245Mu8fiqZ0rMqlAifHM90H0E3nRU5YOSwWJ+q2oulIeqkk/X5FgpIWo4AraPRtlCg0ypxFzx/lQmr39wXIUk6YeiyqrFh1/j8EaU+YWY6shAFKgch6wgbHaohlMiizpqeNTImfa5ycaGKsHuGC1UvQVS0ZImww/SDX21XBivT1R01ZSylxXPsQmPSkmq9N3dUSymGQ7av+Jk9ONNGMJXo7K9nrmv760388uYbrzl8JANg1MPedeOa5wyKMaQmNKMbRkRrWLWvH6iVVw5ZvRjGOj9fR11VFR6WE9nJo9GcNjTfQoz6JdlYw2Ygzdyf7JNpZxrLOsnGbPjkJACu6qtkUJpD3nW1c3oHVS9qw/8TcF2FqzP2M5R1Y2l7Opj3VG6ThhFVCjNciTKbLC7VVzDfdtnKAyUaEWjNGGyHQ1HHp6Ui/Q1QuaGYH8n60qRLz7X31RnIy3iIVHZS4CwtEWNHakYbYLLjeaolw30SR8HNLw/Yxk/O7x9WjJXwTm2P1plF+1q9xOE18b7OuuVoOUGvkERXKCRNCJP2F6f8x9Te0oquK1Uvasw8Gcxm17NnannasX9ZuirDRvKUhK0emt000ItSbcfb609NhirAhQ6Al+6pypSnu3HaIw9qHQMANoWYWJizCmBnlx88M4LK//B4+e+8e4/ZjIzVIiWxS6PCw2fMlJbAiteztUW9VUgSQlxzH1Qtd8km0WgrRVS2hHIrMKVOTk8szEVYhXwRXL23D2p52HCJeBJNlj+ZOtph6w1u9tM14PMrdUE3UQPImOl5vZqGuzptuKZmerDVj1xVJ38BHJ5ueHqsiEVEslspZObLYCbPFn9lI7t+3XPKLJcqxMtwuYQvK4seibivqQyPdQO22Sskv/HzlyGy7J5B1vBY5wlAJbdUcTgnvWpSEtZZDYYjermoJo2kZU/2fW9FdxdqeNhwdqWVrjM4F9HYFhXLr1vQkf+t6Zpdy03u7KtkatOoxKlddve4s7yzjxHgjm3I8rpUq1euMeu3Kh4aqWNJWQiUMjDaLoycnEYgkib8UCByycsSOjkziyr+6DX/8Xz95Lk8HM8dgEcbMKP92924MjTfwmXv2GOPYSjysSSeFBsdq2dp5qq+pr0uJsCoGxvK+Cr0nTDXIqhe4E2m5EUg+sfd05D1jer8YkDphmgjTBc3qJW1O2vVYrYlX/uOd+IV/uWfOvMkcGp5Eb2cFbeUwCactcMI67HIk4YSdnEzeZOw3bPXzWJ3uCSsSS6UCp0a/P7VN752yr6k8lRMW+st/6lx2sKx9W3EJ9PSOq4Qt1S9WlGs2ZTmyoCyr3Ld6FGduZnY9mROW/H3YIqwSJk7YuLbygiL5v5T8Hzum/b2uWdqOKJZOSHKr+Le7d+Oyv/w+bn/qiHG7yv5au7Qdq5a0Za85gCbCOpPhn+WdlcwJy5121Q6RTE+eTGNwTozlr03KcVf76scVQqCX+BC4oquKSinAqiVtTpjrzY8exMBoDV/e0u+8NjHzFxZhzIzRjGLcvTMZtd55bMx4oVMvIquWtGH10jZImb+Yqxemvu5ULHVWsnLkaK2JRiS1T6KuE6Z6wYDkE2tWDtDKDIASYWY5sruthK5qCauWtOHQ8KQhHG/fdhT7j09g2+ER3Ln92HN/gqaBQ8MTWNOTTFrpojIXYfkba0clRDOWGEmFlt0T1l4JC10RBenyFDSWlw0nzC96puo1s4WNHalgo85FXa8SJ6QIK3C7phKU6pxFxy3KLUuu1xJhBYuG2/s6ESAFItZ2wpwewXLeE9ZhCfbOailzW3UnbM3S5P+iHXDaKm68YwcA4FM/2m3cfnBoAqVAoK+7ilVLqsaHQPVas4z4sKZH4ADI+07Vh8DxvF91aXsZYSCc1x+1b29XxWizOHKylk1Nrutpx0GrrHvPzsHs+7vmyOsP89xhEcbMGPuOj2OyEeOXr1wPAHhKywI7bDhhiShS5cD8k3XygpS8WKUlxfQNoyez/JOvx/UXwc5chPV0lLPpJfsFtK+7itFaXp47NDyRvYmsXlrFRCPKPuECwIO7j2f5SQ/uOfGcnpvp4tDQJNYsTcbsdVGpSkVdVbMcCeRvBrbQaiuFeX+Qp38I8PQlFYi0qRa2zhrzC3LChHDFi+FYFZX/CoTLaTthwamdk3os6rh0/5pfhAXp/zn7ftlxtfvbQks/15Q9YcT2ZNkiV4R1aT1hx0ZqaC+H6KyE2QeCw3OgL2x4vJH9PTyy/4QRFXFoeBKrlrQhDARWLTE/BB4fq2Npezn7PeiO1QktBwzQSo7juVOm3HkVoaN6wZTgUk359ofAIycnMxG2tsd1wp46dBI/e+laVEoBnpkH8TnMqcEijJkxVM7Way9ZCwB46lCexXP45CQqpWRCUb3wqKU61AvTim71iTH5pKpGvIH8xU+94ClxpoIUFfr0kt7rASCffEpffA8PT2J1KmjUV932/0n/EF5w5nJcuqEHD++bGyLs4PAE1qbCUYnKiXrkLUcC+fPgiLBymPW8tJXcUqWCcpZUf1k5FM5ajPr97ZJYst3fmJ+JmiBwjlsp6N0CtP6sguZ76nqqBSLMcKyKpiOpcmSh4+fvqdOPR09W5rfZv9NSwXMfBEmf14kC97PejDFWN1deAPLSNpBm+nUnJTb1gWAuTEg+nWYP/uIV6zHZiI0swoNDydqQALIPgepvXQW1Kvo0sXTCdsI61etPPXMN1QdDICk96uXI7rZS9ntQy6opjpycxOqlybWs6WnH4eHJLCtseLyBQ8OTeN7aJThzRee8yDBkTg0WYQXcuf0YPn/fXmdpCSD5Y/z2Y4ey0g7josJYL9/Yg1VLqsbSJoeHJ7FmaRuEEHlw4bASYTV0VMLMuentrKARJX0Xx8fNnoyedtMJS5r28xfBZZoIy9d1yz+JArkoOTQ8idXpC7Kd1C+lxO5jYzi7rwsXrlmCpw+PkP8vZpPRWhMjk02s6Une+Pq0iStVKuqyli0C8ueB6glT/UGua6I7Xe7LhnoD960rad9PJ+8J84saYpMZzUD2k7nnt+9fJHio4xYtW6TfRh1XiTDKQTMjKtzt7dnzW9wTZrtZennS3qauyfc7r6RO2HgtckqVXVo58lgarAwAS9pK6KiEc6IcqUTYay9ZDQBZECqQfAhUgnFlugbkkZO5Y9WruekrupNyZBJP0YAQSakRyBv0j481NJfe/BCo/t4GtOcJUA5bHVJKTDaS0GW1HuXanvZkubZUpO1M4yrOXtmFs1Z2sQibgnt2DOCx/iFy21OHTuKjP3gmKz+3GhZhHvpPjOM3bnoAf/71J/DdJw472//X1x/Hu/79Yfz1LU+R+5+cbCyaxOMH9xzHx+/cadj9ALDz6BhWpotsn9Hbib2D2ovgcG69L++ooBwKHD6Z94TZL1ZAIh6yT6LpC10pDLCkrYSh8Tom0qZzNRoOJDlianrpePpJVL3J6kGMzSjGwGgtE1+2CBsYrWOk1sTmFZ04b3U3hicaRo9bK1DTU2s0JwxI3hTHak2EgTBcnU6rHOn2AIVoRMn/WdsJ09+g7f2A/A2eFGGaWKGEQGGvlIqSIJyuot4tAFAamY6+8PduFTlhuvtFCSIJ6Vxbdr1KhBGPZaoFx5V4JadLNdFm/9703xXl+rXpv3NPTth4w3XCkuDf1AkbqWcfABI3rA2HT7beCdt+eATdbSW88MwkfFmtJiGlxKH0QyCA3IkfSf7Wj4/Vs75RIPkQWGsmU6InxuroSXu9AKBHi8GxXXrAnOxW61Eq+rqqqEcxRmrNzI1flV6TcrcPpH/j6rXzjN5OnN3Xhf0nxrM2CsU9OwbwiTt3OutgLlSGx2kD5LH+IfzKp+7Hz370bmch9Hozxhs/fi/+/nvb8S937JyNy5wSFmEevv3Yoez7r1qLOQ+O1vCdVJh95aEDTmTBEweGcc0HfoBf/dR9C16IjUw28Gufuh8f/M42fOrH5qKzO46N4uyVXQCATb0d2DOY524dPjmZCZ0gEFjZnU8jJiJMeyHrVFk9tdzN6rQ+bY43MpfMcMK06aXBMfNFUA9MPDaaBE6qF8GVVp/anvRFcHNfF85Z2Q0AePqwudTSbKMad9f25D1hQFJeHas10VkJjRJeR+aEJS/4tiDS38CLGvNtB02//1RN+6QTVhLO/RRFeV5GYz6xb3b85zIdWZCYT11TnH4OsQNXgVzcUa8IxgDCaTqN6v6VMHAmL/VeLiq7TP8/4AjvUphOR7o9YR3V0GjMV3EyANLIhznghB0ewXmrutFRKWHt0rbMCTsx3kC9GWN1+rfe21lBKRB5OXI0n7AGzA9relArAHRXk0W8j4/XnX4xdWzlZg2O1YwyZ/b6M1LLXmfynrC0rJs+j3sHxyEEsGF5O85e2QUpTWfv6MlJ/Mqn7scHvrMN/7Fl/3N74uYB//VQPy573/fwge+4Jsi/378v+/4/H+o3tt29YyD7f/v1Rw+0vJoBsAjzctczx3D+6m782gs34p4dA0YkwZa9JyAl8AcvPwf1KMYDu48b+37szp0YrTVx367juOuZhT3Fcu/OQdRSB+y/tuT/4aWU2HV0FGf1pSJsRWcmDqSUaTmgLbv/qiXV7JOoSstX5GKpjqHxBsJAYElb/slcxVCcGHNfBLPpybE6jo/VjE+pemCicryUMGwrh1jeWcleHNWixJt7O3HuquQx2etdzjY+JywpR0ZGKRIAOtKfs54w2zWp+EtX+hu4/Yac3L+gHBkUizAlIor2pWIdzAZ6d98iJ0wJSUqY6ILTPm95CscqllM7YdQHM/0ai9y5opw1SgC3TyXCSrnDZu9fKQWoR0lPmNOYXymh3oyTpb7G64ZzvXpJ61PzpZR4+sgIzl2dfGDatKIzW9PS/ltPPgRWcXi4li3WvcIqRwLJ39UJbbUOAMYi3moAaJn2IXB5ZxUnJ5toRHHihGnPU/76U88EoLqmtWmp9GDmhI1jzZI2VEth9pqqlyS/8ehBAMnv+D8XuAiLY4kPfe9pSJlMvep9dQDwwO7jePn5K3HhmiX4kfX++6NnBlAtBfjz116A3QNjRkhvq2ARRhDHEo/tH8bzz1iGqzYtx1g9yvoLAOChvSdQKQX4zRdvRjkUuHdXPjpca0a47ckjuOGqDVjaXsa3fnLIOLaUEv/wvafxri88bKxpOF+5Z+cg2soB3nP9+dg1MJa9mBwdqWGk1sRZfZ0AgE29ydc9g2PZJ1H1qQ9IPgEeycqR5ot63ruVfhLtKBsOj+q7oMoBy7Qw18HRulGqbCuH6K6WjBdB+5rUC/augTGUQ4F1y9rR25Ukadsi7DP37MG7/+NR50VhOrh162H8+v+7H8/ozcXDkxAiv+ZebdBgeKKBJe1l4xhZY/5oHdWS65roosyXKQUA7VZmVLKvv7m+qGdJ306VI5VwjCJXuOiigdo320YIIiVQp+oJc45VkOAP5CKMcsKKxeaplSPJ4YXQL1QNJ4wQwKrM3FZyBx/aygEm6xHG65GTE7Y0nU7edWwMUsL40LSmpx1HR/LIh2YU439/4wm89+tPOC0L08Gn796N3/viI9mUJ5C8/gxPNHDeqkSEbV7RmbnZqlS6WvsQuHJJG46OTGJovG4EOgMw1q89rk0/KtQi3pkTr38I1Nx2W6zqDr96nVFDAkvaS+ishFmy/+6BMWxakbyGntnXCSFg9Njeu2sQZ/V14vdedjYe3jeUlTfnMzf9eDfe/pktzvJxj+wfwsHhSbzzp89CFEt878k8A25gtIZdA2O4avNyXHt2Lx7eO4RaMy/b/qR/CBevW5qVqB/ZPzQrj6UIFmEEuwZGMVJr4tINPbhi4zIAifBSPLjnOC5dvxRL28u4cO1SPLpvKNv2WP8was0Y152/Ei8+ewXu2TlgZk09dRQf+cEOfPvxQ/ib726btcc0U9yzcwBXbVqOF565HADwcPo87TyqGkmTF8EzejsAJJ/osrTqpZYIG55EM4qTT6Lai5USUoOjidu1zHkRNEWYXi5Q358Yr6e9Hua+K7qrOKY7Ydo1rV5SzW7fPTCKM3o7szfec1d14Wlt0fHH+4fxFzdvxdceOYC/vmV6f6+DozX84ZcexY+eGcAff+Wx7PZDQxPo66pqTkiAZel6mLbrB+RvyIeGJ7LGYh3dpbLFElXW1FFv8DHxHqv3E1H9ZOWChvXudN8a8eatiyvb9TOOT4gTdU0xUY6ghJlCF16U86TEa5VqzC/nay8611iw7JN+3m7icarjUaKwo5zfv8gJoxzKJW1ljNaT4Q89bw7I/ybVB5E+rcy2Js39Uz2TX33kAD5771587r69+Px9e53zPBe27DmO//PNJ/HNnxw0Xk+3pa0C563ORdjQeAMnxupaUHR7dv9VS6o4cnIyX3tWe/3RHeah8YbR7gDki3gfT3stdZGmHLUdR0eTVUD0Mmd3LtCOjtRQLQXZ36UQAmu0JP89g7kIayuHWL+sHTuP5T1uj+w7gSs2LsOLz+kDANynGQPzkZ/sH8JffutJ3PbUEfzvbzxhbFOP7bdeshkru6tGftqWPUlV6qpNy3HFxmWoR3E2ld+IYjxxYBiXbujBeau7US0F+AmLsLnJI6mounxDD9Yva8eqJdVMhE02IjxxYBjPP2N5dp/H+oezcqUqTV61aTmuObsXh4YnMxscAL726AH0dlbw367cgK8/emDeTFfqeVqKoyOT2H5kFNeevQLPW7sUlVKQRTeoT2lnrXSdsMx1skTYSK2J/hMTxpJFQOJMLGkr4fhYHcdGzKb9ZN8kKV71XuifRNUSIoOjSc+G3usBpEsXjdRwZKSGciiMfVcvbc+udffAGDanL4IAcO6qbjxzZCRrgv3Sg/vQXg7xC1esw80/OeBtGn02fOXhfkw0Irzp6g14ZN8QdhxNXlQODU9mk5H540nWwzwx3nBEmGrMj2Wes6Zj9AcRb8qKonIkJWq6tdJxYTmSKCl2tyXXWZ9ikokSlQraCUuuo0GUBoucMF2MUiXQbIqRmHDMereI45vizt2uXCXb3dTvTzX8m+VI/++N+r30dJSzkq7thKkPM0rsGE5Y+netyuX/uWU/zurrxFWbluEz9+6Z1j6cz9+3F0vby3jtJWvw9UcOZGvIbk+v69zUCTszdeR3DYzh8PAkwjSoVaGceLtUCeSumHKzlll/VyoG5+jIJJZ3Vozfr9p3e/qBTW/4X95RgRCJw6YGlfT/X2t7knU4h8aTNoxN6QdZADirryv7oLt7IKkuXHHGMly0dgm620q4Jw3JVkgpMZhOeM4HvvJwP6qlAG9/8Wb8cPuxbEABAO7ffRznrOxCb1cV15zVi3s1o+PBPSdQLQW4aN0SXJ4aKI+k70lPHx5BrRnjsg09KIcBLl63FI+yCJubPLp/CN3VEs7q64IQAs8/Y1kmwh4/MIxGJLNFVi/f2IOJRl6ufCD9D7K8s4Jrz1oBIJlaAYCJeoQfPHUU11+0Gr98VZJdc5u1nMbffHcbnv++7+OTd82NyQ0g+eRx1V/dhhd94HajGf3e9BPINWf1olIKcMm6pdnztPPYGDorYfZi1lktoa+7ij0DY/nyQEbpL3lxeuLgMADzkzWQp1brU035vm1oxhI7j40hEOYb8jLtk2gjksY59eMeGZ7Eyu42o6SzekkbBsfqmGxE2DM4boiw81Z3Y7we4cDQBKSU+P6TR3Dd+X1484s2oRFJfO9Jd6L22fKtxw7h4nVL8fsvPwcA8INtRwEkYbhnLO8w7tuXOnv2mD2QiCH1Gk+JFt2xsuMKdIqmI6l+J/3N3+5DA3IBQpXautr8DpcOJU7UCzPlLClR0SActiIRpkOVQJXoqYSE2Cz5RdhUvWaqjLekzS/CpuqbK2rMp4S18Xdkuc/qw4xywvQPRllT+fAkhscbeGjvCbz24jV445UbsHdwHA9rlYPnwmQjwvefPILrn7caN1y1AeP1KBMfTx8ZQV93NRNBm1ckfVR7UhHW11U1hO+qJW0YnmhkJUv9NaYcJnmG+46Po96MjQ9qQL6I95GTNazsNj8gqhYBJQr1xvxSGGBZR9K4rw8qKdYuTQJbVQO++iALAGf3dWHXwCjiWGbP5/PPWIZSGOAFm3tx947cHYpjid/67EN4/l/dhj/72uNzRojtODqKV37oTrz+Iz828hibUYxbHj+EV1ywCr/2wjMgJXBrOgjXjGI8tOd4Vk685qwVGBitZ+G1D+09gUvX96BaCrF6aRvWLG3LTBVVerxsQ0/29YkDwy2PqmARRvDo/iFcsmFp9qJ2xcZl6D8xgSMnJ7Ny2+Ube7JtQOKeRbHEQ3tP4OrNiUt2Rm8H1vW048epCPvh00cx0Yjw2ovX4PINy7BqSRXfeTx/s75z+zF87Ic70Ywl/vqWbZm12kqaUYz3fOUxdLeV0IykYQ3fs2MQS9pKeN7apQCAK85YhicOnEStGWHnsVGctbLL+GSnJiT3Do6jUgqMF50NqZh4eO8QADhuV29XBUdHajg6Mmk4aEAu4J48dBLLOirGm1F3tYT2cpg5dGsp52i0jsMnJ7PjKFRw4iP7hlBvxpYTljfnP3noJI6O1HDdeStx6fqlWL+sHd96zOwFfLbsHRzDY/3DeP2la7BmaTvOWdmFu7YPoN6M0X9i3Ph0nDwXbeg/MY6Tk02j/w1IXvSVMFvabr6RADCahm3nQ4fapsQVYcYYUOJOucGUMOw+RRFGRzf488eU4KRegCmxQkFNiSoxU9RcT5Uj9cdJPZZMhLW7z4caqJgqmoB67lV/n/33Bphu6QrrQ5ESIk8ePAkgz9oC8pL+oeEJ3L1zALEEXnJuH15z0WpUSwG+9og5sfZsuXP7MYzVI7zu0jW4evNydFRC3PF08gFl+5ERnJ+WIgFg/bJ2hIHA7oGxRPAQH+QAZM7IKuLD2hMHhsltahHvQ8MTWOlsS57X7al77bRDpGn8+4+PY/1y87VpbU87BkbrmdDVX3/OWtmFyUaMg8MTeHjfCXS3lXB22rB/7dm92Hd8POul+uZjB3HbU0dw9soufPGB/dn7Uav5v9/cit0DY9h2+KTxvnLfruMYGK3jdZeswaYVySDU99O+rycOnsRYPcIL0vaXF52ViLF7dgxgshFh68FhXH5GT3asyzb0ZL/Tn+wfQm9nBeuXJc/zZRt7UGvG2KaFiLcCFmEWE/UI2w6PZGoZQOZ6Pbz3BB7edwJn9HZkL1rrl7VjRVcFj+wbwlOHTmK01sxEmBAC157di3t3DiKKJW7dehjLOsq4evNyBIHAay5ak7yQpCOzH/vhDqxZ2oYfvec6rF7Shvff8pTxqaUZxXisfyjrfZoNvvbIAewdHMf7f/5i/MErzsH9u49nIXh37xzAi87qzd40rtjYg3oUY+vBk9ipTUYqNqVZYbuOjWJzb6chlpSjo6ZJ1y8zxcX6ZR14dP8Q6WapF76f7B/K/sAUQghsWN6eLTNku2gruqoYnmig/8SE88K8Ib0G9cKuvwiek5Y5nj4ygjtSZ+ql562EEAKvv3QtfrxjYFqaY5WYU6sO/NS5fXhgz3E8c3QEsUxyg4xrXt6RDTjYpVf1eAG6HKm/0Rb1WHVU/WWtvm73zVyHEjh7BpI3CxX9oUP1QJ0ql6d/wwPEoIQSUM3TLEfqUMJFiTCqLKv+TigxVCR6gbwcSzlh6m9lcIrXBeocKpx4BfF704W6vV05zIdPTqKvu2oI0iVtZXRVSzg4NIm7th9Dd1sJl2/oQXdbGa963mp867FD09Kg/+3HDmFZRxkvOrMX1VKIa89egTu2HUO9GWPbYVOElcMAG5d3YOexUeweGHNeJ9QHsEf3D2WLaOv0dlaykuKG5e5rUxRLbD14Equs56mnvYxA5C0u66zzrutpxzNHR3FoeBJnLDf/ltVr1X27jqfxFGY5EkgqDg/vPYHLNvRkr6fXnp1UYO7dOQgpJT551y6cs7IL3/q9F2Pt0jb84/e3z5ob5nvP+vEzA/jRMwP4k9ecj3f+9Fn43pNHsmnPbz9+CB2VENedvxIA8MoLV+GBPccxNF7H/Wk/mHqP3bC8AxuWt+OenYPYejCpUl2+YVl2nss39mDf8XEMjNbw6P4hXLahJzMG1Hv8o/tbu/rJjIowIcT1QoinhRA7hBB/QmwXQogPp9sfE0JcMZPXcypsPTiMKJa4dH1Pdtvz1i5FtRRgy94TeHjfUOZ+Acmb/GUbluGR/SeyhsGrNi3Ptl979gqcnGzi0f0ncPu2o3j5BauyHpXrL1qNWjPGHU8fxaP7h3DfruN424s3Y0lbGe9+5Tl4ZN8Qbt2afAIYrTWzALprP/gDfPXh6fk0qdg9MIaP37kTX324P+tvqzUj/PPtz+DidUvxigtW4r9dtQFd1RL+7e492HVsFP0nJrI/eABZDf62J4/g4PBklhGm2LSiE0dO1vBY/7AhaIDkzbu9HGLH0dF0AW3zxWzzis7shdsWS2u1BttN1nGBXEwByYuejnqh23d8HButF0HV1KtGvi9YsyTbtqStjLVL2/DMkVH8YNtRXLJ+aSZAfvGKdYhiiW88muTLTTYi/Pv9+3DjHTtOa009KZNjXLGxJ7vunzq3D/VmjM/dmzQ4q14XxUbthdp+QwA0EUa4TpSo0FHCrYMoRyoHbFV3m7PNvJ/r8uxOS0DnrOpytnUTouNU+e2fPgsAcOWmZc421axPiYEqUUrUOX91N37lBRvJbUqM2v2TQO66FTX++8idMPf5sEvSPs7uc59ftTwXVVrVhXqf9X+jHAbZ/xfq/BtSwXPn9mO49qwV2Wvez1++FkPjDdx5GgtQR7HE1x7pxz/f9gx2pb2mo7UmbnvqCK6/aHV27JedvxIHhibwjUcPoN6Ms9cjxYVrluDeXYPoPzFh/C0njyHtGTs25gglwBShGyzHSi8T2j2aQSAyN2zN0jZHCJ/V14VdaYP9phXm86j+5n/0zDGsXdpu9O2p19b7dg1i+5ER4z3pnJVdWNFVxd07B/DA7uPYevAk3nrtZrSVQ7wrnZ5ULQ1Akmt54x078MOnj06rODs8PIk33Hg3fvajd+OaD96O7zyefKCMY4kPfvcprOtpx6+/6Ay85ZpNqJYCfPKunWhGMW7dehgvO39l9nhfeeFqRLHEHU8fxd07B3FmX6fhvF5z5grct2sQW9IP2lcYTljyvPzgqaPYcXQ0q2AByfO7oquCR/cPT9tjfjY8+4+ZUyCECAHcCOCVAPoBPCiEuFlK+aR2t9cAOCf99wIAH0u/toznn7EMP/z/Xmp8oq+UAly6vgefu28v6s04c8YUV29ehtueOoJP3rUL563qNkpe16R9YR/8zjaMTDbxqgtXZduu2rQcK7oq+HoaBrukrYQbrk5e3H/xivX41x/txt/eug0vPHM53vaZLXh0/xD+9DXn446nj+KPvvwT9J+YwO+97GwASSP8rmNj6KqWsLG3A2uXtpM9Ijbj9Sb+5Y6d+MRdO7Pk7M/ftxf/fMPl+O4Th9F/YgIf/IVLIIRAd1sZv/T89fjC/XuzT/yvuCB/PKuWtOG8Vd34lx8m/WxqYlKhnImjIzVcuNZ8ERRC4JxVXXisfxhn9XU6b9a62Hiete+qJVV0t5UwMtl0nCEg/wS5pK3kOEAXrVuafX+x9j2QlOf6upOm/80rOp1y2QVrluDWrYcxXo/wB2m/FpBMhF66fim+vGU/XnfJWvz257bgJ/3JH/rHfrgT//PV5+HXXniGUXaKYomnDp3EQ3tPoKejjJeetxIP7T2O7UdG8be/dEl2vxdsXo5qKcCXHtyPtnKQlYIVZ2jlSfs5BvJEd9oJKxZhG5Z1YGh8mBRSym2yyzGnwt+/8VJ84s6dTj8NQEdanCoXrFmCPR98LblNvXE/Gyfsu3/4U95t6u9CNYjrqAlP3/Hf+7oL8WNPrmCREzaV+6hYSvzO1aQfNfigC3XqHBes6caPnqkZwl9x5RnL8Ll0EvL3X96X3f6Sc/rQ21nBv9+/F6+4YCWeOjSCe3YOoK+7ihed1Wu8uQLJh+I/++rj+d/PnTvwj798GQ4NT2K8HuGXr9yQ3fe68xLn5C+/mbzF6G+4AHDJ+qX4dioEdJcMSIRVd7WEkVoTl1ivAwCMsr8tSHXxdBHxN6eeJ/sDEwDjg6pdOVDbVGlOZ3lnBeeu6sLH0tfanzo3f46FELjmrKQvbKzWRE9HGT9/+ToAwC9fuQH/etcu/M13t+Has1fgYz/ciY/84BmoP4PLN/bgfW+4yHhdLKIRxdg7OIbdA+PorIa4YPUSLOusYNvhk3jbp7dgaLyOv/q5i/DVh/vxe198BP9aDjE4VscTB07iH//bpaiWQlS7Qrzx+RvwHw/ux8XrluL4WB2vvTh/vJesW4qV3VV88f79eHjfCbztJZuNa7jm7F78x5b9+OgPdmDzClOgXbwuGRj7y28l/yd++tyVxvP0pXe8yHFFZ5sZE2EArgawQ0q5CwCEEF8C8AYAugh7A4DPykR+3yeE6BFCrJFSTk9DzbNACEG6Ka+4cCUeSHu09P8gAPCzl67DX9+yDUdHanjrteZ/kL7uKq7etBwP7DmONUvbjD+WMBD49Rduwj/eth0A8D9ffV5WBiqFSfbWb312C656/22QEvjomy7Hay5eg7deuxnv+cpj+ND3t+O/HurHyGQjW4RXUS0FOKO3A+3psiRRLNGMY9SjGI2mRCkU6KqWsO/4OMbrEX7h8nV4z2vOx327BvHnX3sCr/jQnahHMa47rw8vPid3u9567Sb8+/378IX79+Gl5/U5PVY/c/EaPH1kBOVQGG4ikPSMKdQLps6LzuzFY/3DzidYAMaxbDdLLZUyMjnqCGQA+Olz+/Dpe/Zg9dI2R0Ccq7kvl6x3X3hesHk5vvXYIbxYc/wUr790LW5PP1G+/tK1xrZ3/NRZeNe/P4wXfuB2tJdDfPzXrsAFa5bgz7/+BP7i5q34p9u2Y92ydgRCYKzWxNGTSa6aoq0cQErgrL5OvOGytdrtIa47byW+u/Uwrtq03HlDv1D7hG8/TwDwwrRp9/qLVjvbKHdM53deehb++xcedpwAIPmb+NojB/A7Lz2r8BgUP3vpWvys9fwp1O/L90J56YYerCce51Qo8UG5OOo5td+oT4Ubrt6IL2/pz3pVdNSbg+8N7m0v3oy3vXgzuW3t0nYMjTfIQQUhBG64aoPhhuhcun5p9gHLpr3sz0tb3lnB89YuwdGRGjk9qZr1ryH+Nq49e0UmwvS/9XIY4G0v2Yy//e7TuOr9tzul4jN6O7C0vYxYSoxONrFncBwruir45xsuwwvP7MU7P/8Q/vsXHk7P0Wu0jaxe2oYXndmLe3cN4gWblxsRFADw0+f14QPfSWIs7NcJIQTOWtmVlaxsXnx2H268Y2e23q2O7v5eSuybhIYOkMe9UquaXGi5cyuXtOHMvk7sOjaGl5zjPscvO38Vth8ZxdL2snPs112yBjf/5CBue+oofv/l52Tl4nIY4E9/5gL89ucewhXv+3722v9nr70Atz91BH9369N43Ud+jDP7OhEIgYl6hHoUoxIGqJYCVErJ10hKTNQj7Ds+7vzf2ri8A4eHJ9HTUcYX3/FCXLK+Bz972Vr8yr/eh7d95sHkcZ+xDG+4dF22zztfehb+66F+vPcbW7FheTtedkH+fyYIBN545XrcmC4z9AuXrzfOp4yOkVoT7/ipM41t7ZUQP3PRanz90YPYvKLT+QBvV2tagZip2rAQ4pcAXC+lfHv6868DeIGU8ne1+3wLwAellD9Of74dwHuklFusY70DwDsAYOPGjc/fu3d6s2ZOhVozwge/sw0vPnsFXq65P4rvPH4I9+8+jj/7mQucN8bdA2P4xJ07ccPVG50/llozwkdu34FyGOB3rjvLmIySUuKLD+zH3TsH8Ksv2Jj9Z1PbvvTgfvxg21Gs6Krgsg09uGDNEozWmtg7OI7dA2PYMzCGehSjFAQoBSJLxa6UAjQjiZFaE6uXtOHnLl9nvCjtPz6Of779GXRVS/ijV53rfPq+4+mjuO3JI/i9l53jlAYnGxE+cMtTeO0la7O6vc4Du4/j8QPD+M1rNzkvZoeHJ3HjHTvwP68/j/zE/90nDiGKgddanwqBpJdj+5ER45Ox/lx98Lvb8NqL1+ASSxgCSX9CM47xUkIYHhqewMd/uBN/8IpznciHZhTj43fuRF93Ff/tKrM8JaXE5+7bi4f2nsA7furMzLGSUuK2p47ie1sP4/hYHZGU6KyUsKyzjCvPWI4rNy3DkZM1fO2RfkzUY/zhK85xelAODU/gw7fvwLuuO8vpnQOAu7Yfw7GRGn7x+eudbXEsMdl0wzcVn7hzJ67ctJwUs8+FZ46M4PDJSbzknL6p72yx4+gIejurTjTAc+WOp4/iBZuXk8/FvTsHcd7qbud3/lx5aO9xXL5h2Sm51DpHT07igT3H8bpLaLH6bKk3Y/z1LU/hd647y3GhgOL/L3sGxvCNRw/id192tjNMIKXEjXfswBm9nc4HlCiW+MRdO/F4/zCuPXsFXnnhKhwbqeGObUfx9JERjEwm655WwgBXnNGDX75yQ5a9NdlIWiSGxhv4o1ee6zh0u46N4tP37MFvXLPJcZYA4LP37sHyzgr5PPafGMdd2wfwC1esc0RnI4rx/m8/hV974RnkG/czR0Zw944BvOVaV0QfHJrAFx/Yh3dddzYpZv/9/n3oaiuRH0Qe3HMcj/cP480vOsOJWhmvN/GBW7bhF65Y53xwlVLi//14N06M1/EHLz/XeU/6xqMH8N0nDuP6i1bjDZflYmh4vIEvPLAXj+4bQjkMUC0noqsRSdTSFRLqzRilIHkf2djbgfNWdePMvi6MTjbx2IEhPLZ/GGt62vDOnz7LGGI4MVbHP9+eLJz9P151nvO3dfeOAdz86EG85dpNTrl4vN7Eh2/fgc0rOpzXWiB5b9iy5wT+x6vOcwZmjp6cxEfv2IGfv9x9nmYLIcRDUsoryW0zKMLeCODVlgi7Wkr5e9p9vg3gA5YI+2Mp5UO+41555ZVyy5Ytvs0MwzAMwzBzhiIRNpON+f0AdFtiPYCDz+I+DMMwDMMwC46ZFGEPAjhHCLFZCFEBcAOAm6373AzgzemU5AsBDLeyH4xhGIZhGGa2mLHGfCllUwjxuwBuBRACuElKuVUI8c50+8cB3ALgZwDsADAO4K0zdT0MwzAMwzBziZmcjoSU8hYkQku/7ePa9xLAu2byGhiGYRiGYeYinJjPMAzDMAzTAliEMQzDMAzDtAAWYQzDMAzDMC2ARRjDMAzDMEwLYBHGMAzDMAzTAliEMQzDMAzDtAAWYQzDMAzDMC2ARRjDMAzDMEwLYBHGMAzDMAzTAkQSWj9/EEIcA7B3Fk61AsDALJxnLsKPffGymB//Yn7swOJ+/PzYFy+z8fjPkFL2URvmnQibLYQQW6SUV7b6OloBP/bF+diBxf34F/NjBxb34+fHvjgfO9D6x8/lSIZhGIZhmBbAIoxhGIZhGKYFsAjz88lWX0AL4ce+eFnMj38xP3ZgcT9+fuyLl5Y+fu4JYxiGYRiGaQHshDEMwzAMw7QAFmEaQoi/E0JsE0I8JoT4mhCiR9v2p0KIHUKIp4UQr27hZc4YQog3CiG2CiFiIcSV2u2bhBATQohH038fb+V1zgS+x55uW/C/ex0hxP8RQhzQft8/0+prmmmEENenv98dQog/afX1zCZCiD1CiMfT3/WWVl/PTCOEuEkIcVQI8YR223IhxPeFEM+kX5e18hpnCs9jXxR/70KIDUKIO4QQT6Wv9X+Q3t7S3z2LMJPvA7hISnkJgO0A/hQAhBAXArgBwPMAXA/gX4QQYcuucuZ4AsAvALiL2LZTSnlZ+u+ds3xdswH52BfR797mH7Xf9y2tvpiZJP193gjgNQAuBPCm9Pe+mLgu/V0vhqiCTyP5W9b5EwC3SynPAXB7+vNC5NNwHzuwOP7emwD+h5TyAgAvBPCu9O+8pb97FmEaUsrvSSmb6Y/3AViffv8GAF+SUtaklLsB7ABwdSuucSaRUj4lpXy61dfRCgoe+6L43S9yrgawQ0q5S0pZB/AlJL93ZgEipbwLwHHr5jcA+Ez6/WcA/NxsXtNs4XnsiwIp5SEp5cPp9yMAngKwDi3+3bMI8/ObAL6Tfr8OwH5tW39622JisxDiESHEnUKIl7T6YmaRxfq7/920LH/TQi3NaCzW37FCAvieEOIhIcQ7Wn0xLWKVlPIQkLxZA1jZ4uuZbRbT3zuEEJsAXA7gfrT4d1+azZPNBYQQtwFYTWz6X1LKb6T3+V9IrMsvqN2I+8/LsdJTefwEhwBslFIOCiGeD+DrQojnSSlPztiFzgDP8rEvmN+9TtFzAeBjAN6H5HG+D8A/IPlQslBZkL/j0+BaKeVBIcRKAN8XQmxLHRNmcbCo/t6FEF0AvgLgD6WUJ4Wg/vxnj0UnwqSUryjaLoT4DQCvA/Bymed39APYoN1tPYCDM3OFM8tUj9+zTw1ALf3+ISHETgDnAphXTbzP5rFjAf3udU71uRBC/CuAb83w5bSaBfk7PlWklAfTr0eFEF9DUp5dbCLsiBBijZTykBBiDYCjrb6g2UJKeUR9v9D/3oUQZSQC7AtSyq+mN7f0d8/lSA0hxPUA3gPgZ6WU49qmmwHcIISoCiE2AzgHwAOtuMZWIIToU83oQogzkTz+Xa29qllj0f3u0xcixc8jGVpYyDwI4BwhxGYhRAXJIMbNLb6mWUEI0SmE6FbfA3gVFv7vm+JmAL+Rfv8bAHzO+IJjsfy9i8Ty+n8AnpJSfkjb1NLfPYe1agghdgCoAhhMb7pPTQKmJcrfRFKm/EMp5Xfoo8xfhBA/D+AjAPoADAF4VEr5aiHELwL4SySPPQLwF1LKb7bsQmcA32NPty34372OEOJzAC5DUp7YA+C3Vc/EQiUdy/8nACGAm6SU72/tFc0O6Yeqr6U/lgD8+0J/7EKILwJ4KYAVAI4A+AsAXwfwZQAbAewD8EYp5YJrYPc89pdiEfy9CyFeDOBHAB4HEKc3/xmSvrCW/e5ZhDEMwzAMw7QALkcyDMMwDMO0ABZhDMMwDMMwLYBFGMMwDMMwTAtgEcYwDMMwDNMCWIQxDMMwDMO0ABZhDMMseoQQPy+EkEKI81t9LQzDLB5YhDEMwwBvQrICxA2tvhCGYRYPnBPGMMyiJl1LbieAVwL4TynleS2+JIZhFgnshDEMs9j5OQC3SSkfAzAmhLiixdfDMMwigUUYwzCLnTchWbYE6dc3tfBaGIZZRHA5kmGYRYsQohfANgDrpZS1dJH2OwGcIfnFkWGYGYadMIZhFjO/BOAWKWUNAKSUuwEcBvDill4VwzCLglKrL4BhGKaFvAnAJUKIPdptvQB+BcCPWnJFDMMsGrgcyTAMwzAM0wK4HMkwDMMwDNMCWIQxDMMwDMO0ABZhDMMwDMMwLYBFGMMwDMMwTAtgEcYwDMMwDNMCWIQxDMMwDMO0ABZhDMMwDMMwLYBFGMMwDMMwTAv4/wGy4IKg2aiOLQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ax = plot_ramsey_fringes(Δ_min=-20, Δ_max=20, N=1001, label=\"Ramsey\")\n",
"#plot_ramsey_fringes(Δ_min=-20, Δ_max=20, N=1001, label=\"ideal\", ax=ax, func=pop_e_ideal_func)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "69a3b282",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:41.996051Z",
"start_time": "2021-12-15T20:18:41.886416Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGqCAYAAAAWf7K6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9aZgtyVkdjK7IaU81nbH7nG5J3VJLLbVmC0kggUEYEJPAxg+fkc0HYjAXPgMXzL3YTDaYCx8GjG0QNrNlAUaIyYyfwSBAgCSEpNbUarXUc5/5nDo17b1z75zi/oiM3DlFZkQOO6u7cz3PeepU1a5db2VGRqxYsd73JZRS9OjRo0ePHj169OjRg0HrOoAePXr06NGjR48ePY4TeoLco0ePHj169OjRo0cMPUHu0aNHjx49evTo0SOGniD36NGjR48ePXr06BFDT5B79OjRo0ePHj169IihJ8g9evTo0aNHjx49esTQE+QePXp0DkLI9xNCfqXl33EfIeSzBN/7LELIhYZ+DyWE3CX43i2EkHcSQo4IIf9B8JrvJoT8QhOxNAVCyDcRQq4SQqaEkFNdxyOD9D0lhDxKCPmcLmPq0aPHkwdG1wH06NGjexBC/gLASwHcSildSrz+TQC+nlL66S2H1hgopS/sOgYA3wDgBoAtKihCTyn94fWGVAxCiAngJwB8KqX0Q13H06NHjx7rQK8g9+jxNAch5A4AnwGAAviSbqN5yuNZAD4mIseEkOMoWtwCYAjgPtUfJAz9OtOjR48nHfqJq0ePHl8F4D0A3gLgq+PfIIQ8gxDy24SQ64SQXULImwkhLwDwMwA+LTxy3w9f+xeEkK+P/eybCCF/Hfv8PxNCniCEHBJC3k8I+QyZ4Agh9xNCvjj2uUEIuUEI+XuEkCEh5FfC2PYJIX9HCLlF8D7RETshZEQIeQshZI8Q8jEAr0y99jwh5LfCv/sRQsi3xr73KkLIu8Pfdzm8JpbE3/EWsOv7neF1+5zQWvKb4d9wCOBNcbsJIeSO0LLx1YSQx8O/+3ti7zkihPz38O+4nxDynSlbQdnf8b7wflwlhPxETszPA/BA+Ok+IeQd4ddfE17rg/Dja2I/8xeEkB8ihPwNgDmAZ+e8778ihFwMrSYPEEL+Qfj17yeE/EZ4PY4IIR8hhDyPEPJdhJBr4fj5vNj7fE34dx8RQh4mhPy/yu6D6N4QQn6aEPKH4Xu9hxByZ5X36tGjx1MDPUHu0aPHVwH41fDf6znBJIToAP4AwGMA7gBwG4C3UUrvB/CNAN5NKd2glO5I/p6/A/AyACcB/A8Av0EIGUr83K8BeGPs89cDuEEp/QAY4dwG8AwAp8K4bIn3/LcAnhP+ez1iG4NQ8fx9AB8C+5v/AYBvI4S8PnyJD+DbAZwG8Gnh9/+vsl9IKX0T2DX+0fC6/Wn4rS8F8JsAdsLv5+HTAdwd/q5/E25S+N9xBxgJ/VwAX6nwd/xnAP+ZUroVXoe358T8CQDcmrJDKf1sQshJAH8I4CfBrvlPAPhDkvQm/59gdpJNsPETgRByN4BvBvBKSukm2PV/NPaSNwD4ZQAnANwL4I/B1qrbAPw7AD8be+01AF8MYAvA1wD4j4SQv5f+OyTxRgA/ADY+Hw9/V48ePZ6m6Alyjx5PYxBCPh3s2P/tlNL3A3gIwD8Nv/0qAOcB/H8ppTNK6YJS+teCtyoFpfRXKKW7lFKPUvofAAzASF8Z/geALyGEjMPP/2n4NQBwwUjaXZRSn1L6fkrpocR7/h8AfohSepNS+gQY2eN4JYAzlNJ/Ryl1KKUPA/h5AF8R/h3vp5S+J/w7HgUjbJ8p8TtFeDel9H9SSgNKqYjc/wCl1A49wB8C84vzv+OHKaV7lNILKn8H2LW7ixBymlI6pZS+RzLeLwLwSUrpL4fX4NcAfByM2HK8hVJ6X/h9N/XzPti9v4cQYlJKH6WUPhT7/l9RSv+YUuoB+A0AZwD8SPg+bwNwByFkBwAopX9IKX2IMvwlgD8BswtVwW9TSt8b/p63AqhKtHv06PEUQE+Qe/R4euOrAfwJpfRG+Pn/wEpNfQaAx0KiUhuEkO8Ij8MPCLNlbIOpsIWglD4I4H4AbwhJ8pdgRZB/GUxhfBsh5BIh5EcJSyorw3kAT8Q+j6uczwJwPrRQ7IexfjeYFxfhkf8fEEKuhLaIH5b5OwrwRPlLcCX2/zmAjfD/6b8j/v/CvwPA1wF4HoCPhzaJL4YcziOlCoef3yaII4Hwfn4bgO8HcI0Q8jZCyPnYS67G/m+DnRb4sc+B8O8nhHxBaIe4Gf59X4jq9yJ+jadg47NHjx5PU/QEuUePpykIISMwBfIzQ7J3Bcw68FJCyEvBSM4zSX7iWF6S2QzAOPb5rbHf9RkA/lX4+06EtowDAEQyXG6z+FKwJLcHAYBS6lJKf4BSeg+A14Adt3+VxPtdBtsAcDwz9v8nADxCKd2J/duklH5h+P3/CqaYPje0J3y3wt+Rh9yEPUlcBnB77PP431T4d1BKP0kpfSOAswD+PYDfJIRMJH7nJTDyHcczAVyMfV74N1FK/0dYAeVZ4Wv/vcTvTYAQMgDwWwB+HMAt4Zj6I9S7Fz169OgBoCfIPXo8nfEPwY677wHzBr8MwAsA/BUYyXwvGAH7EULIhLCEuNeGP3sVwO2p5LQPAvgyQsiYsDrAXxf73iYAD8B1AAYh5N+A+UZl8TYAnwfgm7BSj0EIeR0h5MWhX/oQzDbg579FAm8H8F2EkBOEkNsBfEvse+8FcBgmko0IIToh5EWEEJ7Itxn+rikh5PlhTF0h/nfcBubt5Sj8OwghX0kIOUMpDQDshz8jc+3+CMDzCCH/lLCEyX8CNob+QCZgQsjdhJDPDgnuAkwVlvm9aVhgVo3rADxCyBeAjZEePXr0qI2eIPfo8fTFVwP4b5TSxymlV/g/AG8G8M/AlLg3ALgLLGnpAoB/Ev7sO8DKfl0hhHB7xn8E4ICR5/+OZMLZHwP4fwB8Auw4fgE5awEAgFJ6GcC7wVTiX49961awBLdDMBvGXwKQaTjyA2Ecj4D5Vn859rt8sL/7ZeH3bwD4BayO3P8/YD7oIzBPbzyedePfgd2XRwD8Kdi1WAJSf8fnA7iPEDIFS9j7CkrpouwXUkp3wZT67wCwC+A7AXxxzKZThgGAHwnjuQKmYH+35M/G4zgC8K1gm4Q9sHvye6rv06NHjx55IIJynD169OjR40kGQsg3gRHdOkmDT3sQ1nHxVyilt5e8tEePHk9R9Apyjx49ejxJQQg5Rwh5LSFEC8unfQeA3+k6rh49evR4suM4dm3q0aNHjx5ysMDKzN0J5iN+G4D/0mVAPXr06PFUQG+x6NGjR48ePXr06NEjht5i0aNHjx49evTo0aNHDD1B7tGjR48ePXr06NEjhp4g9+jRo0ePHj169OgRQ0+Qe/To0aNHjx49evSIoSfIPXr06NGjR48ePXrE0BPkHj169OjRo0ePHj1i6Alyjx49evTo0aNHjx4x9AS5R48ePXr06NGjR48YeoLco0ePHj169OjRo0cMPUHu0aNHjx49evTo0SOGniD36NGjR48ePXr06BGD0XUAqjh9+jS94447ug6jR48ePXr06NGjx5Mc73//+29QSs+kv/6kI8h33HEH3ve+93UdRo8ePXr06NGjR48nOQghj+V9vbdY9OjRo0ePHj169OgRQ0+Qe/To0aNHjx49evSIoSfIPXr06NGjR48ePXrE0BPkHj169OjRo0ePHj1i6Alyjx49evTo0aNHjx4x9AS5R48ePXr06NGjR48YeoLco0ePHj169OjRo0cMPUHu0aNHjx49evTo0SOGniD36NGjR48ePXr06BFDT5B79OjRo0ePHj169IihJ8g9evTo0aNHjx49esTQGkEmhPwSIeQaIeSjgu8TQshPEkIeJIR8mBDy99qKpUePHj169OjRo0cPWbSpIL8FwOcXfP8LADw3/PcNAP5ri7H06NGjR48ePXr06CGF1ggypfSdAG4WvORLAbyVMrwHwA4h5Fxb8Tyl4C6Ax94FUNp1JEnMbwJP/F3XUWRxcBG49vGuo8hi9yHg6ErXUSThe8DVj7Exdpxg7wHX7u86iiz2HgNuPBh9+tjuDPQYPJePfvRvcf3iw12HgYXr4/KBvfrChfcDi4PuAspDEAAX3w/4bteRJGHvATc+efzm+d2HgOm1rqPI4sL7jufYevgvAG/ZdSRJeEvg0b85fmPrmKFLD/JtAJ6IfX4h/FoGhJBvIIS8jxDyvuvXr68luGONP/5u4L99AfDOH+s6khV8D/jFzwV+8XPYhHBccHAB+I/3AP/l1cD0GI2dB/8M+Km/B/zylx2vSeqdPwb8108D/vBfdh1JEr/zjcB/+VTg/f+960hWcBfAz30W8OZXAJfuxW9/4AI+88f+Av/1Lx/qNKxrD92LO37z8zD5uU/FcrbXaSzf8mv34tP+73fgIxcOgA/+GvALnw38xps6jSmDP/oO4Oc/G/ir/9B1JCtQCvzi64E3fwrwiT/uOpoV5jeBn/l04MefC+w/3nU0Kzz2buAX/gHwX197vDY67/4p4K1fCvzBt3cdSRK/9kbgLV8IfPBXu47kWKNLgkxyvpbLFCilP0cp/RRK6aecOXOm5bCOOZZT4P1vYf9//1uOD7m68HfAbqikvffnu40ljo/93ur/HzhG5OreX2Efr90HPPpX3cbCEQSruD7628DisNt4OG4+Anzif7H/3/vLmW+//e+ewHe8/UNYuP5647r/9wE7PCT70K/j597JFNufe+fDCILunssLf/qzAIAxWeKT7/zNzuJ44uYc//tjVwEAv/yeR1fz1kPvYMroGnFx38a/+NUP4F0P3Uh+w10AH/p19v/3/jwQrHkMiXDx/cCNB9j/c8Z8Z7j3VwB3zv5/3//sNJQE3vPT7OPBE0xJPg6gFPjbn2P//9DbgOVRt/FwHF0BHvoz9v93/3S3sRxzdEmQLwB4Ruzz2wFc6iiWJw8uvh+gPvCCLwEOLwLXj4l14NG/Zh/v/kLgsb9hZOs44ME/BU49FzjzfOCJv+06GoYgAD75v4EXfhkAwtSP44AbnwAOLwAvfSPg2cDj7+k6IobHw+vz4i9nG7HZiuRcO1zgO3/rw/itD1zAn92/5mPfx98NWJvAsz8L/if/Nx64eoTz20Psz108sTdfbywxnLrxXtyrvRAHdAza4ebr3if2AQDnt4d44LEL7N694EvYN9c8tt767kfxhx+5jG/+H/cmLTCP/TXgztjYmt9gz8BxwEPvAECAl/wT9v/jQtwfexdw+nnArS8+Pso2pWw83f2FANHZnH8csPcom0+f/8VszX78mKw/D72DfXzBlwDXPgbY+52Gc5zRJUH+PQBfFVaz+FQAB5TSyx3G8+TAE+9lH1/7bezjxQ90FkoCT7wHOHsP8II3hN65Y7DQUMo2FHe8FnjGq9i1Ow7Eff9RwDkCnvM6tthcurfriBiufIR9fMWb2MerH+kslAQu3QtYG4y4A8DVVWGcv/rkiiz/0UfWPH1ceC9w+yuAOz4D+s0HMaFzfOWnPQsAcN+lbtR3ujjEM9yHce3Uq/Ax80U4tdvd/PCxS4cwdYJ/8spnYrx7HyMJr/hqYLjDrt0awcfGzZmDB69NV9/gY/5V38A+Hptn8cPAqecAd/59ptjefKTriNh8eukDwPm/B9z+SjY/HIcTzL1HgNl14LmfC9z6IjbnHwfwTeCn/0tAM1Yb/a5x8f3AYAv4lK9lnx8Xxf0Yos0yb78G4N0A7iaEXCCEfB0h5BsJId8YvuSPADwM4EEAPw/g/2orlqcUrn4EOPls4NxLAd1aHcN1jeufAG55ESPJwPGIa3YdWOwz9fj8y9n/j47BIcXVj7GPZ1/I4jpOi7JuAbe9Ath51oo8dI1L97LxfuuL2eexZL2/fWQXJycWPv+Ft+K+S2tM0PE9Fsf5lwNnXwAAeA65hC956XkYGsHHOiLI+xc+Dg0UxvkXY7r9PJz1LnXmyfzY5UM875ZNvOi2LdxFLrIvnr0HOP+ytY6tA9vFEzdt/LNXPxMA8J5HYrnj1+4Htm5jY97aAC59cG1xFeLKR9h452P+yoe7jQdgR/PTq+GYv4clxB0eh/n0Pvbx3MvYXH8cxBmArYGayeauE3cen7iuP8CEmdtewT4/DmPrmKLNKhZvpJSeo5SalNLbKaW/SCn9GUrpz4Tfp5TSf0EpfQ6l9MWU0uO7jfnw25nR/jjslm8+DJy6C9ANZh24fgyIqGsz79epu9g/YOVH7hL82py5Gzj5HPb/m91n9kcE78zdwJnnAdMrzFveNa7dz2LSTbbZ4US+a+w+xCb0yRlgfGq1IAJ4+PoMd53dwPNu3cRjN+fr8yEfPAEEHhtXp+8GALzAvIzbdka4/cQIj93sxmJx8AS7Z5NzdyM4+RwY8OHc6EZ9fGx3hmef2cAzT45xF7kI15gAm+fYNVujIvrgNeb9fN3dZzG2dDx8PfasXfsY2+BoOpu7bnabYAkAcGbseP7sCxnhI9rxqODCr82Zu1dCyLVjMEfwOf3Uc1hshxePh99390Hg5J3hWn3X8VgTAUbUzzwfGG6xOXXvGJxO3HwY+O9vOHZVsPpOejKY3WCVGexuM8JBKVtYTj6bfX7meceDIN98GABlE9Rggy2CN47BZMB37KfvXl2z3WOwAN58iKlWgw3gxB3sa/uPdRpSFMOJO9n/T9zBstQLNoX7c6f9mBYHLBHuxB0AIWxTGCNXj9yY4dmnJ3jeLRugFMnj8zbBF+WTzwZO3AEXJl4+vApCCM7vjHCxIw/y8uoDCCjByWc8H8bZ5wEA9p+4r+SnmkcQUFzeX4QbhjGeQy5hd3QHu4cnn81Oc+ZFVUCbwyeusjFx962buOPUBI/emLFvUArsPsw2XwAbY2sg7kFAcTAvUPX3w+JOJ+8EjAGbK47D/LD3KPt44o7VNTsOgsPuQ8D4NDDcjjarx0KtvfHgSjA69RwWZ9cWP3ufnQKcCe/fyWcfD/vOzYeBR97JRIdjhJ4gy2D7dvax67I2s+uAM12RvRN3sDJmXT90nHRGk8Ex2S3vP8YsA5vn2CKjD47HhL7/BLDDjnsjgswXn65AKRvfPK6dZ7JEvdmN3Jf/+cev4WX/7n/jx/+45Q3aXkgM+HXaeQZwwJ7DA9vF7szBHacneM6ZDQCMMK8FcYKsG7imncadBiN8t+2McGm/mzrS2s2HcZGexvnTO9i87fkAgNml9ZOFG9MlHD/AbTtDjCwdz9J3cUW7lX2Tz19rWpgfvTGDZWi4bWeEO09PVmPE3mMJetthrjjfFLaYEEcpxVf/t/fiVT/8p3hCdMrA15n4s9j12gOwOYrobD2cnAaMITtJ6Ro3H06uiUD31ysIwtPe8OTy1F2Av2RJe12C3y9+nU4++/isiQCb348ReoIsA37TDjoe3PEdPMBIX+ACs46Lth+G/kI+oW/ffjy8aQcXga3zgKaxfzvP7J6IAmyS4psurth2vYufXQe8BfMeA8CJ8KNgofmFv344+uj6LW7Q0mOej63Ax+O7jGDccWqC8zsjAMCVgzUR071HGUHYZKTvCf8UbiW7AIDzOyNcPVq0e10EMGeXcFU7g42BgXO3nMOMDuDsrZ8sXNxnzUHO74yAIMAt2MXj/kn2zZPhmF/T0e6lgwXObw+haQR3nB7jiT0bfkBXYzt6Fu9g82mLc9cnr03xV5+8gaUX4Ff/VnBfuFp83AjyzUfYtdJNdhKwffuK2HSJvcdi80PYSuHgYmfhAADmu4wQ880X5xBdr4ucw2zF1p/Di903Mjl4gm2+Nm7tNo4UeoIsg+1woup6t8wfrq1wEuATe9eTweFFRhZGJ9jnW+eBo8vdlyY6vLiaCIBVXF0i8FlcfOIcnWClwroeW3mqFcAqbqTg+gH+7pE93LYzwsIN8JGLLSbH8esSbb6ewY7hjq7gyiEjw+d3htgaGhhbOi6viyAfXWbjiRDYjo8LwUmc8NhG9badEShdI1mPYbK8hkPzLADg1p0RrtCTIB10a+QE+bYTI2B+AxZcPO7F5gdgbc/ilQMbt24PAQC3bo/gBxS70+WKLHDyEo359sjoux9im6jbT4zwnod381+0/xg77ZqcDeN6Fpv7vTVYmopwEDv5Atiz2LVoFASrZxFgFVLMyUq06Qr89/O4+JrddVz8fvGNRPQsdtzRdf+J8JTX6DaOFHqCLIPxScAYdb9b5gvKZtiRO3roOp6kDi+xmEjY+2XrPCvpNOu4c93BxdVEAIQEueOJ4OgKI3h8c0MIsHlL93GlJ86CzdfD12dw/ABf89o7AAAfeKxFb/7RZUYW+OaLL9AHF3A1JMi3bA1BCMG57SGuHNqCN2oYh5ej5/DGdIlL9CQmy+uA7+GWkIxdO1ozQQ4C7Hg3MBveAgAwdQ3XtdMYztc/tq4dMkXqls1hNLYeXO6wbw62AHPMruEacPlggXPbozCeAQDg6uFytfniAgifV6ftXa/3P7aH89tDfN49t+KBK0dMyU4jfvIFhM8k7b4Cz9GV1TUC2BzR9cbevslUf070CGHXq2viztdqHhe/bl0ryIcXWWUNvvnicXUtHB08cezsFUBPkOVAyPFQH48uM0/tODyqjEhM1wT58oqsA8djt8yV2nhcm7eGynaHnu1o4ozHda57gjxlHc+iI67BFtsU8q/H8LHLTDH+jOeewc7YbNf3e3SV3bf45gsADi/i2uECGgFOTSwAwLntNXp/jy5Fi8u1oyUu01PQEADTK1E814/WrPjNd2HCgzu+JfrSoXkaG876LVi7syUMjWB7ZEbzwCcX21h6frgpPLcWwhcEFFcPF5GCfMsW+3j1cMHIij5YzaehXQZH2THfFB7dneGuWzbxgnObsF0fj+7mPDvTa0kiyp/JaYdWOkpDgrwaW9i+nc0PXbZ25oRzM3Y0v3UMCHKkIIfz/HA7VLa7JqIXga1zq81XNOaPAbfhc/sxQk+QZbFxS7cTFBCqVjGyMDrBJviuydXhxeTg5v/v0voxu8FU7Hhcm+eZejvPTzxbC/gY2ji7+trGLa2qVlKYXmUesPEp9jkhLMacMf/QtRl0jeDZZyZ41qlJ/iLfFI4uJxe/jXCBnl3H1cMlTm8MYOhsGrt1e7geW0NEFlhc14+WuEJDknV0Bac3mEq5O1uvr4+Gi3KwuRrzs8Et2PJ21253unHk4OTEgqaRaH66Rk9gdxpuGta0KbwxW8L1Kc6lCfLRgo3tjbOp+dRqjSxQSvHIjRnuODXG3bduAgAeyqu6Mr2SnB84Kc3ZrK4Ni33mqY0T98kZ9lGQyLsWRKeqqfWn8zXxEmsOwq8RF9m6tlgcXc5eK6Bb4k5p+CzeUv7aNaMnyLLYONvtBAWEgzs2QXES06WVgVJ2XeLKQqR4dHi9+DXhExSwIlpdHnNFSm3sem3eyib0LutsH11lY0mLTQmbt+YS90v7Nm7dGsLUNdx5aoxHb7RY0mx6NUmQRycZkZ9exdWjRUR4AOD0xgC7s2WylXAbsPdYQmO4uFyfLrFLt8J4r+FkqCBHZHBNsPfYuDa2V9fLHZ+FAZ8lDa0Ru7MlToUbBUyvgYLgJjZx/SjcNGydW8tzyO8B37Sc3rBASGixmF1LElFC2NzV0rx1c+bgaOHhWacmuC1MKr20n2MJml7L3xR2OZ9ywhmft6LNaofCUZ6CPDnD5v+u59PJGVZfm4PP811idh3YiK2JkcjWIUF2pqxbZHytPiboCbIsBGraWjG9mt1lTU53G5czZWRhEltouAq55kU5gVmOUssn0S6vl4i4ewtW87crTK9kx5ZgzF/Yt3F+hxHTZ52a4NKBzY7O20Da96hp7NpNr+H60RJnQk8pwKwWrk9xtGy5lmZqk3P9aIldbLOvza7DMjRsj0zcmK5XQZ7uskVudGJ1vQgf/2tW+W5MHZzesMLffR3e8CR86CuCvHELu44tk5ibM0aQ+abF0DWcmgxw7TBUkOPzFrCyYbUA3jzmWSfHODmxMDC0KJkxgjMHlofJeWtyhjULadH6UQpO7BLWjzDGLufT6EQuTtzPMl/yYr+TkACweT5N+CZnuj29BMIxH4vrOOTA5N3DY4KeIMti4yywPADcbuqbAhA8dB0ryHmETzeY0tdlXFMeVx5x79JicZVlWhvW6muRQtTlQpNSagGmpuVMnJf27UgBO7c9BKVYEZ8m4S4YWUiP+ZC4789dnBivruOpjTUpt5xsTk4DAPZmDrxhOLbCjdmpDWvtCvLigBGoyckViTE22fh3DtdLrnZny0i1xew6aHgPb/LmMpPTbFPotFu3mm9SIrIOtpG6OXNWFos4Ns6u5o6GcTW0/5zbYUmlufWy+YlNvNyVpoebwmNwIhcnMfy57HLemt8ABtvJ+TSKq+N1MY8gd7km+h5LakxvCsenj4ntsFeQn7zo+jjJ99jRbrgoR9jo+KGLyMIxmwyiCT0W13HwzOV5rY6D4p5WFgAW52I/UV7KDyiuHCyiusOrpKcWCLIddlrj1yeK6ywwu4YD28XO2Iy+zFXCm217f/liMg4J8tzBZLLBEhvDRfn0xgDX16wg+0fXMacD7GzvRF+zttlYm++tVyHanTrR/cD0GrTwOYy6L4bXru2FeaUgr04aTkxMHMxs9rvTBHl8cjXuGka86grAakRnFGRO6tJxTTo+weRdD3lCIxBTkLsk7jeya2I0z3e8LuatiYuD7sr18WctTUQnp7tdE2e9gvzkB991dbUrjchCzmQwu95dZYZIQc6Lq+OHTrcYaeEYbLKvdblbnl3PWfzWQxaEoJRtvtJEdByWVosdVe5Ol/ACinMhQT67xYjH9TZKmuUtygAwOQs6vYrp0sPOaEWQT4UkaH0KMid9LrbHZmJTeGJsrqcVdwxkdh27dCuxaRhssbG22F8fiVl6PuaOvyLIs+vQN2+BoRHs8RbLEYlpd1N4c+ZAI0iMk5MTC/50F6BBVk0bnWTjrgXrx7UjVtnj5JhXXRni8kGKINthycT0mB+fXH2vC9g3ARBWjYHDmgDWRvcKckY04raijuKiNFSQ02tix/M8v09p4j4+3b04A/Qe5Cc1+ITV1SQVLcopEjM5yyozdOW3yrNYAOGutOsdfCxDHWD/H3e8W57fzFn8OlaQ3TngO6tawxz88/lKUeOq6JnwyPrs5hoU5HRc45PAfB8AkgryBleQWyam/D6F93Fv7jCrRyxhdmdkYZ+TwTVBt29gF1vYidlOxjun4VEN3uH6yMKhzTzgW8Ow6P/sOsjkDHbGsWuyJrKwO2P3RtNW88CJsQVaREQDl+VWNIyrh8wzz2M5vTnAzZmTTCoVjfnRidaUbSnMbwKjnWTSGdA9cZ/dyBeNgO7ELGcGeHa+ggx0ty7OcmyHAOMUsxvdJTXa++zj6GThy7pAT5BlwSesriaDucDK0DlxL1KQOyTI893s4gd0f5xk7zEPchx8gu8qrnnBogwkxhZXZ3mFglMTC7pG2mmKwX9veuIcnQDx5hjAwfY46S0FGClqFbMb7B7qjJzvz0OrB1cfwYj7gb1egmwubuImtjGxViRmZzzETWyBrlFNO1ywv3trZLLjZGcKjE8lVXW+KWx5zN+MWz1CnJxY0BZ8bJWP+aZw7WiBs6mqK65Pk+PELoirawU5HRPAnoOuCXJ67eHzRVcbiiLRKP79dUO0KZycYSX8WtgUSsHeYycRhlX+2jWjJ8iy6Jogz5K+xwhRXPtrDSfCbDcc3IPk18en2LXqqt20vc8UjzQmHSYkcCtDeqExh+wazssn9N96/wX8wl893GxcoolzlN18rZKe2P3WNIIzG4N2FGSRxSK8r1uYJY7Oh6aOoam1T0xTx6eRgjzaiU5ytscmll6Ahbu+8T909zDVt0FipyY7YxM36abU2GoKh+H13xqaq5Ot0Q5OjC3sxZP0gNbJwr7tJE4ZAKYgb2EaxZUAH/MtXK/rR0ucjVVd4YmDN+KWIHuPVawYbCd/mBPkBlW+pefjR/6fj+NdD0rMh/ZevsLXJXEPAiaEpAmybgDWZndr4lyQOxEJIR2dFIo2X10LNHlr4jFBT5BlwVW/zhRkfqybeui6jmtxkD+4+cLTVemyxX5WqQXY9evSyhC4+ddrfLKUuH/wiX18x298CP+/P7wfn7x61FxcRaoVkFBiVgpysnrEXhuqbdFxM4AdMsuQn62hGRG01jDfjZ5D7rfdGZkhWdhnsY3Y9VmnzWLoHcIxtxJfOzG2cIAJtOX6nkO+QdkambHj0xPYHpur62FtsPqrLT+Lh7bHuvnFcHJiYQezKK4Exu2pj3tzJzrlAFabzEQ5QH7CpKWW5vFJZqVrUOX7ww9fxs/85UP4p7/wt5iVlUbMs4YB7Pp1Ze9bHrBmUOk1Eeg2ruh0Yif59a7XRP4sptfFyO7UIXHPE7OOAXqCLItoV9oVEd1nHzNkYSf5/XVDRET517qKS7QrHe50pyyIiCgg5Y3+04+tEq1+594GOzKVEuSkgmwZGjYHRvS1kxNrVb6rScxvsnbX5ig3rm1MIyLKsTUycbRouQ7yYj+K4SAkfDsTi40tdwZ4K9Vy315Top7vYkgX8FIEeWhqOMIEhrO+RfkwvP7bI2M1doY7ODE2VwoyIQnFvS0cLV2mZMewPTaxTQQEuUUFOUrmDJFblnAusDLk5APURXwO+ZsyFdm+efwUZBHhA4DR9vGLiyc4drlWm+OsleE4rNV59/AYoCfIKuhyV2rv5w/urq0f9n4ys5mDE/fOyOh+/q50tMNq63ZR9aOIII92SpWFdz+8i1c86wRedNsWPnKxQcIjUmoHm6xrXYIgOzg9sRLH+CfGbSnI+2LVCkxB3k4pyJtDI/LAtobFQTShR2rp0EhsVrlqebAuBTkcO35qoSGEYKFvwnIP1xMHxBaL7ZEZJfABYNewZTXt0PawOTQSX9samtgmU1CQfCsD0Ph8unB9LL0gsaETKshFBLmhuCil+MjFA3z5K27H2NLxrodK1MN5QVwNWz+kwcdO3jzfpRASG/MJ6CZgTjpeEwtOe7u8Xr3F4imA0U63VoY8IhpZLPbXGc0Ki33xBMW/v264Nks6yFW2t1l5J6dBi4IsbMHRG1BKFiil+OTVIzz/1k08/9Yt3H95DRYLQtjXYqrV3tzBiVTSE1MGWyCCRaoVgBNkmlCygTVZLOzVs8i79m0NzUQ+ACfI++tK1OPP/2Ar8y3H3MTQW994TyTpxSwWGwMTtuvD88PN6XC71XkrCCiOFi6LI4atoYEdTOGaW1krQ0sEmVtL4pYg3uQmUXVlTQT5yuEC+3MXL759G3ed3cCD1wqsG77L5svczepO49YPafC1JVdB7ljMAgRx7Rw/pTZStruyfvQe5KcGujxOElkZDIvtSrucDEQTAf/+uhEtyjvZ70XEvYPJIEYWMhhuF97DG1MHhwsPd53dwPNv3cSN6bK57nX2Xr6VAciUcdrnCWkxnJhYOLDdFfFpCry0VBrhPbzVshPluwBGyg7btFgEATuBCOPido7NoZHIB1i/grzPPuZcr6W5hRGds2ZDa8Ch7cEyNAzN2OnDcCdScqfc7ypxalIHM8dDQJGxWGwOTeyQGZZmdjMBw2JWuoYtFtxqE/dD6xrB5sDIVrEoODVpyhv98XCD/fxbt3DXmQ08dL2A4BaefHWYJM7HjugEs0vRyBiy5Os0ula2RbZD/v11Q5S4fkzQE2QVdEqQBQoy0P1kkEtiOvRbFU3oPK5OiHtJXIsD4VElV3iec2YDzzm7AQB4/GZDbXqLJqjUmE/7KIFVB7vG1VJbkBg02EIADWeMbGm5raGBozYtFssDADQaR9OQIG8MjdU1XOxHpOyoLPmpIfC6viTnPka+5DVtCg/smO83Uvm22TXCalNRtimsC/57tkbJU4bNoYFtzGDrOQQZYA1yGk7SixTktJo9MpOWIKGC3Gw5z0d32dzxnDMTPOfsBi4fLFYblzRE1WSAbi1+ZULIcV2ruxSz8q6VOWQJs12IRqIa/McEPUFWQZcWC9HgBrqbDDyHDfCiJL1OlIX9ZAxxdJlJXEaQfQfw8usJczJ85+kJbg+72F3Ys3NfqwyRvxBAukHBvu3iRE7ZLADN+5BFpaU0DTNtA6f17AZhc8h8rrQtT2SkWu0AQETGN4dm4tRkMmC1iKdtJwyGcKbsHmnjncz3/MF6N6uHC3dFSu19ZvvQjahxyIog77T6HB7G700MY0vHDplipm3m/+Co+eYXnCCnN5dbo5glyHfD04kin2gzcV3cszE0NZycWLjz9AQA8NiuYMMtylGIf62L9adMQfaXzG63bohOVYHuk8RFcXUlshXZDo8BeoKsAl7GqauEBOGutCO/VcGxLswRa+vciYIc/s7jqGxrJku2TKPEB3b5YAFCgFu2hjgfEuRL+w015xAd6wKJ0mVBQLE/dzKVI3K9lHURtb/Oj+sQGzipZRf0rZEBxw+w9FpKwoz8haGCHKpuG4OkxcLQNYxMHTNnTQT5iJEYY5K9XnQQxrUughxXkGOL8saAfS1SKvmpSUsJs6uOfklSSgjBCW2GIyFBPtG4xeIgtFjspOxJ2yNjlbgYJZ3lEFFj0GiC16UDG+d3RiCE4Nw274YpmE+iRkI5z2KXZUYX+yyJ2NrIfq9T68e+mPB1qSAXxcWfxXWjyHZ4DNATZBWMToRtSBs62lbBYv/4WSyKdvCEdLdbLlRqd9jHLiYD7gGLt7/mKCHIVw4WOL0xgGVomAwM7IxNXNyfNxNXUR3KmJo2DT2d6drDm2llsAksD1nyj2Di3McGdkgOQQ7JUGuJeqnMee53ZgQ5ufnaGBrtl5wL4cwYiRlsCBKpgLU9i4eLWO3h2KK8GifuKi4atJbgFVXTSFksAGAHUxwgh1gBoe9+TRaLYazjoqhzJEeDxP3ino3bwo32uW328fKBgCCLGgnxmICOBJpQNMqdT3fYx66sH0IFuSMi6i3ZaW8hQd5fZ0QMRWv1MUBPkFXQ1XFSEACLw5Jjmw49YEXHNl0q20UZu10Rd9FEUELcLx8scGusTe357REuNmWxKPMgO1PAc6KEs3TjhYj4LBskpUWqFYC9YIxNmiVWvGJBa4l6qU3hdOFhYunQNcJqpQ+2orG1OTDEvs6G4c/2YFMLk0n2dEIbs3sbrIsg27HKETFr2EY6Sa/l7Hk+HtMKMoIAG5hjn+ac5ACItwxvCvu2C1MnGMfagAPsWYo8yKKW71FczeXAXNxfRAT59IYFjbBNeC7sgmexaw9ykVILdLf+FNkhnSmz06wTZWv1Gkou5qInyE8hdDUZLA8RTwzKoGsiWuiN3l9PLHHY+wBIbskr9jXS3WQgXPx22McCBfnW7RVBvnV72Ex757Is4pj3cVWqKtucA2hYQS6YOIOA4oY/xiTIli7jZL21Wsipzdd06SY9rrHN6sbQwLTtmswhAnsfhxhHNoY4zMkOAGB5tJ5OWcxiwT3IK4tF5qSh5ex5bl1I10HG8hA6Atz0J/k/OD4ZWj+aaxO+P3exPUrWDwfYs5NVkAXP4rgZguz6AW5Ml7gl3HAbuoazm8NiBVkzASvnepkjluDVlQe5yHYIdLT+HBSLRsD61x9RozGOlksuCtET5KcQuiLIRQXR+dfdOTtGWSeOs4I83M7WOAXY14Zb3R0nFU1QgJggHyYV5NMbVrLBQFW4c5bMUnSsCzCCnFOqCmjRYgHkjvmZ42GfbmDoZZtfrM1iwesgL7xIGQWQGPMTa30KMhb7OKATZvVIwQx9yc60/XmLUhom6cUtFmwMbQ5SG6mWFWQ+BtJJenz+viEiyMNtALRR68eB7WSsSQB7luaOD9cPyhOWUgmzVcFzBU5vDqKv3bo9FCvIi0OxlYHXSu/Kg1ykiPLXrBOBzyrdFIlGwPrJaFFeDv96ryBn0BNkFXT10BV5fYHuHrpjqyCX1FXs7DipaOLk1o/sQuN4AQ5sF2diC9rpjQF2Zw6CoGbCaOnEuSLIU0HZrIGhwzK0ZlXbZagOD7KJVLOljwNsYOAdZVS+7RFXkFsipvY+QLQoruky1aktlg+wTg+ytjjAASZZtRTAaLKBJTXhz5pvn5zGwg3g+pRtoihNHIMPTQ2GRjBdxjzIQGtzxOHCxchkYzOB8Bm75uXU/QZWY27ZXHOV/bmb8R8Dq83moe1KqHw7jRBRXj/9zEayq59ww708zH0OI3SZA1N0qgp0J2aVKsj7awgmhqgeeYFAU1BmtDUs9sWJ68cAPUFWAZ+4GvanlaLIUwt0lyiRyujPoDPj/35x2Zguj5NEi99AXKuWKz6nUguaH9D6tYcjIiqoCcu/7kwjspenUm41TQYXoTqcszBPlx726QQENHO9ovrDrVkskolBhwsveT1iJGadHmTdORAqyJtDEweYwF8DWTiIt5lOdbQkhCQ3DW17kBdeboIevz9XnZxGDsBqzC2yJxRVsT93cxXkrfiGrmBTCICdfC3rq9qcCPNW1+z/FnZFVWiWRyUEuSMFuWieH2wDIN2JRk9GMYv66++IyBPE804njgF6gqwCPugbVBakUKYgd9W1brHPOrAZg/zvj3bYItNSGSchio7egG6OkwKftWsVEVFzyLov5cS1O2ML2qlJbEEL1eTaNotSgszVtMOo6cVmjs91s+kWzwVxzZYejjCO4oojStKz20rS20+MrenCTSaBxUoubgzXR5BN5xAHmGCSQ5A3BgYOaHMlwoqwqj1s5Cqim0NjVRu6bQ9y+t5whGPmqjvMr5fdgoJ8YDMPchpRx0U7rIFsjAA9J2aAPQueXTvB68Y0tFjECPKpDQt7ohOp5ZF47QG6q8xQpCBrWjcCTdmJXFdlRsvKqXXVbrqo+MAxQE+QVWBNAJD1E+TSh64jb3SpUrsDgGZITOuQUZDXPUHxnflQQEQB4UKzO81TkNn/b9RtN70UK7WJry+Pkl3jUthsWkEuUNOmSw9HdJR8HQ/X0GDqpMUkveSifJRWkOMWiwEjg601LYnB8g4xIxtZOwHYvTnABGQNix/fEGwOjdx5a2MQawXecsLsoe3lWk74mDnwh5g7OYl4g+aFkP15vgc54ZkvU2obIu6RghyzbJ2cDOAFNP+5KbNYDDbXrzymTidy0UVjr9LT3vDrncV1zES25REwEJRbPAboCbIKCGGTwXFTkIerY/C1Qkap5a9bJ5aHYkUU6MaDXHZ8CgjjWinIK4J8JlR/rjemIAsmqThBXroY85JmKWwNzWZtDQVq2nTpYQpOkJNjnhCCrabV7DhSm6+MB3mwyRZuz8HG0IAX0PaalnAEPob+DAs9f2xxBVlbtj/mZyFBngyM3DG/OTRWHmSeMNuiB3krx/fLx8wUo3xCGDs1aQKOF2Dm+JnkViCtIK+HIO9OlxiaGiaxknPRhnuaY7NYSBDk47YmAmwN6CqusiS9LtYfawPQ9Pzvd6Ugl435jtETZFUMNtlR+Tqx2GeJQZZgIPFOQutWaouOuIDu/FbLaQkR7cCDzCfqvK5PHKUK8krx4aXWDhrzIJeNraOsWhpD8wqyeFGeLT1MBQoywGwWrSXHxca85weYO35SUY95tjcHqbq/bSEcM64pIMhDA4cYw3Danx9mS6bIji19NU/GNqubg9Q4afF4/mjhCSwWLK4pRvnjpGGCnFDVU1jV7V4fQd6buzgxTpac4/at3G6YZXFZG8fvVBUICfK6RaMS4h5Z6fbXFhIANpYL154d9rGLk9UiMatj9ARZFV3tlgdb+WXLeEzA+ieD0gk9fCDXqWwHPuDOyrOuPXu9ZfHKvL6AmCDPHBgaWdWWRUx5mrdMkLVwY7Y8wtHSy7VXAC1ZLIoIcqQgZ0nM5tBotw5yuJhwMpgoIxbbrEaNMdquZBE+X56AIE8sA1M6guG13wF07sQSOXM2hZtpX/Zwp8U6yK7AYnEIXx8hgJZ/6tGwBzmhqqfQhYLM/NDJjcPJ8HRqN30iRWkYV8G8NdgCvMV6m19IKcgb6xeNZE4KrY0O1moJ0QjoQEEuOZ3oGD1BVkUXu+UypbYrb7RT8tBZHRB3TsYLFxpeMWKNk6eUxSKfIPMM+LjiYxkaRqbenIIsOp0Awk3hIaYLL1tTNsRm4xaLI6Ffe7r0CxXkiWVgvmyuyUMCi8MorighbZCyWIRxTaw1KcjhNaAChUjXCBx9DMtvnyDPHK4g51ssMqXvhtutPYczR3DisTxCEF6r3HKA1gaanE/537uZE8swLEN3aHtyRBRohCCnrSfcH52piuMtgcBdC3FXQpQ7UUSQO/BG87WuSK3tJK4Sr2+XFouia9UxeoKsii4U5LLdH/dGH7eHrgsFWcbKwK/lOq0y0gR5P/NlkZdyO96Fq3Jch6wGpZ6vDAOIxvx06eUu8gBTBmeOD89vyG9boKZNly5sLaxikTO2JgMdM6cFUup77OTBWtVABlJJi3zML6fR11uvhcwX5YJn0TMmMKgLeIJSXg1hpZbquXFtDMykom5ttPIc+gHFwg0YUU/DmYKGYyv33mhao/M8H4t5CjLA/PtRFQspIlpvQ3GYoyAn6jHHUZbEC8TGfBcEuWCe70LMcqZsPhV5fYFQ2T5mYlYXp9DR6USvID910AVBdiR2WVYXx0nTcuURWPPEKaEgWxvJ164DZclwgHBssda9bRFkiQmKE+RCDzKLrzG1dCFOtJwtfRCLl3nLXq+xZeRXJ6gLJ0n4ImUwz4O8PIrK4bWuIIcEUyu4j54Rdo1rebM6X3qsuZqp555ObA4NOH6AhRven0E7x81zJ0bU01gegYT3SXjqMdhsTNmeFlgsANbcZp1VLPIsFjz5NmNNkrGGHdd5frDZgZVBwjJgdRHXUfFarZusZfg6RSNvAQReT5CfUujkoZuWl0JZd1yR17dkBw+seeKUUGq7VLbL4vKdjMp3mHMkCrAmA+skyEcLV+hB3mpaLS1UkD1MBlbkjU5jMtAjJbNR8PESjmtejSGxaeBj3jlaeZCXLXszw2ugjcQkxl9TIu/M8TGxDGYHco7CSiSr67MZXZPw/lgbrTyH87jVI43lEciQjS2hFSe0FTUBPhZFm0tWDnC9BDm94WbVX3LmE34NispTdkGQU89iLgabYd3oNbV7B0LRqGytbufUpBBS8/yavdEym5yO0RNkVXSiIEs+dF1MUDJK7TqJqCNBRBW90R+7dIif/LNP1rMPRBO6RFyp63W48IQlotZKkNMlzWLgCnJjyXEFpfpmS4+pcQIS05qCnDoFyFeQV2SBE6K2k/RoGJcx7P7UZLb0WAULIHdsZa5JS/NWwuqRxvIIOifIonHSYImwovrhLEYD7nJerqaZ9XNN3LDyimg+yTTYkdrY1y8zenPm4Mf/+AFcO1rI/YCs1xdYLxl1ZMWsLgiyxCn0WkUjCftOx+gJsir4orzOnuWyCvJaB7fEBKVp68/YlfIgr1S+MixcH1/4k3+Fn/jfn8Cvv++JGnHJeH3zFXdmscgvEVVbsZUiyFugJR7kRhXkEm/aNEGQczzIFvMgN96gY5nc5Nh5KmXMy8eJ81HLFgt3zsaLOSlQ+QSbr6Yxc/yVlSAnd4Jfq4iYWpthBYRmr1GpgjzYwtDUIitGBg2SmMirnhdLGCOVIaINeKO5x3g7pwX31sjMbnALWr5HaOB04kf/18fx5j9/EN/0Kx+Q+4Gc0wlxXGu2fpSVLeuiikWZBxlY/ym0zJjvGD1BVsVgEwAFnPYzwiM4JV5fYP0JCTIKMtBaEo4QDXuQ//aRm9H/f/sDF2vEJekjBxJji1Kam3UONKkgl0zo4aaQUrEKxhXkRgiyOweoL7yHM65kC9TH8cAApYDNfa5NwUkqyKuKDTGVMrYoDwwNhkZaV5BdmxGTwVic0c8tBW0vgPOlt1Jtc1Qrfq0iYqqwWVXBtERBxmATE8sQJ3M2arHwxbEA2BjoIDJe3yiu6teKzxfbgq5+WYtF+x5kzw/wux+8BAD4wON72VJzeZAVjfhr1wWZeX7dYpa3ZNY9mfXnuCWud4yeIKti3baBSE0re+jW3DVI1j+0butHwx7kv/7kdViGhq/81GfiIxcP4FTtiiaj1OaMLdv14QVUeCQ6XXr1rB/SFospCAJsDERl3riC3IDFouQeTpceK6EmIAu8Q9is6VJvqVMTOyRXCZWSn5o4UxBCMBkYrSfp+fYhltTEYDAUvoY03PxChJnjra5HThMAThJXCnI71o8oSS+t2sZOJ0aWXuJBbq6KxcDQYOj5y+1kYEBzJclCTeIeEWShxWL9BPnjV45guz6+/tPvBKXAXz94o/yHZG2HNeKqBEdmrd5kIkDQgg0sD9KbrzUr2zI+8o7RE2RVNFSLUhrODACV25V2UWZHKq4OPMhFcSl4kD92+RAvuHUTr3nOaThegPsuVawTWVaqD8id0LknUFTFAhDUcpWOSyLrerAJAooxloWNQli8DRJkQe3v2dKPWSzyq1gAEB+fV0Xq1GTu+DA0AstITaOxijITS2+eqKfgLw4xxTDfThCCDNezsZ8t/VUL45zuXSMzZbGIfKLNxiVUbaO6vhvFCvJwu7H59Ggh9u6zGA3osidyTSnIgqTfzFzC25NLJWNXu4f3Pr4HAPg/P+1ZMHWC+y9L/H1SCjL3Rq/bYiEphKxrvZZVatd9Ci1L3DtET5BVsSYlJkKqtJQQXKldlzdaNq61G/+PWLkawxK/RjdYu0+JifPBa1M85+wG7jm3FX1eOa4KCjJf0LZyPIOJLlxVIFuHMvz+BmzhQs+J86yJ5LiS5I3p0sPGQGcbHUEdZKBFBTlGkEeWnn1dbFM4snTYbttJelNM6QhjwRE+ABjhZsNftLsAzhwP40IPctpi0c4x+DxP3Qdi89YWxgO9IEkvHFsNqHxRUqkAE8tYNXHpkiCLLBb6ADAGmddHiHJNqsX1yWvMr//Mk2PccWoiN8fK2g6B9ZM+WWV7XeuiTIlR/v0+SS+BniCrYt0lbVKJQUIMNplv05PMAq4LaYvFupVtiR08IJUocbhwcfVwibvObuC2EyPoGsFju/OKcUmW2QEScfGkmSIFuTJBdu1Cr+8qrpAgE1uYpGfpzG/biGpbkBhEKS2tYsHJSPMKcvJ0Yu542SN8IGEraq2iRhyLI8wwwtgsIMgjdi3debudsuZLf5WMludBFlksGlb5IgU5fX9ii/Kk6N40OM/PloJxEmIy0LEBO/l7RWgoSS+/bKQJx4vVqAZQ1NEyG1c10ejR3TnuODUBIQR3nd3AQ9clSJqU7XDNHmTfBfyl9Hy6trik84X6JL00eoKsihwS0yocyd1fV8c2MsR93Tv4smsFSMX1yHWm6jznzAZMXcNtOyM8ulsxOVO2gDyQ2MUflngGgRoEWXaCCo/ANmELLRaEEObpbERBFse19AJ4AU1aLFKnJlw1bETNTvzyKaAZkZo2c/xkgh5HLAmnsWtSBOeo1GIxHA6woCZ8u2UFeemtlOyczPmM/aWl+ZS/f0bhj42tsVVQL7tBgjxdesLnBmAbug3CCfKakvQEBBlIlWqU7XRWQ0F+bHeGZ51ijX/uOruBx3ZncMvyKo6jB1nayrBukU12rQ4V5HWdQi+nANEAc7Se31cBPUFWRWcKsqTfam3eaAXivtY6yJIKssRx0sV9tmg94wSbvJ91aozHb1ZUkKXK7GQn9IMCxac5giyxKIMpyKJmBwBT64RJTw3FxQkNq2KxCdCAJbzE4+AqZdPJcXxRJgQAK/OWa2uINTAZW3pUDq4taO4MUzrKt3uEGFs6jjCC31B3uDxQSjHjqrrvstOs1KI8MkUKcsMeZMeHpWtZf3isDOS4aPPS4HzKLEHi52Zs6diUVpDrJWMf2C6GpoaBkR0rW3l5BAuJjT1QuTKD6we4uGdHBPn2EyMEFLhyUHISKlXXtx1/uxAyJUYBtFW5RQgVD/I6K3TxzVc4nx5H9ARZFWsnogoeZGC9xJ3ozMtbhLV35zkq3ykDUsdJl0KCfH6H/Y3PPDnGE1UJsowSYwwAzcxVkPPqINcnyJIesIQHOb+KBcCOz4VJT0pxiSf0qHyXZQjH/KRNBTkW02zpYWzmWSxWBJkd47frQdacKWYYCsuIAUy5ndERghY9yEsvQEBDG4XgHuoaCesPp5L0mlaQ40p2IsiYgjwouDcNzqdlHuSNUEEONLPY6wuERPQICKpVrslrM82xFc0nsWsi4/XlcVW4VlcPF/ACGokQ57aZmni5lCBLxKUbrFbyccsXWlPTnggqHmRgvRuKY5ygB/QEWR3rTtJT8SAD6xvcXBEt2/0NNpkvK9U+uTXIHglKtPu8crDA0NSiBeXWrSH25i6WniLxkq1DyeNKeJDDKhZFR6KtWyzY9zfJfFWhIAeFnk4VFJT/WdW3NWKb1eSYzySCNQUnmYBjuwIFOeZBHq1BQTY8piDnkvUQY0vHDMNWN9DTeEvlgkU5sWloy4MctrzOIMqd2MKkSEFuUH2cLn2WVCrAZGBgAzZ8c0NuPq0RVxFB3s6zWMh0huNxVSTIAHDrNhMhzoUfLx/Y4h8KAsCdKcS1LsKnkJcDrHetjv9eERQ7zNaGjO2wY/QEWRU5Kl+rkGmdDHTjQZbypnVwzCUzcUok6V0+WOD89ggkXLRu2WKT97VDiUL26ZgAud1yqjLDge1ibOkwc2qoDk0dA0OrriDL1qEM7/OOthDWcgVQ7OlUimvGnrGcSiScbE4GunCzytW6VqpYxMbWXMKDPLb05pXsFAxvhhmGpRaLKUatPofcXjO2jMJFOeHLNgbM193wvDV3vPx7Ezs14QmUQZDjubSYotnEcfOsxGIxsZiC7BmT8jerOc8f2G5uwi+wSgRObLidGWBJxFWZILO5lM+t53YkFGSV+rnrrMOvkpcTf33b4L/HLLmPEXFf4+n4Ma6BDPQEuRrWmXgW7UplPchrJKKyExR//TrQoAf50oGNczsrC8nZLXb8ee1IsVKISrZuKq7DggUNYF7cyt3r+OJf2mGJTaxbRjERnwwaUpDd+YqgpDCPd68TLDQDQ4NG0AxZjyM15udLLz8xztpgJwbesn0FOfBhBTbmZJz128YwMg1M6QikRYI8i5pzxCwWOWMr4VUnpJXWu9Oln29riCnbnEDndlzkpNCtaKkK4fkBbFcQS4jJQMcECziaRLISv54V45ouxTWZeSnJ9RJkNpdygrwxMLA5NHB5v0BBlrUy8LjWLmYdt4T60I6ildC9dRcgkBXZOkRPkKtgnbtS/nCX7v744F6j30o2eYO/fh2QJe4SHuTrR0uc3VwRZD6JXzmoqiDLxDXJlHkTHYkCjJRWJoKRElMytnQLPnRsa8U2GaaWNqEgi5UFTpBHpiFcaAghxU0g6sQVV5BdkYK82qyOTQOOH9TrdlgWEwBHz99QcEwGzGKhuy0qyLz28MBIWBnSGFk65nFS2gKJSbS8jsPhmfPjqF5z7jhpKHmQnx4UKsgDAyMs4egyBHlSK66ZaOOAmIIc33A7M8n5tFod/iuHC5g6wYlY6+tbtoa4dlQwx8raDvlr1i5mqeeatIrlofypKrDGuKZym68O0RPkKrA21pjpGZKF0t3fMbYy8Ne3jcBnyoqMlWGwwXxsBckuezMHJyerY35OkLnqIQ2u9shMBqmqH4d2SRcuqw5B5gpySVyEYKmNsKkXbwwaq2JRoFrxphsjSy9U+caDgjbCVZFKDJovRY1CVpvVyA+dp1I2FRMAVy++hyNLx5QOobvtzVvTJSeDeszKkJ0jxpaerDDSQgcvVoIv57lxZkxsICTy0+eOk4iI1rtes7hnXoDJwMCELLAkKgS5WlxFFTUyli0aVjQwizdfUVzUZycnCrh2yEQIEvNen96wcGNaMNfI2g75a9ZusShZFwlZv8imImatrYTtrFeQn5Iwx+sjyI6kImqOmTKy1mMbySMu/vq2oaTUFu+WF66PmeMnCPKJsQlDI7heNHnnQdkzt4qprIbqxsCIkqOU4cgTd5uMsEmK/+7GqlgUEOSExaKALLSjIK82ha4fwPEDQaOQlfWDE+jWbBbh2Crzr44tA1OMYXjtzVuc9CY8yDljPtM8pYUOXqyJS56CvBpbq5rMOffGGAEgjRHkwjJvpo4xFlgoEeRqFguZihrRfOItGemV3dgDytfr+tESZzaTlTtObQywOy0g2rK2Q/6atVecaqaKUmOQVWpbSpgVwpnKbb46RE+Qq8Ca1PamSUOm5zzAdqXmpPLEqQxnKqnUrtH4r6LUlijue3M2QccJMiEEJyYWbhZN3nngi4aUEpM8bi5tU1uHlDpTVqZPEyd3cSwwwKSEIE8sA7bjg9YtNF9wrMuJ5qiEIBe2Ea4CShObwgRRT4PfZ3e+qsncFkEOF3+/ZPM1MnXM6BBmsAD8dsrOzeLXpOB0gtUfTivIzZKF2dJftbyOI0GQC6qdaBp7XU2CfCRBkDWNYEIc2Cgp8QbUslgEAcXcKfNDx06kZHMUgFhSo1pcuzMHpybJZNwzG4NiEUJFcFjrWn3E5lNdbImLsFZvtKRNZt0eZHfeWyyeklirxUJSQQbYJNXiEWoCqrvSdeziIyKqQJAFcXEF48Q4OXmfmljYnakSZBXinlQ8pktv1bo3B2xBq0i+ZBNwAMwxxIQUW0tGlg4voHDq+m0d8djiBHls6qv7nEeQ61hP8uAtwrbcG8k4REl6YVwjk6uULdVCDscKNYvnCF0jWOrVSIwsbO5BtoxCcjVJb17WriCPoziAgnrZ5rh2XKvKHsWb0AlZYI6SmvJALYsF30iXlZxbEWTJHIVEXGpk9OZsmRAhADbHHi08cTlNWa8vEIpG6zrtVfDUDjbWly/kSs7zfD5dx1rtu/KlTztEqwSZEPL5hJAHCCEPEkL+dc73twkhv08I+RAh5D5CyNe0GU9jsNZpsZD0DwHrs35QKl8fs+aRoBJkPbVAabF2riCf2khO3icnFm7OqlosFDzIoQo7F3VrC1HPYjGT20wAmNEhRigmyIWeTtW4RBYLl3VIM3SNNQLQB7mbwsIat1WQSgyKEtLyiE+sRNi4bYtFqI5RibHl6Stluw3M0wqyZuSW6huZRvJ6NHzczJXS3M2Lu1LTIouF6PlpQEGexzcNBRhjgSmVUJD581rhHvKNdKGCbOmrDXeV+VThelFKcXPm4GRqjj0dWi6ENgtOLGUVZGe2nvbJCoIDi2tdp72ScWlaJgem1ZgAYbWi44LWCDIhRAfw0wC+AMA9AN5ICLkn9bJ/AeBjlNKXAvgsAP+BEJKdUY8bGpg4paFSK9DaWM9D5ztMTZOxDETHzWu4XioPXUm7z5szgYK8MYi+Jw0l68cGEHiAt4xa95ZlwFdWSmWVBQBTOsCIlnmQC6oCqKAoSc/xMTRj05ZgszoeNOxBTpVwKrRYxJIH+fdbq4Uc/u2axJj3jVHiZ5oGL5c2NPXC41NuC4qsOBJNe6rEkV/FYpV0VtpxsYGTQh5LUY1qBAFGWGIatGuxmErYPSbx50bFYlFhnj9aenB9itOTlAc5VJSFiXpKxH0MgAJuQdm4pqAgOMAcr8/64czlvb4tJMzmQuUedog2FeRXAXiQUvowpdQB8DYAX5p6DQWwSVgK6waAmwBaOotsEGs9thHXhM3Aqn8kKAWVwW0MWEvqdRD3iIgqTOiCuDgJTvvjqlkswutlyCThrLzRc8cHpeUZ8MJmBzJxSRNkC0NavMhMipKelOKaCxca1gAidj0Em8JJU01LOPgCG46beZHFwlyRmFWSXkvTGifIEqc51Fwp223Adn1YhgZdI2ECTv49HFk6AspaUwNoXE2bFam2zoq485MZ4b1pQAixizZSHOG8dRRIaEPRfFrBYhFv0y5A4kSqksVCPi6ey5G2WJwIP9+fC+qup57F4rjq1Y1Wgoqn1pqs2YMsG9eaiLuKHbJDtEmQbwPwROzzC+HX4ngzgBcAuATgIwD+35TSjIGREPINhJD3EULed/369bbilQc3/heUCGsMrg2YEsQKWF9CggpBJmR9intUM1qyLBEgvF43Zw40gkwN4pOhP87xFO49VxbKSvUBicYqMiWiNiIfZQUCJjlxUkpx6A8wKCHInHDUIqbcviMs8xYkyYZgoRlbRrO2Br4oh3Hx652rDFqrzVdhpYRG4mLjV5cgyEGN43kZLOKdBR0xWRibqcRFcwIELvMlNoBCUpqTpCdWkJuwWEgQ5PB3HMooyLyxSoUNhVzJOT0nSa8dgsyFhrTFYiecc4UdQt05Extk5tNoU7gm4UhazFqTxYJSpZPCtSX6u72CnNdUPi1zvR7ABwGcB/AyAG8mhGRKI1BKf45S+imU0k85c+ZM03Gqw5oAoIC3hmMbV+F4ZF0eZL7ASh/bTNZksVCwMpSoaTdnDk6MLWhachiv1A0FFVllBx+rgMAX7txkoxC12ipLxuX4AWZ0wCogFKARBbmktJTteElSKhjzI0vP75BWFdGYH4VxFBzjx+7hqlJCuxYLY1j/1KQu5o6PUUh+i7ohcitOlLjYYFtnHgcgIsirzdfQ0EFIux5kKYtFSN4OPEl3YcWTQhmLxThey1ypfrs6Qd7jBDllY+OixL6QICuKRsCacmDm8nbIdVksfIdZ9qTX6jUl+vcWC1wA8IzY57eDKcVxfA2A36YMDwJ4BMDzW4ypGazzoXNtNf/QOpVaFdJ37JL0uJqWv8m5OXMiMhwHn7wPFwpql6qyEMYlpyCz71VK1JMkyLbjY44BLN8uTHaJFLk6CnKJ73Hu+FkFOWehGZk6XJ/CbaqDXXSsyxZm/jeOzZx7o+lM4XKmrSfpBcsZltTAYNiuf1UGthsjyAWlpTKbhtiGoqk4gNALnUZMcNA0grGpt6wge9A1AksvWGrD37HvS5QHqxFX1Aq8JOk38oe3bLHgc2j6lG6Lz7GFBFlxPl2LcCTZVAVY3ym0io8cWONarbD56hBtEuS/A/BcQsidYeLdVwD4vdRrHgfwDwCAEHILgLsBPNxiTM2g5YUmQuAD/lJt97cWgqw4uNcVl8qxTUlSyc1UFz2OrbBph/D4LzcuRWUBAJyZXFINTzRqkSDPHB8zOoRGvcJOWZNBAwpyyaI8d/wk8RFYLDhRWzSlIqdOTTgJE1YYCY9Q27ZYeIspbAwKfaUckU+5LYuFG7s3BR3YMicNDSvbi6gdeereBD4r1xd7FkeWIS7B14BPlKvq8U5xGYT3Y19aQa5mpVt1OizOaQhoOL5VBIfIviM/z/M5NE2Qh6aOoamJT+ncmbyCvO4kcWUhpGUyqlotYm02TUWRrSO0RpAppR6AbwbwxwDuB/B2Sul9hJBvJIR8Y/iyHwTwGkLIRwD8GYB/RSm90VZMjaHlZJcIKdWqFOs6tonIgixB3ljjsQ1hxdrLYAxY58GCJL300R8QU5BtBUKq0jHIWqlpc0fGM1iXIJcTd9vxVjVaC8b8pAk7QcmibOcpyDn3cMiV28YIcvJZLPWWhptCXSOwDA1zt50kPX85xRyD4iP8EPqgXTUtoe4XbL5G0ThJWSwamiOEtoacsTW2dLG631CSXum9CcnCnjRBrnZSqJTTsIwRZJm5y7AAzVRTkMM5dDOnU+j2yCzwIFexWKxJOFIVQtper1VsMsD6bJoqY6tDlMsONUAp/SMAf5T62s/E/n8JwOe1GUMrWFdmrCpBtjZWxzYyCQxVEe3+FLzRi4P24uHgE1SRWsPBOw8K7uHePFufE4gd/ylbLCooyAFXfIqPRIEKFosgkPa3z5Y+ZnGCPD6Z+7oM8amCkiNB203VtxWQGJ4ItnCaslgkFeT50gMhzMeai9imcGzp9WtDC+AvZ5jTYWkjCiCmILdYxSJSJ4vKvEX1h9tRkCOCnFaQc9S0kalj4QrGiLXBTvB8j9XcroCMJSgPPEnPH8D1A5hFdgyAXa+5uo40C8dsUTzxDfcZvrGX6LQJQPmk8HDhYmLprKZ5CjsjqzhJT9li0fJazZPhjpv1I0pcP2ZVLFQqTnWIvpNeFazLYqGcDLemXelxtlioFB43R7lxBQHF3twtVJCVLBYFGf3ZmGJJetznWthJr2IVC88GQKXimjs+bN7EoOA+jiO7Rw0yWGKTmacVOcEmJyLrTSm3fMzHFOShoWeSOFdxrcb82Gy4aUkMdDnDHAMpgmwO2diibRHkuP2l4NRkdW/Ca2KpH88XgV/rjHKbsygPTU18ytBAXAlftgjh/ZhjIHfiUVHZni49TCyj0O7Bn+Hp0lNLLgaUq2sc2G7GXsGxPTKLy7ypKshtn2B6C4AG6haL1gmyqoK8pioWT3eLxVMaVrOKhxDKCvKaHrrjbLFQmtDzd8tTx4MfUOyMs5M3Pw4UJpDkxqXQgjSmeKgl6SkSMAV/4dzxkgqyALpGMDS1hhTk/IXGdrxIHWavC32iqeRBTkoaS47jz2JYy3rhpRqWpGGtkl1YRY226iAzD3JZpzYAmAwtzOkAfosKskyZN37dIn940x5koYKcLQM5NAuqnTQwn2YsQXngBJkO5cZrjTJvRQl6wGo+mVUiyGqe7UPbjU7k0tgel1ksFE4vgTUSUdmTwuPqQQ7XxLY7DzpzZnE0JJKLO0RPkKugQlvNSlBVkCskSlRCFYvFujJjVQqPC3bLRwuxN25gsAQS5SQ91Qndna9aw0oeiSohuoflE/rc8TGnIUEuGVsTq2YHuwKLBaUUczelIFtjptx4yRJ0XMlszoM8B3QrOmpfuEF+lYQorpVPdGwZrdZBntGhlAd5ZOqYYQDfbqmKBS/z5nvMmiDyIKcTKBtOWLJFCnLOpnBk6eJETrM+Qc40tslD+P4zDCQJcrXkwdnSL9xsA6sTqbnjq1nDAOUcmIMigjwyC6pYzI9fmTc+L6qe9rbOISpUsQDNzKeNg48tGTtkh+gJchWsq/h4qvZqKdZ5bEM0uWQ4YI3VNaZqFgtBzUc+MW8OiyZvlSQ9BSWGJw+6c8wcD0NTy/XocYwtVstVnSBzxaP8ejEFudxiAbCqDrX8tgVHb0svAKUp4hNtVpMLIH9Nc1Uskse6iYoNeTBXY2tstWexIO4ccwzEXugYhqYOmw4QLNtTkFmb6eLTiWGaIDes8kVl3tLXJOe4eWSWJOkBteb5jCUoD84MFAQLWHLjpOJ8Ol0Wt60HUjkNlSwWKh5kD1sFc2wjdZB1k21s216rq1SLiP9cW1BNhlvXhkIlcb1D9AS5CtZVokWlpSawRutHqNTK7v6sDeZ5bbvmo0qrT0CobHMFWTR5bw1N+SQ9ngwnu4MnJIqLewaLX04wsQz1JD0li4UPW5Igj4qOrGvGFXVIS1ssgMwCuKo/3GCSXuw5LFeQVz7RwkoJNaF7c9h0gJFVPpWPLA1zDBG0tCgvuMWiZFGO1H1+bxrOnbBdHwNDy/rDczZfI1PHwmvRYuFKWCzcOQJjBApNzopjTVjnQU+t5f1MYj4Zpy0WKiRGNUnPdrE1yo9nZ2Ri7vj5HUtVTuSA9VR3OrYWiwpVLID2T6FV1+qO0BPkKli711ehigWwHouFUjLcupIHVSf0/ASvowVXkPMn762iEkRpuPJKbYRQfWSeQQlvabw9rCwULRYzWu5BBhokyDn3kSd1JY6sBWOLH+PX8kPHkVKtlqUe5JV9Z2gWHOPXhObNMcMQAxkF2dAxxwC0BTXN9QO4PmXXvYQs8NJ30TiJyEIznUmFpdVySl4NTF28iWrASidXxWIK3wjra8ts6CrO81OJ+WSjVpKeWvLgYVGS3rggGVpFQQYql8VTwrG3WMgS5PC6tq4gK46tjtAT5CrQdGYvOI51kIH1WCxUk+GA9RwnqXrmcmIq8iADocVCVkGu0lIzTPCS8QwCzIesXDlCwd8+dzwsND5xFt/DYdGRtQwKSkvZIdnNt1gk48oc49dFKjFo4frFtoZY8mDtTUMBDM+GjUGxmh1iaOmY00Eri1+i9rBEjsLQ0Fb3RjfCY/CGLBaOnzxl4Ig2XykFuTRJr/qGgvmyyz3INPxdUhu6ivP8zPEKS0YCaQ/yVHE+lSfIfkBxtCy2WAA5BNkPmxW1qGxXQlWLxTpEIy18vmSwrqofPUF+iqOBIvKlUC7ztq6EBMVkuLUp24pl3gRVLA4jBVlksTAUFOTsolyKsHTZbFm+oAHMN9i2xYJILsqFSU+ycRWUeANS1QmizVeSxHAS3WiSXsKDHBQryLFkl0FRrd068F3o1MWcDopjCTE0dNgYgrSwKPPudcyDXH6smxknDR6D264fNYpJIM9iYTElm+Zl7dc8KaSUhkl6ElUswvlBuswboDzPy2y4DV3DwNCqV7GQnOOPBG2mOYQE2VMUjXhcayPIihaLdYhZKnbIhivKCNET5Kc41kKQq5Z5azshoaLFQuGhCwKKB68p/h3KHmT1KhYAs1hIJ+lVVZDDJD2p8l2W0a7FYunDGgyYClGyANa3WIgz1HO71wnIwijtc60L1SS9WFyFKmUdRPVzh1IK8shiVSzaIMiJexPVjBaP+YztRNARsQoWotrDzhwASdzHkanDDyhcv3mC7PgBgnRSae4LZyDh75Iu8wYoz/MySXoAO5GaLr1wPlW0rEleKz5/FlWxAIADO+WzVl0TgcKGUHnwA4qHrldYewB5MavhUxMhVEqMAutVtnuC/BSGKb9brgzlMm9rbBTSssXiO37jQ/icn/hL/Nb7L8j9QNQZrkId5JR6dLhwYRmakHRsj0wcLVwEgUStSIVqERHMUZSkJ7egVaiSoKIg8+51EgtgbYJccA9zWwgLLBaNt3hOJ+l5sgR5iqGptUOQw+d8QYbl3dfA6g/P6QCa16LFwoxbLAoU5PQ4MUeNNgrJJ8jhohxT0yIrTl6iHidhFb3Rdt6JRx6cGciAWyxUFGT56+UHFI4XyG24BzpmC7fafBp4UsmDhyUK8k7YpCmjIKu2TuZxKWwmfvAPPoZ/8B/+Ev/tbx6R/x2VhBA14l4Jqpucddk0VcdWR+gJclWsS0EmOitVIxsTsKbBraIsqFksrh0u8Dv3XgQA/OQ7PikfE6BexYL6zNMWw9HCw5ZAPQZYFYuAsoYipVBQaldxsc3XfOmXFvYHgJFlqJNSR37zZTseIxISHsOhVZD0JAPXFk7oURWL3CS9bFwjU4+O/msjoyDLWCwAuHMMTR1eQOH6DdsswnvhanLlFkcms1joLRLkoRW3WIjH1sDUYcdtJw3WSrfTtbI5cloBRwQ5b5wYQwCkMonJPfHIgzOL2oDLWSzUSQz3Nst0XJxYBtylYoI4oKRsc+IrmmcjBTndTa+KgqxwOrE3c/CWdz0KAPj5dz6cb73JQxWCrODZrowqzbOANYhsisp2R+gJclWsw/jPE4Nk/UPrSh5UHdyKFos/vf8aAOCNr3omHtud44mbEj9XpVqEYENxtPCE/mNgNXlLddNTrUMJxJL05CwWrJWxolLqzllXOK18Cli4AUamJvRsx1HbTlCw+Sq2WOQT5OY8yKkkPccvrhwRU7YzjTGaQvg3e4bc2BqGjUJ0z268U9YiXoJPwo85SqvqDappdpmCnIijwKvOSy5WVJCFLa/TcOfQBmMQImmxqFAiTNg8JQcbAwPeosK8paA+8rlTZLHgwkAmt0L1VBVQsli85+FdAMAbX/UMXDpY4KMXD+V+hzsPxSzJZDhgfcmDqvkvwBo8yIrKdkfoCXJVrKV0jELHII61JCSoWizUlO17H9/DqYmFN73mDgDA3z5yUyKmKkpt/m750HaLFeSwdqdUol5FZZuGHmQ5BbmCxcK1AVNOeYwaQJijUrLQDEHOH/ORSplbBzmHIFsplbIOlC0WK7Kwaq3csIIcji1flyfINh1CQ7bzYF0kyKDEpjAzTgQVZapgIVKQ8whyWTKnOapM3HNPPPLgLUDMMcayG7oK1g9pNRvsmvhOFQVZfp7nc6fIYjEwdFiGhmm6Ok9lBVnOYvGeh3cxtnR802feBQD44BN7cr8jx74jFddx8/pa4hO5xsA7bfYWi6cw1lF8XLXeI6CckFAJyhYLtdIx9185xAvObeGusxsYGBoeuCKxi1ewDGTiSu2WjxZuoYLMSxNJJepVUpDZJiegEosrQiJYiSDLxRQlPUkcCY6smnaCgjG/qpQQm7Z0E9DM3DFf2CWtRlw8qau0DjIQEuR2FWRfco4YmhrmUcOXZueIpAd5hnQyXDaWdJJes1UschXknHlrlcwpKvVW3fohbWsIn8WRbEvyCrkmuRVgBEgmWlYgyBJxcQ+ySEEGgM2BgelSZLFQP5GTwf1XjvCCc1t4xskRtoYG7r9yJPc7qiSdCZLEG4WqB9mo57uXQpXT3o7QE+SqkFDTakOViALKCQnKiDrDVbFYlBNkzw/wiatTvODcJnSN4NlnNuSqWVTygPHJIM9iISamnDxL1ULmY0Q1SS/8OakFLfS45nadEsYlfzqxUFCQBwabUipbGwrG/CJPQQZCcpWNiynIDSTpBQErLxXGJYwjjtgxeNsEOTDkxryla6uOiA0rRAl1n88PBWpaNkmvObIwdwTqfs7ma3VvBM9ODSFknpdUmgd3DhhDjCzJZM4KPlH+HMhYLEamHiunpjhvAVLr4tHCg0aASUE8k4GB6UJksVAk7pKdBx+6NsVdZzZACMELzm3h/suSFgvVJlVA+2s1oG6x0LRGT3NyUeUUoCP0BLkq1qUgq+6yGiyXlItKWcTyvqYLezYcL8Bzb9kEADz37AY+KUOQVTsZxV+bUZCLCfLGMNaOtQyVFpoJSODCgEQNVcSOiVXUUoXTiYUbYGBqchYLqyDpqWZcC8+HrpFsxQbBhN6YgsztCGFcEUE2ihTkVX3mQp9rHYTPIpW8j4QQeLr8ZlUFdqLM26x0bGU62Fnjxki70GKRs/la2V+KLBbVhJCFjK3Bd1nlB3OMsWnI5RJUUPnmsnYPsKRfWmljz4m7HEGeDAyQgk0Uq+/egMXClDvB3Js52J05eO4tzKZ3962b8qVGVZVa4HhWsQDa5zZVfOQdoSfIVbEWBVn+GDxCjaQSKVQZ3Dx5UGIBfDxMyHvmSfb+zzmzgQt7drmyUmVCFxwJHi5cYYcnYJVAIkWQVSuRANHfMMZSSvHhi55SSTOF04mVxUIuSQ+ooyCLx/zCDfJJqeBZHKYrJVRF6lh3ESr1xQoyJwuLcpWyKkKSSxUUIp+Tq7YsFpYuNW+NTB3LjAe5fkyJlteZby4yxKrcg1ydxESktKiTXkwRHcrmEmhaOJ+qWyykNtymDr2O4CAxz88kSlhuDPMsFlWS9OQ2FA/fYGT4OWcYQX7GiTGOFl62kkYeVLu4AmuyWFSwadawFUmhV5CfBjDHrDyY31Cd1TxUSdKrkVQiBYkap7mQPLZ5Yi9JkG8/wf7+ywclSUVVvGk51g/PDzB3/EIPMp/YM+qGKK4qmxwAIyzlPYOQrKGaiEvRYiFZxQKoSJApLTyqFDbnEGwKa3f140gd68pZLFbH4COrpu1EhHDcEoVnMap40bTFgvvDDV1q8zU0teT1sCbstCWot4ng9yaXCOY8i6Ue5BrzqZTFIkYWxioJrooCjUoVi7GlQ/OTpybSMQFScbEE5BKCnNchtIo3WlLZvrDHvs/XnGeEaxBfkwpxHO2QlFaLy2zuNCcXVdbqjtAT5KpYR73ASkl6LSvbVQe3NWEKTgmeuGnD1Alu2WIVFm4LJ6tL+yV/U6Xs5uw95BNykcViZOrQiKyCXLESCYAxWUon6QGKFgtPjrhTSrHwwpq/EqcTwyqxRDEtAVCxxcINBAQ5n8SMm7JYpMaWFEE2BuA1dHk5uMY9yGFcmiU/vmhLSTis0okGTSNS89YoXRuaj0WvXly5lU443Hmmckvphq4Bi0UxQV4pomOVajSK6qNqFYsBXUZxSUMheXAq0fZ6I9eDXDFJTyKuS/tsfTq/wwky+yhXZrTKWt3yaa9XYZMDNHaaI0SVduEdoSfIVVGzy5IUKu/+2oyJP3SqcckpMU/szXHbzgi6xrxpt4WT1cU9SYJsqCgL2bJEZW2mAeblnFg56oYoriqbHKhYLCoqyEZ5mTfXp/CD8Mha4h7WUpBLjk9ZabU8i4VYQVauDy0RF7dKFFaxiNXQjXzZLXiQl7AwMOXtOyuC3LDFIp4Y5y3KLRbpa6KQp1AWByBIbs1L0iu7NzVyOmwZr7q7IjFDS6Fut6KyHVXUKLJ7hBiZOkbEWf0eWagoyEsPGyUlLJnFIu1BngOaoWZZk4zr4v4cO2MzIu5cQX5ctg5/lbXaXwJBC102gZpi1hosFiprdUfoCXJVrKOtc2UFeR0Ge7kauhEk47p2uMCt26v3vmVrCEKAi6UKcpXs5uw9PCgpYM8xGRgKCnI1i8UQSynFZ1zmo8yNS05B5i14h9yDHHgssUiAWk0xSk4BloUWi+yRICsl1oQHOTm2ljIKMn99m1UsvAVsWBhI2HAiRL775hXkiJTmKLVpDNIbKQX/alkcQI5qm6pEwjEsU/drzKcL14epExhFbcBjJEbpxKNli8UIXEGuYmUov16zpYdJyemYsMxbxfm0zOJ3aX+B89urv3draGJjYODKoUTN8BpCSGuCVlWvb+tVLCqs1R2hJ8hVsRYF+Tgm6VXclUpmxl4/WuLM5mpxtQwNZzcH8hYLCVU0EROQUIgii0XJ8d9koGMmo07mJAaVImGxkEmqYbHaKmqppPWDE4cBJ8hA4eS5sntUIKYlY6vYYpGjIJs6HD+AV7fFc1pB9mQJcqggl/lca8S1oFaxkp0CMdtRkBP+cEmLBQAs+QbGyj6LVSBUkAXHzaZOoGukwGJRfT5lSaUSJd4AwByqNfxRrDQwd30YGoFVpGaHGFk6RuAKskoNXYupuxLXayqRpDcZGFi4qee3al4OUBrXpX07sldwnN0a4Nrhsvx3VFqr10SQVZXaBmuS56JP0nsaQKGkTSVEBvsqvqZ5461kI1Td/UkqHjemDk5vJNt1nt0c4vq0ZJJSaJ0cIaqusZoM+FGkXAJJu0l6rVssZAhySHQjiwX/WQGasViIPMhqFgt+XRYq9aFz40p7kCUsFvz17nxVSqxuHDlx2bDKiXoMpCUFeeEGUQ1s2SQ9IE9BrkmQRQqyl28NI4SE5QBL6iBXmE8Xnl+u7sc2hSMVi4UiibEdQem7HDCLxRJUtXUyIO1fnS3lkvTYa2PXpKrXFyi9XtePlji7NUh87ZbNIa5KK8iqp6otn0JXXqvXVCq2T9J7CqOhI0EhfAegQcXdMm28lWyEOsc2JYvy3PEwXXo4s5mcpM5sDnD9qIQgexWU2iiuuILMJuOyFs8bQxWLheLEGZKYEeSS9JQJchBI+USBuFqqSU3ow1oEuXhsLTw/X5ETHIMPo+tS04ecLvMWeUtLCEfYwIS/rmkFOXDmsOmgPI4Y9EE7qtXSq6YgL9IEuebRrlBBLiALw6IWzzXm04Uj2NAJ4hqbBhwvgB9IkHFFZXvuyNVUB1jZyBGWCIyRWutkQNqSMpNJ0gvzQI7iNotKlrXyMe/6AW7OHZzZSBHkrQGuHpXce99ljUiOq4JcpczbWqpY9AryUxdtK8hVWhTHX99WXFUaXwBSE+eNI3asdzo1SZ3dHOBaGUGuorYDmSQcTnrLJu+JlZNhnRtXjSQ9IlfmTbmKhUIWcYIMWuVjK1JLq5BBPikLypYJLRaCTno8OWpRxe6RiCtd5k2iDjIQkRgtPNrmm42mEDjzUEGWn8YHpoklzMY9hks3WMXhSiTppW0nDVUFElaxKDhuHllasiZzHDXm04Un8MznxWWO1MoBKifp+VKbbYBdjxEc+Lrixj6Kq/haLT0fjh+UJultRuU0Y/NsLQVZHNfu1AGlyCrIW0NcPVyCFp0gVCai8q25K6GqUtt2FYu+zNvTAC15+SJUVmrXFJeK1xeQmji5jSJPQd6dLouVlSoTJ5BJ8JIlyLk1OnPjqp6kt6E5UTWPIkSNQmRJqUIlkkRyj8TYqpWQVqYguz7r6JeGOWYKXyobPIqlLjEVlnmTsFiERHRoaCu/bUOgrg2bqlksRpaOBazmLRYJBXleOj9kk/SyFWUqxSGyvxQoyJm213FY1ZXthRuUb3BjJGYUPccS84qigmw7vtRmG2A5DUOyhFeJIJdbP2bRKV25BxlAUoio5fUVx8VPKNMK8tmtIRwvwH5Rs5Daa/VxU5DD1twFydi1UKV5VkfoCXJVrG1wHzMFuc6uVMIDBmQnqTObAwQUuDlzCuKqSJBTXYP45D0uWUwmA0MySa9CXKGysGXITVB6qFBKd9JT8KatusbJWSxMXYOpFyQ9FcZVI0kv/vMhGqsekRrzhbV203GFMY2shmoyx0CdORaKCvLQ1GHTQTtJeoYufdy8slikkvRqxiWsUV1AFootFjUUZJFnXhAXP/GQ2kgpqnxMQZYkyGGSnqdVJcjF10pahBjmKcgVBAeJ2t/Xp0w0SIszPB9mt2jtqXyquq7T3nY825XB10RV+04H6AlyVRxbg/0aFOQquz8JBfmGSEEOCfO1Ii9YlYkTQLqV7NzxMDS14tJMUCjzJun1TUA34cHAllYwKacwViFgCspCVMXCkEvSA0oIR2FcxWN+6Yo8yPkLTWT3qKvcujYAEjb/WJV5G5RVBIhtCoem3rjFAq6NBQZKCvLQ1DGnFmgLSXpDU5MeW6t7k1aQGyLI6XFSsLEfFpVXqzGfCjs/xhEjV0obOlWLhSufpMfLvDmVCHJ5XJzwllWxaMxioWmMJEsoyGl734kxI8h78xJxBqh2qgocv1PohirKCFHVDtkBeoJcFa0PopqDu01l2xxXSN4Yl7bmvn60BCHAyUkyc5p/vjcrOeaqZLEYJY5PpxL1OQFgY6DD9SmWZaSn4mTgaENsaBLlhUKMTYUSUSoKclyRkzwGH6m0zE3EVazE2CJFTrDQNKcgJ8f8wmMVG0jZMxBXkJvq6peKy6ZW1KlPBkNTwwIDBA3PWxEZlJy3so1Cmkl6XoYnHhkrjptf5g0oGa81hBDbDcrvTUxwUKoAY46VjsFthSS9kaVjTJZwyaD8xXlxlVosJPM8mrJYAKXEnSvEaYLM157i08uqp6rrIsiqcbXtja64VneAniBXRUstWyPUsTLEf75pVClnA6weiIJWsjemS5wYWzBT6u2JieQuvkpnnlS5JJnyQ8Bq8p4VlXrzXdZYo0JcSzLAhoKCrHSEX0FBTnqQi8d8ZTtBAXH3/ABeQMWNQnLiKm0CoRJXLCYpZZDHFcY0MPXGy7xpng0bAyWLxcjUYcNqkSDLzVtRZQ9+b4whANKIgkxIjrpfENeoqKFMjfl0KWux4I2B0raTIigKIbarkKRn6hjCwZK0k6QnqyCLLRZVc03Ece3PXQwMLaOyR2tPmb0POIZWhoqn0DV891KoetrbAXqCXBW6wWpEHrfjEf76NpXtqkot/3kBrh8tM/5jANgJu9rtlxHkSnGlqlg45eWHgDhBLrBZ1OgYZGOICZEnyGPLkC9nprD5ipKeDE1IRNMoTHoqgjMHszJkF+aEFzoNQcnFxuoPu/Zq0YCktxRYqVaUYmRq1Sp7FICEnfRULRY2tUCbJshewFTbqN5wMbmKKq/wcUJI2OK2nuCwcP18db9gPi2sP1wj10RqIxUjfJna0EVQVB9V6iCbuoYxWWJRWUEu8yCzv6+0UYjVkMUCKFWQ92YOdsZZ2+DJ0GJxU8ZicVzLvKkKNG0r21VLsnaAniDXgWK7TyXUVpBbjKvSEVf5bvn6dInTm9nC9DuRD6zMYlEhrlTNR9YCtXwh2cjzx+XFBFSaDBYYYEzkLRZKXbgU4kokpElOnMyDXKWT3lxo3xEmXwHrSdIz4wRZkCyYiWsMUB/w3eY9yJRC9+0wSU+hioWpw8YAtMHFLwgoHC/sGic5b3GFN6GWClqGq0B4bwqT9LSCKhbVvdELT6aKhR0jyCoeZDX1ce74pYnHcYyIgwUqEGSJBiYri0VxPLpGMLH0lcUiap5V1WIhXhP35m7kN45jZOkYmtqTVEG2mdig0jwLkLbSVUbVtboD9AS5DhTbfSrhOJd5a0lBvjFdZjxgAGs3PbH0klI7NY7eKijIG0oKsvpkMMcAIyh4kC0F36+gq1geFhUI8sjUK9ZBFo+twuYcgk0h96EKa9xWjCuq2FCG2ALYuAc5vIcLqmaxYB5kC3Ca20AvvVhdaMl5ixDCYonfm1RFmSoQ3puSRiHC8Vo7SU+iUUjGYqGiIJffR0ppaLGQJ8hjOLCRJYxScZXcQ1mLBcBO6iIRwlsCoDUsFuK4Dux8BRlgKvLNsvwXQD0u3ZRuzV0JnCCroqGKMkJIlIE8LugJch2shSDnN00QovXSMRWqMgCQyVLfm7mZBD2OnbHVjsXCmgD+MqqhyzzI5QsJJ9FHhQRZnBhUhhlVJ8jtJOkFsHSN1WMmRGrMK7XMTcQlVha40phfB7ksSa8Bi0VcQfaCqEtfIWJxNa4gh8+3DUupkx6rYjEEKcgFUEWiLrTCcXMmOS5VUaZSLF6QT0qLGoWUdtKD8nxKKZW0WKzmrUziYhGiRKryuBZuAEoR1VmWwRBLVg5QFeaY5ZkE4mduKpmkBzASPePzWp0WxYJmQhwiBRlgPuTi/JfqVjrVetZKqFPZCTh+Ns0O0BPkOmh7cAPHUEGuuPsricv1A0yXHnZGoknKFE9SlLJJueoEBUTHSTPpKhYyCnJFbxqAWWBiQOXb245MQ91iIeFNyzTnkLAVFR5ZF8YlPgUotFgIEpZaTdIrK/EGJDarrJRYg0l6EUFWL/Nmw2qWIHuxe6Mwb2XKq1njBhqFCEipJz5uHpk6vIDC9XPuT0RE1eJy/AABlaiVHes6OMyznYgQ5ZqUx8VzE6QVZEoxxBIzWlFBBgpbc8+WHixDyyRj54El/IZzbA3LWnmSnhNZ+dI4ObHKa/BXjkutXJ8S6vQGAGrbnYTok/SeJmh7cAPqZJRng7da5q0GERXEdWizI6ztUT45PTG2xB5kr7pSm57Q5atY6NHrhYjIgvqGYhoMlAjyWEW1VSzzlvBRSmwKC+vKFsYlHltLr8iDnJ91beoEGmmok14srqV0FYu4glzQzrhqTAAW1FSuYrHAAFqjCnIsgZKfmkjMWxnltoGcDrahE3iQBWOrULnVTVaGTTGu6MSjbCPlzqP5oS2LxTzeDVMG3hIaKOZBFYJcfoI5XXpS9gqAJepFlYJqCA7pcp5xUEqxP3dxQmCxYGtPC2XeeFxtl2RVRet5TL2C/PRA20l6xkjdYC95DF4rrqoTAf/5HByEBFm0iy+0WNSaOFd+K0pp6EFWSdIrWMwqxuUHFNPAghWoEWT5Khbym6+MImeWq3zV6yCLx1aimkYaArLAfK4FJbwqxhU1xShDWkFulCCz56hKoxCbWtD9ReExuAoS/nAFsjBI35sG5q2lG+SPkYKxlWl7HUc0n6rN88uiE49EXNkkPek6yIDU9eLvJ9tqmr/nUVChFbBEXLI2NiBMPnbTFouqSm3+PTxaevACKrRYlCrI3gIgGqtqpRxX22t182JWbbgVbZodoCfIddC2B7nqLus4HtuUKB77kYIs2sWbYgW57sQZxrX0AvgB7bzMm+36mGMAK5CfoDgRpJSWv1hh85UhgxKbwspl3qpaLAom9GFVsp6IK5Wk56kryPwY38s7xq8aE5gHuVSljIHXQQZQWJNcBYl7o3DcPEon6ZmjwqN5qVhE96YgYSlqey2ywFSwfnDiX17FYkXcdY3A0jXFOsgSBDlUkKUtFuE9nFZSkMstftOlL2VjA9hJ3ZzPsS15ffdnXJwRJOlNLBwtvHwLDoCoBn+V1slt2jS9RaXTS3ZqorVIkCsS9w7QE+Q6aCDrWog6pVBa9UZXTdIrntC5grwtmKR2xhYOFy78IIcANqIg26vyQxKTt6lrsHSt2Pdb0ZtmOz5sDKD7S+avlgAnBUuZmr8Kmxw712JRnqS3cH05sp6OyypRkPMIR5QNno1raEgSjrK4EgqyZBULK64gN1STOYqJ/a2+Pizv6BfD0NRg8/JdDc0RiQRKBQV5lK68YjRjsRAm6QliKu1gV+GkcFFkCcrEtXoWB+lNgwgKKl/h5lIUE4AjXz6pLxuXeI6wXYWufvHcitpWhvyYuH2iKEkv/roM6hC+tk+hq1yriqcmUvBd1gGyV5CfBmh9cB9HBXlebVdaoiAfhOrwToGCTOmKSCdjqujXBlZ/i2tHXjcZBRlIJZDkwatG3G3Hh00taAhYe26ZWHiTARnvr8ImJ+PpLMkGB9hCHFCWqKSEQotFrFJCHsz8JhONVI/IJOmpWizmKxLWVKm3UGkNFJsADC2dlXkL42oCySQ9O2qdXBqLkedBrlvmTVQHWTyfjqySBh0VTgr5fVbppAco2JMUkrFtZYLM3vPQq2KxKPdG2458V7+Edaxukp6gNXdEkCfiMm8Aq7KUi9pi1jE77QXC05wWuE10D/syb099HOfBfdx2f2UEudRiwSapXB9y3YkzfI+Zw+tzyi0kY0tflSDKQ1UF2fVXRfolx1emM1kRFDZfrGxWXEEuJzGlR9bCuArqIJcpcuYIeVnXA1OvlxzH24Wnq1ioWCycebTJqG334AjvAVUlyIa+Kt/V0ByxTHiQQ7IgoWoP04ml5ghRkl9FiOsgi7t3lSbHVZjnpVXb1LMobQkyyoloOhZVD/KB344Hea7Q1W88iJWvrJukF3+PGMryXzhxFvqQj+NaDdQj7g2c5uSizlrdAXqCXAfH8XgEaO94pM7g1k1AM4UTJ28CIiLI3HqR60Oue/QGAN7KYiGrbjAFuYggV4vLdv2VT1TyPiplwLu29A5+4fiROg1A2mIBSJL1TFxlSXpFBDlPQa5pseDe0zCuIKBYekF+pYRMTKvN16hxglzt1MTUCZZEbfNVhkQVC09+bA0NHctEkl64+VK15iRiEVksxPNpaXJcJYtFQWt0Dt9lnRZj86m0f1/TGImR8EYn7o8MOEF2K1gsBCUXk/H40mR9bBpRbkhtD7IgLt4lT3R6yUuPFiaJV1VEj2OSHtDeKXSdtboD9AS5DsxxoslEoziOSXp1d39FiRK2g42BAUNQG7M1BTmmxHA1WNZiUVo5QuG4OQ7b8TFXVPmUMuAVNl+ZpCfJJD3pWDgoZYt9SZJebqMQQDi2hkbNJL3U2FrKEJ8opmSjEKCBpiWpuKjiQkMIga+vbEVNIJOkJ/kcjiwtqyCDhh3TKsaSPvHgKCrzFp14rFlB5u9pxBVkhQ2dJHGPqlgoJ+kNxIlpwph4ycViBVnWg8yrXcwdr6aCLFa290rEma2w9OjRQjDX1xKzRi3mMS2qd6xr4DQnF3VKsnaAniDXQZu91Oscj0j4RCuBe5IUj3UjFBD3A9sVTlAAohqVrSnI7nyVpCdrsShrzlHxHi48dYuFEgFTIDGZI2uB1zcvFiW/bY6aFsfS9UFIQV1Zwdgamlo9D3JqbBW2vE4jtvmqtGmQiUuQ1FgE2nAzoSRBlicL2U564c9V9D4GAYUjUvclCLLw3lRIxpYjyNmN/UClAozkSaHSmI3FZcOSbz4UxVQ+tmxZixJWpH7u+DUVZHFc+3MHW0OxOLMVrkuHiyIP8jGzWFBan7j3CnJPkGtBoVi7Mmodj7R0bFNbQRZPBgfzYoJceMxVy4PM7+Fi1QJVxWJRtJhVvIcLR91ioXSEr0Dc7bRfkBfcLzgG5+qqEhmMJs781uoLL8DA0MQVGwSbwtp1kFNjS7o6ARAegw/BG4UATVosmBJDKihEgd7svJWwEyiQBV4bOqp2YtRTtgvV/cIkvTKLRZU6yAVVV+Ix8ffnsah45iVJjLqCzN7TpgP18SqdpCepIIdzMSPIzeSapHFgu0L/MQBsWAYIWTWzyqCJJL0atqJceEsA9PgR996D/DRCqwpyTf9QG8c2dXd/BcSdTVJigrwxLDjmaqKTnjuP6m2qWSyKCLI4MagItuvHEqkkk/RUVFvFJL1Mq2nq52aDp2NRWlxLJs5S36KggUntOsipY11lP2dIrpQsMFJxzeHCwMCq2JwAaN5iEU/Sk8DQ1EFprDRhzbgKldIC4r5qSS7YSFVQ06LKEUU1qnPGvJLFwpITQrh1RLpedi0FuXhNdP0AXkClPcic1M+W3koRrVRvWKwgHy48bA7Fc76mEWwMDByKLBZeTQW5pq0oF02s1TVrkuciyp3oCfJTH60ryE+hJD3+c6IkvRKCrGsEE0vPJ8h1jt5iqhXv2CRdo1MmSa+KxcINKiTp8Tq7EguaJ0fc+ZF10mJRvimMFDmVxbVkQi+tHNFWkl5qbCnXlE0R5CaT9FgXPfUpnFpNWywCWLoGTQtb3Euq2lHtbn5/as6nQnWf0pDEiDrplaj7rXmQs55apSY7knExX3bB6Usa4UbTxkC+OyeHbhW25lZte80VZNv1a1oZxJuvo4VbSJABYGtoFlssKnt9WxLZ6q7V4clX46izVneAniDXQese5JpEtOljG27ar+VrEpd5K7JYAMDm0MRR3iRVZ1fKi6J7NmynxOeawsQyypP0qirI3IMs2cFLyfcrSdy5spdYzCQ6eFXy25YqyILkKw7BpnBg1CzzlrZYlNVjzsTFys/xa9hkmbcFUWszzUFaUJCjUwaVJL30OKlLkEXqfskJE7PuQDxOuJqm0Jq7sLENRw5ZUDrxkE3Sc+SrRrC42HsuYaqP16jJRP78sFC0eyQV5DpWBvGm8GjhYXNYvPZsjUwc2i0l6QHNC1ot2iFrobdYPI3AyULTdgbfYw0i6jx0JcfglRBN6M2WtKGUhh7k4uPizaEhVpCNoVTr5FwYQ8BlBHls6tJKS7nFohpBXrg+FrTlMm8SikfuMbEEuapkJ5BQkAs3LsIkvZqNQlLeaCnik4nLjq5hk1UsFtSST7yKgSi0KZbBMl7pRIEsZLzqNZMHhaptSfUDQggGhlZc5g1QSh5ceD4sXYOuFcwlOYKDGkGWT9JTI8hz+MYIAFG3WACFJ4X8/VSrWNg8Sa8qsSooP3dUYrEAgK2h0VKSXrOb1QheXYLc9il0n6T31MdxHtxAi8c2zSrICzeA4wcSCrKBo6VAQa6zIw0ng7nrYySZoAcwdSOq0ZmHqkl6ro9FVKtWMkkvUihLCFgQhBaL8nuYSzgkSEwltbTk6E1Yvisel8Bi4fpUfI9K46qRpAdEm8LGPcjeAjasShYL0xzAh9agghzrLKiYpAcwgs0C40S0mvdRqO5LHOsWJnNaYeKoghCSUNVFECrIsmXe8n33aahUjWBx2aAGmx8qdX4sUB/5iZtKHWQArARnI0Q0z4PsYktKQc5ZewK/vpgliKsWaivIw15BRk+Q6+HYDu6WiHtd/5CVXyJs32aVKcoI8tbIFCjIdj3Tfzihs4oN8o/EOCpBJEreqJik5/jKY4srlKUETGHzlXscKnEkWKnMm0SSXiEZNCfsb0sdg9f2/qaU7UTXOBlwBbmFTnpzalWyWAwtg5URbOjkK1EKUClJL6WqG/XmU2EzGQkLVmG97ArzvFS3xWjMr05zhqYGxy/YdKfjklSQlQly+DdX2tBJWSwkE6EjBTmWpFcF/B6mxnwQUEyXHrZKFGTx6WUDVob4+zSFJpL02ujx0Jd5exrhOA/u+Ps0hZaS9KbhxFN2zMU8yIJJqpaCHLdYqCjIYQKJiAhWTdLzfKVWsgBg6BpMnZQTMIVTAL44DtJ1kIFC5aqSnSCq6yso8yaTpAdkjsFXsVQlyGkPcrUqFrpGYOk1EwZjoK6NeWDJdfRLYWhojCA3WAc5abGQ76THfx5AY0l6mWsisbEfWXpUri6DCnElVHURcuZ5pY2UtMVCIpZ0XJwgN64gq7W95iJEbQVZMJ/OHA+UotyDLErSq7sm8vnuOK7VQPOVLFwbIJpy86yu0BPkOmibiFZoAgCgPWXbkydXuRBMnIfSBNkQJ+nV2ZGGisfc9TGUrRUKYGzGitjnoWqSnhNgaJnKmcS8rmwhFE4BcsmgBFmIyLqK91dGQS5SbQWnJhHhEJEfxbjUq1isNoWsokYzigx15rArVrEYmjqrktK0xcL3gMCVfhYHaTJY8+RrKbRYlJeBHBgF94ZvCl25hFlAYrwCuWNeqUSiZJk32/XlayADgDuPEjkreZAFJ4XAinDLepCHhg5CYnWQq87zusEqbKSu15Hk2rM1MjFdegjSyn7dU9XjKrIpCjTS4PewSqm+DtAT5DpojSA3pSCrDe6PXjzAd/32R/D4ruDvcW0AhE00VePKqa7BG3TIEOTcWpR1kjcA9rPeArbjRaRXBmNLhiBXKfMW2gkUM4mlEnwkyALHMo8MSo75oVFSAi8TV/Hmq1QFE2wKG7FY6ANAS76PNEGONTCpXZM5BurazINcIUlvaGqwaZYsVEXUjlwxdyJjsTDrNQoRJlBKzKeF96aSgqxisYgryLxco8SGzhyxDUlJMrZ6kp4NLRRnqlksRsITJtWmJZpGMDJ1VqO+iXk+dQ9XBLlMQTZAKXC0TK0/jdkh85/F9zy8i+//vftw9VBRyeXzfJ1W0wVxVUbde7hm9AS5Do5ziRZAaXB7foBveOv78GvvfRzf8RsfFMdVZ/cnOLbhqrDMMZfjBauknkRcNR46g6l8tivf4QmId+AqKP9TYYKKFlfFTOKRTIKPwuYrWsxyk/SK4xpaevY+FYEvqIUeZAmLRUZBbsBiEYtpUdStLTeulcrXLEGeY4mKHmRTx5xaoA0qyAPeJASokaTXUKMQYRWLoiQ9bVWPOY0oLnmSsnCDclLqzgHNSBw3K/n3JTertuurWXHcOYg1hq6Rxi0WtqLFAgirBdWtgwzkeqNXa095HWQgp5tebTFLPJ8eLVz8i1/9AN7yrkfxPb/zUbX3bSyuhi0WFfNyukJPkOtANwHNbNE/tL7ain/5ieu4dLDAK+84gb97dC9fRa69g89fAOU9yIJueg0pC3NH0WIRb4Oahu8CgVfpHtpc8Skol5SHkSmh2uYkBomQq8hJeuaUG3SUJFKVEmRBXKtj/KoWi6SPnF9fpSQ9J26xaMaDTFwbNq1WxYJZLAagDSXpLfmJh+KinFH3dZMRRoVyanGsOumJqliUKMiiDV2VJD1PoopFTjUZNQ9yfuJZJpYKdZCJNWbKbSWCLN7Yq5Z5Y681YgpyHStdkYJcZrFg38/4kOt0cQUKNzl/+Ynr2J05eOUdJ/COj1/FlQMFstqByCaFuvdwzWiVIBNCPp8Q8gAh5EFCyL8WvOazCCEfJITcRwj5yzbjaQVt1Aus7WtSt378zYO7GBga/u8vezEA4B0fv5oTV12vb/5DxyepjZIWz0KCXHdXao4BdxHVQZZFocWixgS14J5BxbE1NLVy368CicktmyWrIBdVBRDFVVDLOtPyOg0BWeBEtnKzkIyC7K+6xsnAHEfH4LVrMsdAXDv0IKsryAODWSyCppP0ok2ObJJeTjKnoWYrSsThiSwW5ZtCuSoW8nHZjozFIruxV07SA0o3FAtPQs3OxDWuPl4LNva2qkUJsXrztRXkrDf6UOH0EhCIM0D1KkoFRPQdH7+GE2MT/+aLX4iAMruFNI5tdY2a93DNaI0gE0J0AD8N4AsA3APgjYSQe1Kv2QHwXwB8CaX0hQC+vK14WoNkooQSamfGqh9V/t2jN/GyZ+zgrrObuG1nhPc/vp8fV9UmIYBQQT5aeiBk1VZUhM0Bn6TSx1x1ifuwksViXNRSucY9tPmRtWKL26GSglweV67FwpDziUolDKbjEsSU2/I6DWGSnkILbmFcq7G1dEuIeiau1UKjvGkQgVIQz65cB5kryI2VeQtbGauefOWSQcVTk0QcFRuFsJ8pahSiLjgsy+p287hSm4mRyomHJIlhZF2ligV7FkeWhkXDCrLt+NAUupUCbJ5dLJ169YaB3LHFCW9ZmbetkchiUXOtLphPP/DYHl595yncc34LmwMD7330pvz7pnInlCG5+VJG3bV6zWhTQX4VgAcppQ9TSh0AbwPwpanX/FMAv00pfRwAKKXXWoynHcSOUBvDmpP0lp6Pj10+xCuedQIAcM/5Ldx36SAnrro7eK7yJRM4jhYuNiyjVJV7UlksatzDlYLcRpKePInh75XwLxISebaLMFL127o2omoBKSxFymAcEVlIjq1hIxaLmIKsWlM2RmIGTVksfAcEFAs6qJik13QVi7BiQ0UPcuKamKPKvseFG8DUSbZ7nUTyYGGDjgrJg+yaSJR5y1gsFDzzEvM8pRQLT9Fi4bC4Rqqb3HhcOcnYwMo+JtutFGDzrL8szlGQi0tMkMsUZL72ZJLE69ohBa25jxYuHt2d40W3bUHXCF72zB18ME+0EqGumCUphCijYl5OV2iTIN8G4InY5xfCr8XxPAAnCCF/QQh5PyHkq/LeiBDyDYSQ9xFC3nf9+vWWwq0IY9ROrUCg/vGIRJclAHj0xhx+QHH3rZsAgBee38IjN2aYZTJ2G/CAAbk+sDIPGLCaxPIV5JoWC8+G46nWQS5oFFLXYmFqLSfpSVSxECWkSRB3ZTJYsMkRdkhLxJSfSFW/ioWdQ5BVFOSV+thYkl54DxeoWAfZ1GDTQSOLH6U0a7GQnCN0jWTLAdZUkHM3DCX+dqCsioW6gixdxSI15jmRlSKmEgry0gtAaU5taBEojZ7F6gR5BIAC3jLzrbmj1q0UYApy4MjPW+K48omooZHSZ1qcpFdzreY/m7qH918+AsDEKgC4+5ZNPHR9Kt8R1Gug9CnQWyxafO+8LWL67hoAXgHgiwC8HsD3EUKel/khSn+OUvoplNJPOXPmTPOR1kGNCV2IxmoYysX1yWvsYXzuWUaQn3/rJigFHro+TcXVABHNiWu68LAhRZBzdvF8Qq/TSS/c0Q7gHhOLBa9ioZikZ0ksaFFSiUQVi/A41NLTBLmcuCuTwSKCLNPeWVjmrULTkkxcq2u1cEusHpm4kgR5WbUecyImdu0rWywMZrEgDRyfuj5FQJFK0pMf8xnbieKpSRxLT1CtocTfDrCxJaxioVusuYGSghyUlzLLOW5W2tBJ1Kpd5NmkiuC7AGWdPCtv6Ap8tex0TG3MJglyTYHGySrIm0OjVNFerT1tEOTsfMrX5LtvZQT5ubdsYOkFuLgnOQabOu1tqw7ykwRtEuQLAJ4R+/x2AJdyXvO/KKUzSukNAO8E8NIWY2oeNSZ0IVw7U/5HCZoWNpmQi+uTV6fQCPDsM+yI+47T7ONj6UoWOVnXShApyEu39IgLEOziuUrRAHEfYalksTDDhhizQotFBYLsxKtYqCXpNdsohBH1zOJhjkq9aeoWC/HphFT3OkEJwUy3NlWkLRaeqsVipWwPi5pRKMUUEmRaLUmPWyw0z849BldBYvNSgSwM0qce5rjyiZywVrYEWShs8Rwdg8s9i5RStsmVslgk4xpEnnkVD7J4E82vrXSjkJg4w/IIKmzoCsjV3PGUTukAYDwwas2nq7iyY+toIbf2GLqGoanln6rWjisrhDy2O4dlaDi3xcSbu0Lx6hNXj+Tes3ZeTq8gA+0S5L8D8FxCyJ2EEAvAVwD4vdRrfhfAZxBCDELIGMCrAdzfYkzNQzGRSgpN7LJMeevHo7sznN8ZRYvts05ygpyyaNT1DxWUeSurYAEgUpkTHuQmeruHD+wQjlIVC4CXVsuxWCgotXEEAcXSC5gSViFJT9qDLHEfhWTQLN98VSrzVmaxKFJuBacmq056zSTpKTddiPyrzVss7Mp1kDUs6ACE+qVNJsqQ8KlXIAsDQ0tWGFHsHpmOJfd6SJwwZWoyp6FwmsNPCUptDW62+k6UpCdVB7lc5bNl7EmJmFY2mZGpV0/SE8Rlu4GSCAGEHUujuPLzFOTiyt7DQ0l7HwBsDMyoqVUExcot4riS1+rRGzM86+Q4yst5dihaPZpek0WonZezmrcaRa8gM1BKPQDfDOCPwUjv2yml9xFCvpEQ8o3ha+4H8L8AfBjAewH8AqVUsSJ2x6iRVCJEE91mFMjVEzfneMaJ1aAdWTpu3Rri0bSC3NixTTpJT26S0jWCiaWnCHJDR1wARsRRslgAYY3OBhVkvrhWqYMsR5BDsiCRJCNsdiAxtpRLRBVMnFLd64wBAJJZaAZ5pcRUkEnSU61isSILjdVBDuebJaxylTIHUZIekHkWVcFtCUNDq1QTNlOasMaJnNAfLqMgl40ThbiWefXD85CbpFehzFuhgqxosYgJDlKWrdy4xMq2ardSgCnIRLFLozCuTP6Lq0CQdUyX6SZV4T2s0zrZHGfyhR7bnUcnuQCwMzaxMTBwQcViUYe08w1l4/lVT65OempnHYqglP4RgD9Kfe1nUp//GIAfazOOVtGWxaLuIFKwWDyxZ+N1dye93c88Nc42C6mdpJefSHW0lN/Fbw7NZJJe3SxiINotq1osgFiXpzQqEvfVgqYBGLPSRr4H6OXXZ2TqcH0Kzw9gpH3D8bgkY2IduHLeR2LMSzUtScRVlKTHFbkCMig4Btc0AiutUqogJ0nvzOZA/udjZIFvGiilSln82ZhCBbmyxUJjZd4A9izWmGoSmxdb/TQnUz2iRl15oT/cLbeGlRJTBcFhZTsps1hkKw2YusY62Kkk6RWQGDuu8MsgtrFXLtUoEdfc8XHLlpp1cGzpGIJb6WquP94CCILIj3608PCMk3LvORkYWYtFE53hzBGwXFknKKV4/OYcn/7c09HXCCG4/cQIT9yUFExcG9i4pXpMkU2zQQXZd1lN+CcRQe476dVFW0l6tS0WcgvNwvVx/WiZUJAB4Pz2EJcOUj/fmIKczSSW8YEBzGaRUGyjCb3mERcqWiwsARGsaP1IFNKPFho5whAdzxb5FxWOuJaiqgASZGEQJqRRWY+ra6/qd6cglaQHCJ/Fyt7fIMj47qXq26ZjAkIFWQelgOPXVJETSXpVGoXoWFCuINebuxLdFl2bJbPplvTPZ0496ijIIkuQhGoVtXguahYiqaZJq7aCZ1GqGg2PCShWkFVbO6ctFlXLvAnisnkJSwVMLB0jOOF7N7D+xO7jzPGwKWHvA1gjq1yLRZ0EcSCzVh8uPNiuj3PbyTXt9hNjPLGnQJDXKLJJoYnT3jWjJ8h10UYnPacJi4UccedHNuld9LmdEa4eLhDwpJXAr1+onR/5xCYo1w+wcAPpSWpi6clJqkGLxZA4UW1jWbAuT82VeYuac1h6glzJgCtWhcqtwhGXMBNfwlbEY5Gu2lCwKeTqb2n1iLAjYjYWScKRBt+YxIi7VH3bdEzhe9W2e3CEz7WrDbI1fyWQtFjUm7sSaiknfArqOLOdNGWxqJekx96jSEGWiyu3RXsasXJqebFI2ZN4a+6iKhZeVYvFKHtvZFFQQ1e1WykAjCwDo0hBbrYyw3zpYzyQi2djYGDadA1+Hldsrb56yOawW7aSBPkZJ0e4sGfLiQ6N5DE1zG3qtuXuAD1Brgs+uGtmgyfQVJKexOC+JngYz28P4foUN6bLVUxAPaU2p8kEn3BkyrwBOcdc3krxqAxjZbFQL0FkFCvIiupC4shasf6qlH8xJzFIBFvk6ZRoB8zJrLTNomBTKFXFAhAryFVb5ubYd+o0CokSweom6oULDTWqjfmhqWERWSxqEuT4eK2QxMvKvKUahVQsP7d0C8q8SVssijzIcs+hVGJcrJxaXizSyXElJMZ2JP3QHLGNPbdsuaonHm0oyIQryE1UUVrFNXO80g6uURwDA7O0GNKYUrva2IsI8q1bQ8wdP6ti56Ex4t6kgtxAQv2a0RPkuuBF0X2nufdcY5LetSNGgM9uJX2V57bZ7790ED64TXh9gcxDxx92WYvFJH3M1aSCDLdSEfv8JL0FQHTlUn2LPIuFtIIsQ5Dl7TvCxgsSZIEvglLE1PeYN02wmZBK0gMgqq5RWQnLSbQUqpQixKpr1O7ql4qLVkzCGRg6bG6xqFkLOdq8GLqU1zeNzObFjPnulWMpaBQiabEQbl4UyIJU1ZUCsqC0oSt5Fusm6cXfQxqFZd7UCfIo4UGuP8/zuPyAYuEG0qeGuR7kxuyQq3t4JVxzb00RZL5G8zW7EE0Q98YJcm+xePqhQpelUjQ2uMs9c3y3ejaVeHRuhz2cl/fDQd1EvUcgx2/FEu5kyrzx1+V7kOsrCyOyrORBzifI6sfNQKxuaQUFWaoLV05ikDgWQettiYlTqUEH//tEHmRpgpy/KaxssUhN6Lxtr5KCrJtsoxRWsQBqlJxLxUUrPoumTuCQhiwWcbW0wsZ+YGrJBh2RDUs9roVXx2JRsqFTSdKTSYwrOG4empr8yUvJPB+p2bInY7ExX+rLFsaUX+bNDygcT1AZpwBjy2jWgxzeR26Nm0haLDaHeR7khpL0YtdKJFrdssmeDb5mC1Fg31GOq4FmQhF6BflpiDZ6lrs2atV7BKT9Q9eOlhiZeoag8kz96xmLRd2HLqnycYvFlqTFYmzpyV18U3UowZL0VNWNsagUUsUJyo4n1SgqyCvFp5kkPWFVgLA1d5GtSKlBR4k3bSFqeZ2JK5+4Z7q1ySI1ofO2vUoEOVZdY1C3aUkUF/sbScVnkRCCQLHbpghJi4X6xj43SQ+Q2tznxZJ7bzwVD7Lg2VFIWJKyBBWQBekkPSBjWcvGIrm5jOJKJukBwMJRtVjkz1t8nlQvpaljRJYIiFm9eVY8rnC+4cKGtIJsGVi4Aby45aQRMWsM+EuW5wOmIG+PzMw944T5epmC7DsAaK8gN4CeINdFGx1nGtn9yZVouXa0xNmtQabs1MmxBUKAG9Nw5853krUzdpMP3ZGiBzmTSdxImTeuIDtRIpUsxlbOsRuPqwpBjity1mT1XhKIkvRKLRaySXoCD7JEeSmuPEupTyV+bakja0C4KRyYmlxnskxcyQmdK52qY4Qfg9duex3FNYcHA5alUG4uhUCiTbEMFlFTDK4gK1osMq2mq53IUUpr1kGWKfMmd62WMolxBRt7dYtFQZKessUiqyArn3iICLJqRY0Q47CKhafXEEGAzNji87asgsxfN4vXQm5qrQai+fTq4SJjrwCAM6GCfO2whCA3pdSWbL6U4TbEIdaIniDXhUSpHWWs0T907XARHd3EYegaTo6tnCS9Zr3Rs+iYS94HtvRiu/gm4gof2C3NVa5POwrLmWVa1Fb0puV7kJtM0pMfW8KucRLKtpKCXHIPF24Ay9CirlJCCI4Eh6ZeLTEutdBIl5vLiyuWpFdfQV5gSQZqXug0Gjr5WmYUZMUkvfTmxawWl+tTBDRnExUdN68xSc+RGCcFG/uhSg3xsiQ914euEZiiuujCuEZRwrJSPXMA0HRW6i91vSKCrJjnMRkYGGLZAEFOzluqCjI/ZZ06KYGmiTUxFtfVw0XGXgGwU9aBoeHaUcnpSmNrtZxNUxq9gvw0RNMKsuSEXgp+DB4Uq1XXj5Y4k/MwAsDpjQFu8OOcpnalKeLOd+OymcT8eG7GJ+0mHjrdgEcMbOjqbXfHIqW0AlkAjk+SHqU0rGJRRJDFhCEq86biQS7opCdVWk1wDF65xXNqbCkfV3OEJEZp01AY1xxLUq0GciImoDEP8sCIlXlTwNDU4Qd0teGNlcVTikO0eZEsLVV6+mKOgcCTas0tNU4KcjqG4aZbCqVJeoqeX3fOyK2mV/cgR3HlWyxUFeRRWMXC1WoS5NSpSaQgS1o++ClnotSb11DFKSC6j1cPl7kKMiEEZ7cG5Ul6jSXUN1zmrSfIT0MokphSeEs05h8CSovbXztaZhL0OE5ttKAgG0mVTzVRgu/iI1uDOwf0AVMtasAlQ0xqEORMLeRUgwlZJOsgV0zSK1J8JDs/RYpcrsWinFwpLa5cpRBsKKRLq4mS9IyKLZ5TC410ublMXFxB5kl69RuFLDGIPM2V0NC8tXADEAJYuibl9U0jc00qxpVIFoxDkiyUd9KTP82R8swXKciGapJesYKstJGKKaJSSb/CuLLPIp8jVT3II5NZLFxS3VLEYkon6YUKssLpJYCsxa9O/ksiLht+QHF9usyUeOM4uzmUt1jUjqvhTnpPwiS9VltNPy1Q8UhQiMaUWq7ELITVAeaOh+nSw9kciwXAFOQPXdgP4+Ikph0FWaXUDvs5TpAbOOICsCQDbBB1gsyPCzMLmjsHRieU329VNksDqGKSXtkin9MZThhHkZ1AgiyUxhJHCYmRJ8iCJL3KdZCTKp+0F1oQV3MWizls1LNYmJYFDwaMBpL0hobOrEkVk/T4+2wMjERZPBVE/vD0OJEkCwNDAyElZd4A9jcOtwvfS63MW76CrORBLlDbF47Aly2CZ0f3IEr6VbVY8LgECrLqyYepaxiTJZa1CXJyYx/Z+2QV5PTaozCfFiKmbO9Ol/ADilu288frLVsDPHDlKPE113Vx4cIFLBbhGu35wOvfDnhngfvvrx7X+f8DOP2F9d4jDuOFLK4LNwGy38x7KmI4HOL222+Hacole/YEuS6aLvPWpH8ICOM6mfsSvhMVKcj5FosGEiXiBNnxMDQ16Y5gUaJEZLFoIEkCwJJYGGvqtaxXCnKOxWLrvPL72a4PUycwdA1AtUYhtkgtjRIty+/hoshHKVFpQKnmb0kJQenaw/EauvpqaqteB7kpi8UImN9kiWxooFGIa8Om9SwWQ0OHQywYku2TRWBl78J7UzFJD4htGipWsRDeG8mNPSEEA6MgmVPBkrJwA1h6iWfeFVs/lMZrWZKeJ8gjEMa12uRE96bK5tIcZ04v7cjzqz5uJ5qLJWlyTWRd9AB5BTlDkL2m12o7qhp1ZiO/XfvZzSH+6pM3El+7cOECNjc3cccdd7CN6vII2KXAqecCg43qcR1eAqZXgXPPVy5XmoujK8CRCZx7AWtJv2ZQSrG7u4sLFy7gzjvvlPqZ3mJRF01bLJr0D8XfLweieoscpzYszByfTWyNxZX0zM2WnnQNZGDlVV5NUg3UoQSwxGDVrUkBYoJcPUkvWuQlWsnGsWplLFjQFO5hYbtcCZVPqqIGB19IRVUsZGsPR7ai5PXidZClWrTGkUnSC2tUK3ZbzCrINS0W3gJzatVSkKNuerUV5GB1byocNw/SlT0qeqMTJy9xKNRvL/SqK8zzwmoauXGJy7xJjdfSTnqKjTliPnL+c7ZqmTcgzAdIJelVLPMGAJMmFOQoMZXNN1UV5KP46SXQ4Fo9x96MnWKenOT/rWc2BzhaeIlxulgscOrUqVWCOQ3vV11SG5HYhroE87jQANmuAEIITp06tVLaJdAT5LpoXEFuqCFHNBmI4+LZsCKLxZkN9pDemC6bi8tMttWcO760vQLI8YFVSAzKgw0L40oEWWSxqGb9yFSOUEiU0LRQBRMSZPl7uLJYFJR5k/Agy1ksyhRkQYc0YVzJCTDqkqbq/XVttkjoVhQHAHXvb+jHbDJJz6amutUjhqGphwS5fpLe0NRZDVffqZSkx98HQMyypjafCi1BCidyhfWylRRkiQ1dFFd27h2ojFeJJD2lcRJLLm46SW8uU91DgBGcVffHqtC0ROky5TrIefY+oFEF+eacrUEnJ/kWAH7am/YhJ6ovRQS5Jr3jP09rbug5KGXv2YQaXRGqVap6glwXkslw0mjhoRPh5ow9jKcFxzmnN9nXGUGWP54vjitZXWO69JQUhewk1YzFwqbWqp2pAoRJeq5dqd6j7aQWV4XyUgBTfYQLmsLYKqyfKrEpLPV0KsS1cINIaSyEwBvNlXWpihrpuGLdEGtZLLwFTJ1AI/U76VHXxiyoabEwddjIluJSxcINVhUsgMoeZF47OJE7oRSHiCDL53Qwa0NBmbf4+5XEIk+Q88u8AZLj1RwVVtewRd0wi+LiCnIdz3xOkt6ihoI8IkvMUXPtARLEfbb0YOoElmRd81Ud5JYIsrfAXrgmnxiL1mRGkHdnBWtVBwRZ13W87GUvw4te9CK84Q1vwP7+fn5cHVgr6uDJFe1xREMF9yM0naRXMKFzgrw9yt+tno4UZGdVzqbu7i/TzUjRYpHxIDeTpDenFgZQV5CFKktlBTlVlskcAY4CQS46JlYYW4W1XCU2X6WezkRcZQRZ0WKRiqtyw4PU5mtZuYoFOwUghFRvex2HM8ccTVgsLGWvbxpLbn+pSpCNtMWiWpKesMKIioJcaLFQ8yBLWSw0I7cznFJL8pL1R7pEYjyu8FqZOoGuEfU6yEChgqzarRQABnSJeVBTQU7FpXp6OTB0WLqGKW8U0tip6mrM35w5IES8JnPivDcvWKs6IMij0Qgf/OAH8dGPfhQnT57ET//0T+fH1RPkpxl0A9DMY5ykJ14A92YOtkdmmBCWxamExaKBcjZANpN46UsnSQCCMm8NdOaZBSYGtLqCnFhEfBcI3EqbnIziIyhdJsLQ1MVJegWJQWkUlqqSJAvSDQ9KTieWXiBJkPM3hZWrR6Q2OfUahcyjn61rsaDeAgs6qKUgDwwdc2o1ZLHQKm/sM/emYgOTcgW5fMwPzILTF6Uyb5IKsuBacUuE1LNTsllduIoeZG8R3QNCSFgisaqCnFx7IotFBWvQEEvM6losgMSzOF160v5jjslAx3QZqvWNrdWr+XRvXrwmnwwJ8s1ZQcWlxgmymgf50z7t03Dx4kUAwHvf+1685jWvwctf/nK85vVfhgceegwA8Ja3vAX/8B/+Q7zhDW/AnXfeiTe/+c34iZ/4Cbz85S/Hp37qp+LmzZsAgJ/8yZ/EPffcg5e85CX4iq/4CgDAbDbD137t1+KVr3wlXv7yl+N3f/d3AQCf8RmfgQ9+8INRHK997Wvx4Q9/uM4V6KtYNIImC2qvU0Geuzg5EU86p8Lv7XKC3ET9Qr4AeqtjrnOCkjZ5GJk6CGm+zNs8MGFVIMi5tUJrTJx2WvGR7IjIUUhKFcZWoZ3ATN5DEQrV7HRcBacT0iqYUEGu2OLZmSWuVWWLhbE6Bq9ckzkOd44FrGxJMwUMTZ0pcg1YLE5tWJXHfCZxkZDQJ1qRIKfJl2SjEAAYmZrY1qBQzlPKM19gDVM68SiZ521RN8zCuFZjvtCyVRhXNkmPb6ZKO2KmQSkGdIlZIFeaqziuuILsKYkzALP4zTIKcnONQm7OnIgE5+FE6E3mVow0fuD378PHnrjB8gGs99aLK/ABz8Y9z3gA//YfvkzqR3zfx5/92Z/h677u6wAAz3/+8/HOd74ThmHgT3/7rfjuH/5P+K0/+EIAwEc/+lHce++9WCwWuOuuu/Dv//2/x7333otv//Zvx1vf+lZ827d9G37kR34EjzzyCAaDQWTb+KEf+iF89md/Nn7pl34J+/v7eNWrXoXP+ZzPwdd//dfjLW95C/7Tf/pP+MQnPoHlcomXvOQltS5BryA3AUWfaCHW6EHemznYGYsnnaGpY3NgMItFQ17ftPqoesxFCMHEik9S9etQ+gHFLLBgBRUIcl4Vixr3cJlWfBQ3XyNTW/k50yhIDEqjkAxK2opYPVcJMlhSiUSpUQiQrWJRNTkurSCLKiWUxrVaACvXZOagFMS1YcNSjyOGoalhRi3QJhRkQ6983LzavMSuieKmECg48VCoNFB4bxSSsW03KPf9FmzseZUUqY1UqYIsefoiiGtYpKoXxpWdt+aOpzTXRwg3OUeNEORxTJzxlRXkjYGxShBX2HwVIlZd4+bMwYkC0WpjYMDQSLHFoiko7GNs28bLXvYynDp1Cjdv3sTnfu7nAgAODg7w5V/+5XjRi16Eb//eH8J9DzwY/czrXvc6bG5u4syZM9je3sYb3vAGAMCLX/xiPProowCAl7zkJfhn/+yf4Vd+5VdgGGzs/Mmf/Al+5Ed+BC972cvwWZ/1WVgsFnj88cfx5V/+5fiDP/gDuK6LX/qlX8Kb3vSm2pegV5CbQIUJXYg1lnnbmzu5LS3j2B6bOLBdwG9GqU0fVc4cDxuSXfQ4JgO90SQ92/VhYwCzAkHmyWiJBb6GsmC7Ps7F1SdzBEyvSf98sYKsUuatgCBrWm4ZpzQGsh3BShIapesgC47n61ksJrE4fBgaER5/ChEjMQNTr1cH2XdBqA+7psWCVbFgBLlOVkFUB7kyQc5RSyvMp/yaChuF1K5iIZ9rsnR9DAW15SMUtChW2tCVzPPqnfSSgoP0KVAmrlA0ojQ6GbIdxbbXUUzsb5v6zSvIE0UFeWNgZJP06lr8olMTpiA/46R4fiaE4MTEEhLkf/uGFwIHF4D5TeBcPfUUzgy48QngZHnNYO5BPjg4wBd/8Rfjp3/6p/Gt3/qt+L7v+z687nWvw+/8zu/g0ff/GT7rH3119DODweoZ0TQt+lzTNHgeu8Z/+Id/iHe+8534vd/7PfzgD/4g7rvvPlBK8Vu/9Vu4++67M3F87ud+Ln73d38Xb3/72/G+972v3t+PXkFuBq1YLBoopxZ/vxzslexWAWBnbGJ/7jRnsUgtNLNltWOuqdOcxWLueLBhwQjUE5YIIRiZemMK8sINUgqyGlkYFalgKmXeQvVKuKBJxDWydLGanY5LEBOlVKEOcj5ZqNziORWXMtnIxDUvrpQgGxOABeo2CtGwoM1YLIamHmuaoDZHDNJJegDKusPlx1HSalqCxBRXsWihzJvAcz9Q2dAV2J38gMLxJDeXACOz7jxxwjSyJPMIMnGNAFDAW4kOtutVStDjY/TQa0hB5uLMUu30EgjXnrg4AzQnHIUe5CKLBcB8yDcFFgsAzSXDVSjztr29jZ/8yZ/Ej//4j8N1XRwcHOC2224DALzlbb+t9OuDIMATTzyB173udfjRH/1R7O/vYzqd4vWvfz1+6qd+KqoTfu+990Y/8/Vf//X41m/9Vrzyla/EyZP5DdJU0BPkJmAOm1eQ6ybESRyD35w7OFFgsQBY1uy+7SJeH7MWYgTZ8QK4PlVPlLDCXXw0oddUkB0fC2pBo+JySUUYp316NTosZUiYOWnQgyxPYmwR4eCI1RMVxlKkyCXiElssHD8ApZK+X0EiVWNJerJKtjCuhfw1ESE81q3bapqVeWuwDnJtD3JNi4UbgBDASqv77pzNpVr5tSpMoIya9siUeZOpYlGgIKt45guIO9+cSqu2vgtQP2mxMCpWXcmxpNiOoh+aI/zbDnxTvdlPJq60glzDYtHUaW/4HjRsFCIjWu3NS5L0mqg1XLEO8stf/nK89KUvxdve9jZ853d+J77ru74Lr33ta+H7avOe7/v4yq/8Srz4xS/Gy1/+cnz7t387dnZ28H3f931wXRcveclL8KIXvQjf933fF/3MK17xCmxtbeFrvuZrlH6XCL3Fogk0qiDPGPmQmNALUXIMbjs+Fm5Q+jBuj0xc3LMBYgOT0/ViAhIEmdcOVj3mmgx01ibUWwKgDVksrCiuvNJLRRiaetSaOXoPoJqC7KS6cCn62wvLiCkpyCUZ5+Yok6WejUXDjalX+JooroIayMBKaSxEaZJelTJvq8Vv6frqTUKABIkZmhqOluqbsERMABbUrG2xuAELRFGpTWPJa1RXJAurGtWxeyOx+UqDe6EzjQAUTphKK4zktE/OjUWqisUcGOfPp0obuoLqGrZqWbUca9jQ0nFoVxivOf0B5qpd/VJx2dSSr2gjQiwBdKaY/wLk2PuAhhTkIbylDccPhE1COE5OLDx4bSp+QeMKcvmmZDpNxvP7v//70f8/8YlPsP9c+Sh+8N98NwDgTW96U8IjzD3H6e/99V//deZ3jUYj/OzP/mxuHJcuXUIQBPi8z/u80phl0CvITaDpJL0mHjgAvEFBHqKOPSXHOWy32kaS3jyqZTxRnKSiXXzFY9005o7PuooBlTY6Y0tksajQatpLd9JTtFhYBWWZopbOMkl6ASyjIONcYlMoneBTMOaXkZJdvcwbJ7XVGoUky7zVU5Dn9esgh9fcxqBmJz1msSAFTSbKEAQUjh8kk/QUT75y62VLbL7SEN4bhYY9A7OkbrfkPJ/phpmHgjFfjSBnn8UocVF2nOTMDyOzYpm3nBNMqeuSh9iYn1exe8QRu4fzCmXeNgYmpgtOkOXnU5m4vMUMgLhJCEeRBxlAgwQ51bq6Llqug/zWt74Vr371q/FDP/RD0OoKjCGUFWRCyJsAnAXwQUrpnzQSxZMdTSfpWZPy18mgoIYuLxOzU0aQRxYObBd0YwHSaJKeHe3Ex4rHXGPLwMzxaim1cXCLBQBl7yPAjjCTZd6qKQuuzywn2VbTyWSXIgyNok56xeXU4igtrSZBFuTLvIlPJ1YNICTGiDEAQDLkqnqjkOQxuHJFAI7YmB+am3K+7KKYwFqj17FYDAy91qkJkKoLXeNZzCi35hiw99RiEd0bFQXZ0OF4AYKA5m8MJeZ5SmnY+VGmzFv+Blqpg11BdY2o2U8NBTkzt8kiR9meOz7O79RTkCvFko7LtREEFHNXrQY/AGwMdMwcn40RBftOeVxjeEtGkItKrwLAidBiQSnNb53coQe5EC0T5K/6qq/CV33VVzX6nlWiPQPgKoDnNBrJkxmx0jG10ZRSCxRO6HtRz/dyBTmgAHWaacgRvYe3iAiyusUi9CA35AGznZTFQhGZRJaKZCG3ckROsktpLK6f79VTaPZSmmgkQRYGsmqpJ45rRcIkpipCcol7JYtFjr9dutxcGgkFuakkvZqNQkyt1qkJkOpeV+NZHKZVykoeZMG9UUgu5sf/haXeSjaFy6IGO5m4RAqyQlJprERYGoXt4kUxAYm4qifpZb3RtmrTklRcCwxgOxKWrbK4vAUWrgtKUaFRCFur5q7f+GlvEHZMLbM9nhhb8AOKw4XgWhxHgkwpAPq06KR3B4AXAXh2s6E8idG0gtzUQ1dQcJ9nwZb5nSKFuam4YmRhXtliobM6yBWPddOYh2XeeFyqECvIamQhIhzpOsgKcQ1NHZSy5LYMFMhCaQcuCQU5Q3xEKIir1AudG5eozJvCRJ+TsFT5iDhe5q1ukl5IhGxqMe9vRQxNHTY/NaloD1tmFGQSqvjqsWSrWChaLNwg36euIDhk2l6nITHPS4/Xgvrt1cq8Ze+hsLJHUUxA4npVHq85CnLdJD0bVjMWC7BubADUFeRhrJNrU5WdAMAYRTXJyywWXNQSNQthp40NEVGiNUSQY42AnkSQuoqEkCEh5F8SQn4bwAsAXAPwn1uN7MmECp2fhCg4elNGAYnhD1fZw7gzMkEQQPPrN+SIYgIA146ygccVdvG268NfNtPJyHY8LCIFWb3U28jSo4TDxHsoEvfV4ppK0gOkx1dEBp08gixPFuyybmASJEatk15xkp60WprjjTZ1DbpG1Bb6nE1O9SoWqwYmQ1NX90LnxFW/zJu+GvOKZJQjqSDL23dyY8koyGqkfSlKjFNM0gMKiKmE715qvJZU39E0AkuXPGnQTYDouXHZygpy1ho2sqpWsVhVbonHozrXx+OyaRMeZPYsLuZHANQV5I2QUB8twhyYFk57t0cllaVCgnxT5ENu0srQOEF+airIbwXwQgA/BeAHATwXwH9sK6gnHeJF0eui6SQ9ocWCJeaUPYw7YxNDOKv3qwtNB/RBqCAzUrmharEIFeeFPW0kroQHuYrFwjSSi0hlBTkn61yh/iqLpeCYWGFslZJBySQ9L6Dw8tTsRFwLiEoIKqtgAnKl3OI557h54fnV2jsnPMgaHD+AH1ScKxpM0qtzagKk1NIaZSCH6eS4yhYLkYIs9xyWE+Ry4i41XqPTCfH1GsievhAifBYjD7KyxSLpQXb8oPwZTiOlbFNK1dtep+Ky0YQHmV1zex4qyKpVLKyUgtyE7RAAzDE0n/2dW8PimLioJVaQmybIDfCapzhBvptS+nWU0j8P/30DgOe1GdiTCuaIDQC/gfaPTR7bFJCYvbmDraFR2hVsZ2zFCHJTcQ0BdxG1i1ZN0uM+MMeehe9Xb5KqbbGwtJTFwmaqjmLiU67iU1DGKQ98Yc71DSqQBTkPcrnFAijxUgZBYVexwo5+orhyFFHlFs85m5ylG1QjpYlGIWFFjaqJemFcS1gw9erHlbyTHnvPqh7klMWi4vwwSJ808BM5hYVZmKTniTdfaZTWHzbK691LqbYSG+jSknNxCJ7FVftt2SoW2Rr8qw23KkFOdrVceqye+ahKq2muIGNQzQ+diItdc2fOxBXVOsh87WEEucl8oSEMb8FaSZesybzylLAWcgcK8mte85rcr7/pTW/Cb/7mb1YiyN///d+PH//xH5d+fRuQjfZeQsin8k8IIa8G8DfthPQkhKJPtBBrStI7tF1slzQJAZiCPIoIcgPlbIAo2SVK0qtQixIAlpGCXD9Jb0nCa1HhuHlsGSmLhV3puDlX8VG0WPAFLVdpKWjIkcairN6oTCc9HkvRouZlfY9xlDYsSUNQQ1eJcAD5CrJIpSxD1GTCLve5liG8XtQc52ewS4J5kJtJ0htEFotq89Yw3X5bMTGVxSKwBCkQ90HR6QsglaQntaGTSOKV9u8DbF7OmbcWynWQs3HxfAhlYppaE7k1YlTl+eEkG2ZjHuTlgq0dqgryZqjuHkUe5ObWaj1Ylp7oAqtT34O8+tSUNtcoBJAmyO9617uKX/AUV5BfDeBdhJBHCSGPAng3gM8khHyEEPLh1qJ7siDHb1UZjT50YgX5aOFhcyD3MI7IcvV+jcTFyNXMkVBbcsAJ9UpBrkfcbccHNapvcniSUcCPzSuShVzFJ1poZtKxAIJjYpUkvXTDkjQ4ES1Q+aRa5ka1V0V1kHmjkOpJeiwWTc37m3PcXLmKBRCpopW7+kVxNZOYOjS1+gpyPEnPk998ZWIxtKj6A4BKgoO4DrJKkp6MxULOg1yYQCmhII9U6mULiHt0f2Sa7AjiWm3oVAlycmPPBQRVQsrjosYIAGmgigWLy7HZ36qqIHMP9dzhCnJzp70Duii1VwCrRMH8Bi7hfNyYgkykCPLGxgb77ZTim7/5m3HPPffgi77oi3Dt2rUwLIr3f/hj+MzP/SK84hWvwOtf/3pcvnwZAPDzP//zeOUrX4mXvvSl+Mf/+B9jPm+op0QDkB2tn99qFE92KB6DF2JNSXqHCzfaDRe+ha7hpOWv3q+RuBhx54Xahc0oBODHXLyweu1GIa7Pajz7qEQWxrHyUGPLqLzJsfM2DBWT9PIV5Ln0ZiLTsCSNqFPWUvieUnaCkprRCRImA3MMzK5nY1HNxs+Ji6nqFRee8FmsT5Bt+NBhGMXJtWUYpusgV0DUxIU3Cqn4HGbrIIfjSeE0p5E6yCbv6ieqYiGRpCczXqUUZAVLkIC4q3fS46c5MYuFVXG8phqFRMp6lSQ9Zw4a9gao70FmY9RdzgBMKjWpAhBWUaq+KczGxd7n1LCcjOoawebAyFeQ/9e/Bh5/D8vz0evNEQCY7ebUc4Ev+1mpl//O7/wOHnjgAXzkIx/B1atXcc899+Brv/Zr4TpLfMv3/ih+93d/F2duuwO//uu/ju/5nu/BL/3SL+HLvuzL8M//+T8HAHzv934vfvEXfxHf8i3fUj/2BiA1Oiilj7UdyJMaiiSmEI0qyGLP3NHCwzNOyi1oZwY+4KC5uIwh4NmYOZ5ymR1gNUl5y2JyJQvb8aFZI8BGxSS91THk2DIqZzcv82r+qibpWQVd45SS9Mo8yDGVT0SQDe6HLpj0S+rnNpakZ2qKHuQkiXHDxLrKiXEmV5BrWixcG442wLCKEheDphH4GveJVk3SS9VBtjYqvU+mNrTimGex5IzXqFqEWh1kIQnjRLSgaU9i0yBCZCsq8CCrbOhESXqqJRIFjULi7yUN3WAEzeMKcphvUjFJjzepaspiwcSViXJVDb5ezZ2GLRbhhuLMQO7v2xqZOFwILBZAw+XU5HMB3vnOd+KNb3wjdF3H+fPn8dmf/dkAgAceeAAffeAhfO4XfglANPi+j3PnzgEAPvrRj+J7v/d7sb+/j+l0ite//vUNxl4P9WbZHgwVJvRc+B5L9GsySc+zWSJUqtvP0cKTUpAB4OQgCAlywxaLpa9cZgdYJfX5Dj9urk+QdXMI2KQaQY6O3XycAuoryFaegqyYpCdUkOXuoe1IJOkBhdertPFC/OcbK/OWr6Ypt3hOkQVbxltaGBcjMaU+V4m4HDKoVk0jhaDmxp4TuAFP0pucrfQ+GbW0wonc0g2ytoYSf3smDhmLBfVZFQqBgi/lmZfotDkwNVZKTAbmKLfzYGm7+ExcNjuajymPUnkEIsTKnyqr2Ym45iDmGANDayxJj3etU21SxQn+lNfhb1pBHsjNUVsjM99i8Xk/CFy7H9h5FjA+WT+uvUcBR20DnZcbQYMAL3zes/Huv31vxh72pje9Cf/zf/5PvPSlL8Vb3vIW/MVf/EWNgJvFk8sxfVzRlMXCKyYLyoiOwbNHlYe2i62hXJWFk1Y4UTfRcx6IPHNzx1OeoICVguwv52wy1+vt8+auj9HAlErCyUOmNWzFjP78KhbVyrzlV7FQUJC9HMIRh0RcUnaCiCCLy7wZGoFZktmdiEtIkKsryMpKdiauUEFWaQKRG9cCSwxqtZmOEHW1rFnFwqifpJepYgFI53T4AYXj51QY4fdQcgNd2lBGwhvNf7aQCErEpTReBdU1StvFp+EtMsnFwzJVvQix05x5XglLWYTzFqs3X5Mgh2tYsJxDI8hvLlMATSMYWzrmjSfpsbEV2RlLsD0ycGjnbKBo0x5ktTrIf//v/3287W1vg+/7uHz5Mv78z/8cAHD3c5+N6zf38O73vBcA4Lou7rvvPgDA0dERzp07B9d18au/+qvNxN0QegW5CTRlsZDwpikhalCwAKwVYQsCiqnjSSUEAMC24SXfr3ZcjCxMiafsAQNWu37a0A7edjymDAiywcuQOYZ058DohPL75KqlVvmiHMdQpFAGPuAvpe5hEFA4XlDiQS4/nueEpVD1KUlYEnpLi+LKJcgKVQFy4oqSBWsqyKU+V4m4lrBq1UDm0E0LgadBq5ykFxuvNfyYvEY1pZSpT4qCw1Lk+1WcT0tbksfn+dFO7kukOulJKMhqZd7yN4Wl3TDz4kqJIKsNXcVmIdyDXDEhO4rLHGOc7lhaBeHzTN05JpZRqRLM2DIwW7qF5SlV4elDGABOmHKnBltDE4/t5jwfTVeLUCTI/+gf/SO84x3vwItf/GI873nPw2d+5mcCACzTwG/+7I/hW7/7e3BwcAjP8/Bt3/ZteOELX4gf/MEfxKtf/Wo861nPwotf/GIcHR01E3sD6AlyE4h1ylLF/tzB3z5yE3//uWcwqthgQhxXfKFZHbccLT1Qyo5pZLClu8n3qx3XGHAXmMOP2maqIJpk3Xkjhdpt18fZTVO40JRhHLNYsLhsYOt8pTiAlKrBFyzVJL00KVU4bpZKNCo4neAYWRJ1kEviElYnEMY1ZhuBwGdNaUIwT2eFKhbhBkW5HnMmrhEw320kSc9uSEEemgacxQDDykl6cYJcPUmPbzqWvLSgouCQ8ELHUeJvT0O4ueRQUJDrJumN0r7sIoiS9FQbc+ScfFVO0gMS82nkQa6qIA+3MbL0BiwW7JpTx1auv8+xMdDhLJoVs2aBgW0AO5IEeVvoQW64pXOsioXrB5g7PjaHBrTU+0+n0/DlBG9+85uz73N0BS970d1451/+ZYa8f9M3fRO+6Zu+KfMj3//939/M31ADPUFuAookhsPxArzx5/8W918+xGfdfQb/7Qs3QIDmFeRUXEfhgyXrQd5oXEEeAu4cs0A+UTAOXSMYmTpIQ60+506otFRocQvkHENWJAu8zm5C1Yg6ZcnFlbF7cCiQhWiRLzp+lCALAxk7QVS2TORB9uVLvAFJcjVYJY0NTF2tOUcqLqlrUhjXEIkyb5U9yDbsmm2mOYamDocMMKyapOf5MHUCXQu9+5U76a0SSxMEWVJwEG5eJJTaOAZlNaoliPsib5ObhmyjEOkqFuJOekrjJOdErnKSHpCYT+26FovNW7P15qsgtlZXOb0EmILsLcMa/A110psGFrYBbBqSCvLIFNRBbkFBBoUfBHjo+hSOF+DE2FJftyMVusnkwfbRe5CbQMVGIX983xXcf/kQLzi3hb944Do+efF68v1qx5V/VMm9S7Ie5E2NPYie1kDZGCCa0Ksm6QGsfqXWUNdB2/GZxcIYSvse4xini+m7i0p+7YVI8VFovWvqBBrJWeQV6ufmtrzOiwmQ8iAvCwlysRKzLGt5nYkrf1OYqZRQBn7crHEVvIkkvXkDVSzmsKlV7ag6haGpYUkGtZL0hoauZN8RxQHENg3KCrLAH65osSCEYGBo4vEq4btfeH55YpxsmbcGOumpEeRs18FaSXrmKJpPc0tYSsfFBIeR2YAHWdMAYwTi2ZXyXwC29jRVQYnj0GdrcXRaW4LtEWua4qZbgLdCkIH92RJOOJ725k7xnJ4HStl7NVpdo330BLkJVPQg//6HLuGWrQF+7Z+/Gpau4d0ffyL5fnUhULZXCrIcQZ4Q1klvGqi1ThYinNBnjlutcDwYeSP+shkPMvfq1UzSs+MWiypJeo6IIMtbPwhh6npG8VEgC1IVGyQ2hYUVNTJxicu8qXmQ89XHSkl6qS56/H0qIWyBXTtJz1tgTq1GqlhE7aZrdNKLKlgANTzIqWuiKDis1H2Rgiz/LBaOEwlv9MKRSIxzy+1OcV92KcwRELisClIqFjWLRfbkayDzDBfFlVaQK5Z540l6lZ+bVFzEs6vZPcByYIKl+tgqwqHH1sENTY4gb4mahbREkI9sB0NTxx2nWD3q/dwmJQVosv31GvHki/g4ogJB9vwAf/PgDXzOC27BztjCq599Ep+8GHadabLMG5CZ0Hn5IFmLxVhzsKAmDhcVVa9MXCMAFJ6zjCpSqGJiGdD9NiwWNcq8JSwW6nEJFR9F60fuIq9AFlbHxAULiIStqLQqQPznRVUsvIoEOa0gGzq8gMJLKy7CuJJkIapOUDtJr0bSUxjXPDAb8SAPDB02qivIS956W9Hrm0bmmkRjS+40R6juK5Z5A5C/ueQwy8f8wg3KbQTuHNBM1oJcgLgvuxSCTaGyfz+nKsPA0EBIVQ/yaj6dOz4sXYMhW40mE9eYVY+oqyADgDmG7i+qK8iWAc9pVkE+cFksE0mCvD1mY+cwXMujjVRLBHnhuNgaGrAMDSNLx3SpaHU5JgRZasMZQ/cRPxWgm2zCU1hoPn7lCDPHx6vuZMlzr7rjJHb3D9g3G7dYJBcabu6XTdIbwYGNQX5SQBWEvi0zWFROlBhbOgy/ficjP6zYMDaNUOWr3ihk4YQ1UgO3soIsJsjycQ1rKshSpaokjptNXYOhEbkyb0IPsqLFwshX+VbH+LIEWaQg1+ukN6jaujcW15Q25UHWsKBWpVMTILZ5qVmeMlM9oqLFIlOWUNGDzGOpVeZNZkMnUR5MKZlTcL1sR7GKhbfIPIf8RKpukp5yRY04QsGhkTJvAGAOoft1FGQdcIo39qo4cFksY82Rej23Rx7YLobDIXZ3dxn5a4kgE9BoQzGxDNiOj0CFbB4Dgkwpxe7uLoZD+XvWJ+k1BUUS8/7HWGH3T7njZPTxYbpcvVcjMTWjIA/hwIbVHEEO/74RnMqJEpOBATOoT5BXySNadQU5nshS47hZuIgoWj+GppYtI6agIK+6gRUl6cmRmFyyno6roJb1wvWxI7mRK4orTjikTi3asFgEHjTqwTIUu/rFQF0b86CZMm9DM2w3XcNikVSQq9dBZu8XXpNIcJAs8yaqHFEhLjmLRXGSXum9kThhUvKqC+b5hScRi0Rchap6YVyxOsiOV+30JSY4VI4jJy7TX9RK0tvzmrVY3AwV5BHkCPJ2OCce2i5eeOftuHDhAq5fvw4sDti//Qea8fu6NjC7jmvUhXe4AY0Q2I6P3ZkD/+YAlmzS8uw6y1XYrR9SHQyHQ9x+++3Sr+8JclNQPAb/xNUjbI9MnN9mu5l7zm1hTDhBblpBTk7o3LckS5AtLDGllnxnp9K42N83IsvKu/ixpcMMqicGcfCs6JFlVCbIhq7B0jWmbtQkyLkKpTkClvK1IUdWnoIsf9ws50GWJ8iFi3yOahWHugc5nyyU1rhNI22x8Hgd5KoK8iquoZGzgZFFVMWiiTJvGuaBBXgVFWROBksqkZQhUtXj6n7o2ZaNA8jzIKtbPwamLj5lkCjnKXXiIaEgC6vR5EFgd7KdIKqwIwVBXENTL24XL4I5ju6h7QbVS7wBgDnCuIkyb2FcBp1XPr2cDELfvYnGxKzdJRszhi835vnp7+HChWmauPPOO9k3/vQHgHf9FPBvbjQSFx76c+D/396fBtuSpddh2No5n/FOb6qqV1Vd1VXV1QMaQKOBbggQYHEEKITAAWYAokhaFM2ARMpShCWRtiLsHw4PCocG2yLNYCgUMiWaMCRSNEiCwUGmKE5NoEGM3V3dXV3VNb160x3PnKN/7Nx58mTunXvIPPdVVeeK6Hj97rv33K/O2bn3t9e3vvX91T+IPxf8n/D/+DN/EgDw7vkSv/8/+vv4P/6+z+APfeF5tdf5r/59miD/sb/VTVzXhF5i0RU0k6tvPpzjpVvjwtLrYOjidpBuX6uTmAQ2b5sYvmMp22f56QZr+PzRlkZx0f++AFErDbKXtW/SYxsuHRRi5oMMlAZRxPqHchGL0MVCL66ByzlIDGzeGkuilg3YvvRSSNlsCYPc8BmueSOEmyBlkM0kFpu2DHIpifFNS9ZJBJJGWHcksfAdG4tMnamtori8dM0gs9dSbdIrNMgdSCychoEyCpfCVZTIGygVbCC17ABFDLKRDzIvQdYcssPgUDtPZBlWYWy2Zktra+A5WEUJ0lRPR1pF5g7gpZtW1csg65bMutpkCOEor3nGINes3jpydiqQv9ZLR9vP7pnDASa+g9fe1xjo0eXUwWtEnyB3Bc0y+LcezvHSzfHO1+5O2Gt1lSCLbN4iZf0xADjpGit0ySAzicUGQ8MEeejb8NGeQd7x5xSMbFWKh3l0SprOZLF01qRXPViLZEHd5k1anhVMrZPGshNX88a50W7SY8nCLhOj5Mm8E1e1SU/xPZHGtTRPOPL3urtBIRYWaRcSi3blZi67r0E4CIdzaI6aZq8hvNA58gR5o5KUKmmQdSQW/F4TYUVKMy5uRUoF7oBqT5MQqygxZJC3a4v9vLGHeI7UHiDAxpxB9hwEubNTV2f1bBNjA1+5asI0yLVx09GyM100AGwItXb92MH2vSKE4BN3Jvja+1fqL9QnyN/h0NjQzxchThchXrq1myDfHqQIMxuZ1ZHyRWjzFivLKwDASVZYZd1rkAMSmvsguza9xRv4DZfBmj4Km7d4tZ1nrwF6iKStkoViUEIV7gAI9RLkNgzyVmIh2R4ULoWBa0lGTTdvnOso1UtKBSOwixHPqodrTYOcwiKAaxvq+kpJjPZUv3JMANZdDQpxbCwzj45sN8A6zoe4aMh3eGCXlx3ZiaOTIDeMmi55WaugsUnPdqheXjJJT/rcxGs5g6xzoeNUCqMkRZxm6gxyg5d1qyY9gDqv6DYMMpQZ5Py/pW2jXmwHCFr2vwRMK9zRoJDZOkZoBcpESOBSWR+fQe4uEb23oPvd3d1UBS/fHuPNxwv1F2oxafNJok+Qu0JJbyXD64/oFJ6Xbu+uuiM3wRo+Hs023cRkWdsyVwlX60h5SAgAkHiNyAr2wiCbWu1M3Aw2yZC0TJB3JRbMLkl/WAiVNcRoU27uSmIRuHbdHkqj3FwkHLIDTUEnOpBpkKUJssGoafa6JbSVWDA5ATFtfCnFpTUlbSem3FM28/WmCwqw9UHWX+8ATWj9Lm3e4rYMMmdQiOb+IP1sJHGpuVjIm/SYTEOJueVUCrWbStlzzHm/pI220rhWYo93GUpriyXYbXXIkRW06n8ZeTYG6LahfraOEFnqlouEEEwHTp206jgRfTcfGHgz2H3Pnz0e4nQRqtu99Qzydzg4iagIrz/ME+SKxOLQjbGCh7fPzBgdLjhJzJUmg4xohcT2iwEj7WOiD3CbW/zUobFEVjcJcuGDDGixtQxFGbJFstDYpKfB8g14rG1Rbpa/Xyy5lkss5Im7msSC/17FOQtm5oNcZZDbSSyE8heDuIwlFqzhqcMmvVXm04E7qX48hfxFQ74jigOoSizUJWviJj39ZEHKlkriUnOxkCfuRcXD0OZNqdG2GhMgZJDNJultL4XFMCZdsPfa20os2jpZRMSjDkrGk/ScrdtER0nffB0jtvQkftxx03F7Z6cy3r6i1dQTf/c9f/6YDgx5+1TxXIo71kZfE/oEuStoMB7ffDDHwLXxzOHuQp7YEVaZ33GCXN/QZ5oMMk2QB3W9kynyw2GA0FgHNrFpLBv4rUJhwz2G5QTZ0AuZuliYGchnWdbAII/ySVlqFxT+JL08WVBgQFdhoiYnUEjcfUdyuMZiZoG5Cej5IPNlRdojnjkSC+mEtCZUGWQjiQV9r7uSWPiujTXcIi5dFPKXrgeFAHoMckyHUNTGOxuwVlx5UhkyBlnJxUKeuA90Kh48BjkU6LKbYiq/VgnaUyhrca2wDE01yLsuFkB7icWGBLT/pYUP8oCESC2PNit3gNk6RmJrJsiBW2+c77hJ7808QR6S3d/z/An9HW+fKcosolWn2ujrQp8gdwUNxuPtswWePxnWNvQhCbHeB4Ncs3mLMR3oMMhLpM4As023DPKAmE/Sm9j0Br8h7RLkVW7zFjAXC8AoWRgwCyJDPeYmTpFlAlmD5uAE7oGmwSyw7nepnEChqXHgceQeZTSwaUbew4RsteQlaGk607SmE9We6FdFSRvtO4YJx06TXlc+yP7Oa+ugqHgYXgoZXNuCXR0oo5Egb0ROJwbJgu9azcNkJFUTpUrDvgaFlCqFrGqjLGto2Lda+SADQLTKx14b7PVRnoC5w+I9aSux2BAPAYkw8szSn6HnwEeI2O6OqZ1vYqQaunuAOlnUE+Rl676cMt48p+cjqcT17DFLkBVylSQGkrBnkL+jobGhv3exxt2j+sNlxyvEdrD3BHm2jjDRYZDz5KozBplpkElYeKDqgo3kXMNrFUqhQWY+yICWnIGhKM0aesIWww545VmDBHkTp7t2SBrJgnIyqNKk12SbBTSyaeyz0XaO4Kx5LdsszmS4jYp9lywmIGeQLbURwlWwJr2sI4mFY22fH82qyY78RUO+0xjLDoOsJ7HgrleDke+BYyOsPjtlNFRN0nwqp1qCrGjzptWkt41rKx1TXCcNl5yBZ1jxyF8rixZYRol6LDtxlRlkmmCvonbn0Dq/FI5ss9cZ+w4G2CCx2pEzDEmaYb6JkTl6UrrpwC1GTRfoWOv79vkKG1KXjx4MXBwOXbylIrFoOWnzSaJPkLuCO1Rudrl3scLTh5zFkm+c7+xRYrGJE2ziFFNVDXKWAdESxB10qEGm/+1TOzZuehrlNjvLrF2CzJVYGLBpQzYG1bBJb8durgqFEbdlsMN1JwnTYBZWocIhD+TJQvOal5ZnGzZ05jihPZyDw8RoSSw4kgHtkddVlIZMGJesWZMe/O4m6WVmDPKO/IXpC1tM7qpp1bWa9ATafQM9JvfZKaMhrkK73/Ts5Pupss2bykXK9ugY31Jc2raEDftW2ya9eLNEkmZFgqsFjs1bW4nFKr8UjplVmyaGHpVYRHY3TG3R6KZgm1nGwcDhuFh016SXZRnePlsisfnNg88dD9XIvJY+6U8SfYLcFdytKXoT5psYl6tIkCAvYXmKi04VlTL4dsy0IoOcl+0sb1C/rZrCdpHAxsQ2T7gH+ea2apkgr8IEhOTTvDQT0TKKQ8TQ5q1IkEU2b4Dy5jnID9edQ01DA0YZZIWtQaFJT+qhGomTGKG/rTSuOhOjxchx2DSl5itZTEDBIJslyOUmvQ5dLADtNb8jfzFwi+DGUmvSU3ex4H42JgyybOJiA8u3fU8anp0kot7AkmeR/fcoyQkIqV0KiyY9VZ1tw741cCmrnugO6MhfK1pRmUTrQSEd2bwt80vh0DJLkEc5gxy2lPcxsATZ4kjDmsA0yFlWrRR2k4g+mm2o9E8g/VBPkLsdy32d2GuCTAj5MULI1wkhrxNC/kzD930/ISQhhPzUPuPZK9wBkCXSRqp7F3ShiRhkNxjhwdXG7ADlxrV70DDNkrIGOf9Zyxthtq48jC0QWkGrBHmYJ8jztH2CXOhtWzLIK8YgExuwNSQskByumtroAa/bO1rSZj8FbFQdGxSa9FjpnLtuJGyakQa5iGv3vWJSHiVXAB6DHBt24RcxlUdNt2zS60pi4VoFm6bNIJcZyg4ag/yq7IStLYX9RigJMmzSY6/JRUPVZDvRr2GdFMlC87NoWQSebanbAVaeRW0GudHmTXNMezkmAOGaxtWqSc8ZFM9f27NxmZ8ZQ0MG2XcsDEjYWYLMKrPE07PzPBi4iNNs98IQyT22VVEkvwK50/MnQ7x3vkKcSPaylj7pTxJ7S5AJITaAPwvgxwF8CsDPEEI+Jfi+/wjA395XLNcCRfbxvTxBfuaQwyDkCTIAPLgy8yatx7WbLBQMsq+YwOX/PY4/QpRkZgc7BxviY2R4gwdQTDJatEyQl+UJT22a9FwbcZohCdXdIspotGXS1EZz2VKNZEHZ0kyhDO43layTiF4qZQyyrk6ds6ETQihzq1Ky5jAerSUWtgtYDso+yNqXzaJJrzsG2VhikX82PmvSa3n4BU5lgp0i4UBjEbi/GCTuUveIBma70Mw3rRONhkY6pl1xv61I/JTGxe/E1WDzZmqvxhjkDbU1NfNBXlIJie10JrFYpPTsK8ZFa4IQgqEVYd1ZgkzPZNvXS5DZNNzCC7kgHLqRfrx/uW6M6+nDAeI0w6O55H3sGWQufgDA61mWvZFlWQjg5wD8JOf7/m0AfwXAwz3Gsn8oso/NDPIS3oAlyB0NC6ls6OxhVB41nW+6TjDMf74bHfIaPoaW+WuxzW2WtJs6uApLyWCbJr188443ZhvUmjXViAaFAFpNekClPButAE+NQV5HqdphpsDyNUob4i07xI+jDYNcv2Aqa385mrnWEgugeBYD10KWAaGMeanFxWzefOPm1jICpyyxMGSQmcSibYJcnWCnIXdaC10s9Dv6pWxpQ9Vk3dRoW8SkbomnpVWvxKU8DbOIq9nmDTBgbvP3PtnQ1zaepMcmrzrdJMjzhJ59lsFAKIYRCbFuKe8r4snPZMcfKldNAMogA9jqkCWEgy4YSef4I+6avzOln+/9S8n72EET75PCPhPkZwC8U/r7u/nXChBCngHw+wD8+aYXIoT8CULIlwkhX3706FHngXYCxQ393sUKtkVwa8JnkIPhBEDXDPI2JnbbVB4Ukv8sS9y70iGv4RaNdibw8klG81RPylDFKuyIQc5fI90sjG7KzU16ZgzyzlhlDZZPeXqdOwCQUQsfARoZOUnzhlLJWhQX5zMMVO3VQj6D3MrFAiiGCWlP9WOIVkhhgTie+US/EgLXMk6QdxrSOpBY1DXI6nInsYvFCvB0bd4kbGlD1aRYr02JoBaDrJsg15v0urJ5K7+mMvLXSjYLvVh24to2nVkW2U4sbYEZOzMM/O4ZBrklaxdgZ7IbjKg+vWE/LYOd4cWE246Z2oezDQLXEjLIt/MEWZqrsJ9VJGg+SNhngszbwatXo/8MwJ/Osqzxycuy7C9kWfb5LMs+f/Pmza7i6xaKY4rvXaxxZxrArpra5+WR4ZBO19ufxEI3QaY/6w9oXLXRloZYZX7RaGcCJ9/cLqN2DDK1H8pfo6XNGwCk4bJdgtxJkx5jkEsJWKiXICslgwqXwkZGTrKhC0cIS+Pis3w1llIEThKz0R15LYxrvZWd6CYc8RqR5SMw8ZPlwN+RWOiteRZ74FhaDaAi1F0s1BnkDc9arSg36z2LUr9sV8zyKel+tRhkxfUKNDDI7QeFcPcTFdguYLlINy01yKWYpE2/CrhKzIfjFHFgg0VHDDJLcBkJpRoXa7QvqrodM7UPrta4PQ1ABLKiOweqDDLzsv7waZC72Wn5eBfAs6W/3wVwr/I9nwfwczkbcgPA7yGExFmW/bU9xrUfOGpJzHsXq9oEPQBAvAGQwR+O4TtWtwlyvKIbOiGFl7G6xIJubsFgBCDZ3lZbYpl5OGLz7A1A8otIsdkZYhXGheuDaAqbCtjmn2okortxNGmQdW3eOEmpjg+yyBWgFldpzQ+OBLE0ND0VrFWHg0JYXDwGuY3Eou2gEKBIrpimWp9BXiIifruJfiXsNOlplpvXhQVfziCPbrSOpTZJD1BnkKvvCfvv0U2QixHPDTZvyOh+XVm3G5ULnSaDrJwMugNgfVX8dR2lW3ceFZSa4XhxAIYjnt0h3RNh8ByzuEqfYTGxtAUuo/YJso+waPZrC+Zi4eUkFN1PD6U/x6xai/kExVjubpja+5dr3J4EQsLheOjBtQnuy+Sgvc0bF78M4GVCyAuEEA/ATwP4hfI3ZFn2QpZlH8uy7GMA/jsA/9aHMjkGlNnH9y9XeIrboEd/jngj3J4GHWqQd5nt2ToCIcBY1ZMyX9yDEZV+1Cb3GGKRuvAzcwYZ0RIRHMxavARAN/3Cn5NNYTO0eWNxmTDIrHmsWWKhySDXXCzUGWQlU3+FS+GWfeIlyM1smnYnPoPgM/Rd26hJL0kzREnWgQZ5UDTpAYpDS3biWmFDupmiB4C6JBAzBnmH3e/Ae7Umf9GQO3ElFhpM7U4cMjlBw2VV6UKnkSwoS4JYXOVJerlmXlmKE68A2wes+nPP9gJTL+QsvwibMci7+1bhFtQCl3FprzaEn22KZr+2mK0j2BaB5+sRIUIGuaNE9OFsg1tTX0g4WLlUVC6x6Jv0asiyLAbwp0DdKb4G4OezLPsKIeRnCSE/u6/f+8SgsKFnWYaHVxvcmnC6X0uL+85UYdEZxnW1jjH2ndqYayFyKcMgl350wSCnaZYnyC0uAdEKG/jtPTHDin2XxoCCMook27Bhad3IIOslyDXGJ4mANNJgkBUb0hQuhb7bwJZK2LRC56o7gcsdcBlR6VS/Iq7dg0bJ31YpruFugqybcERLhKSbISEA7cYnhlWTXZu39i4WvmsLGGS1Jr3aZxOalXWVbN4A7vulJGvQYPmkY6+rcVUm6Wmt14Z9y3i9AijmAwCGg0JWtQS57Z5/EbdkkLMMXrZp3f/CMFvHmAQOtXnTiIvJJIu+IMNLIQ9ZlhUSiybS6M5BoN6k9yFkkPcpsUCWZb8I4BcrX+M25GVZ9r/YZyx7h8KGfrWOsYlTYYMefZ0hbk19fOXeVf17Wsd1jKt1hKnOmOk8rvFkCqAbDfI6TrCCD69NghwusLECLFs2bDAf5AIaAwrKYK9BDBqDgNLhyiuJ5lq+QsslQdGkxw40jQ0qyzINmze2oYs3yMaEQ1IGX0d0iItnG9i8xWsgTXcYscC1cbFUKDlUGA9jqUctrgGwPNWb6rcT1wpr4nfigcwQuDbCzIdnzCCzBLltk55Vt3kDpM9ilmV8+YvhoSz9bBqIkMJarSMGeeDaeDRT3CM5TXpaTXENn6Fxkx6ws58aN+kFTxV/NZ7qV8JF2JJBjjewkOEq6c7FYuw72/dfUe4UuDY829qeyR0ytfNNjGWY4PbUBzZi0uj21Mdr78+aX6xnkHtsN3Tx4mab3a0pj0Hesmm3cwa5k6EclQ2d3VaVwfRjgzFsi3QisZhvYqwzD27agiWPVgiJj0XbsaNlH2RAqLeSgZUhSWzepOfZFhxRMqiRuNd8SzUO5SjJkGaKlkwKl8Ki6Ykrsch/TtBUol0mZmCvV+lSV2/S2x32om2ZJUJVYqHNIK+wgt/eTaOEwLURWUHjvsXDDqveic2bWZNemKTIMs7lxfBQliaDDWteqdKwL5u3yoQ/5UtuEZd4omWxn5jste4AhFUhO2jS60JicRHmn4/mmt/GRN/ny7gbBvlqHVO5RFHNUT9/pgOH42LRnqllEs+CQU42QFp/329PA9yX5SrRihI8msOzPgjoE+SuoJAsPJzRB/LmWJYgU+lAMaO9w7iuVroMMtNGDzEJnE5iWm4og+yk7SQWcQcMclcSC+aEYcdmyYK0JOqpa6NrTWAayULRfKXS3KPA8hXTr7hNehKbN9PhHAKWr5aEicAag/LE3HjkdS2uAdgkPUAwPKUxriVWWXcaZIB+zhvi60ssmKWZndv8tWwMChwbUZJtxxkrMsjFwJLqejVmkGWDQsRxKdkSakg/9F0sygwyx9mjCU0SC6dy4daBO4QVU2tT1zawJqw06Q09p/WeP49SOgXPlEFmZ2ni6o/f5mC2jihpZWAzOgncvdi8PcwlnrdYk54grjvTAMswwawpL+jABvJJoU+Qu4LChq7GIA9L/oIdNOpV4pqtY/Ux06WfgzPAJHA60SAvwhhruLCTNgzyErEdYLkxZxOSNEMYpxyJhbnNm52YjfqkjXENB5pG4u7YFlybcBhkhQS5SQvNiwloZpAbNcjyJj2jZFAQl3LTU0VTy37G76JJL16bj+4Nl1hlXmcuFkAusSCecZOen3UzRrb2nigyyBuR/MUwWWCJdqMPMsD10BUm6ztxNQ/HKUP5QgfkLF9YsHzS/aQWl1hHbjxJDwDcAaxkg6FrUAnixDXogEFebGLEdmCuQc5/bpV5reUeAK2oTnxHS3fPQM/k7pv0HuRk3m3WpFd+/RKY1duDJh1yuPhQ6o+BPkHuDgq3P5Yg3xw3aZAHhUb5YReNes7uQ3e1joruVyVEC/oaloWx73aTIG8SrDIfVhYrjZLlx7VCbA+waMEmMCaiLrEwtXnL8gTZgEGWaQY1tdGBWzpIdBJkFR1lEZP8UliwT40uFgKJBc/fVgWCuLQkFmUP5LgriUX7Jr1l1s2YaQbftbGGPoO8iRL4jgXSMGBCKw6nmiDrMchCDbJmPwAhhLLqUokFL0HO35OmRJBN9+O4RVSx8wzLUIlrpevbHYv3Ld/UljCPy0lWzcNTmsCxeWuTlIZxSisVbRLkvAqwgo9FBxXVQvaoINOsYhI4W9ljh016jJy7xSQWADdxZ7lKI5nXgQTrSaFPkLuC7QKWI5FYbOA5Fp/BLS3umxMq/n+8aOlhBtQeOm0Ncmlx79xWW2ARxlv/VeMy1wKpM2jFIG+n15XeD8MmPd+x4JMYFtIWEgsZg6z+XgWuvZ2kp6FN05peVzSVmEosmlk+6Xsii4snsVBmkHen6LGfb4X8MyycPbQlFissMq/bJj3Hogmy5lSxgt3vqKy7bebM3xPVBFl0eWkRV+M6kdi8SdeIRrIQOBY2carWi1J5v4ya9ASsNiF0gp1Rk54zgJOuzSzeOMNe2rpYMFIksc16TQBsLyGdJcg5aWXAIE95EguDJvEqTucbDFw7bx4UP4ssVzldNCXI7Zt4nxT6BLlLSJKrRzNq8cZlGEpJzMmISjBO511ILLYbepZlmJm4WOSvMe1Qg7wG8181bZRYIXMog2zazMjYmaFbZZD1N05CCI7c/L1x9fWYUrZUk9ke7DDI6snCdmBJNxrkRvYpWgHEAmx+Nzg95E00yHzrMt+11RKOShLTqYtFGiOw6HuhPUkvWmKedssgB66NDVx9BjlOtw16QCdNekCJQbZs6ssreRaFXtktGpYaKw0SBlmalGroMRnrqqRVryRXK9VpmDtxid8rY2mDO4Cbrs0cLOJ6dWLg0WfYVPvLmrozx6xSCGD7HmceFi0IGoC6sMw3McZBcyIqwo7sMWRNz+3Z2tN5iJNxvi83XApv5P1Uj+cNZF7PIPcAgGJqnQAPZ2vc5HkgAzsM8sHAhW0RnDYtOp2Y8tdfhAnSTGPMNEDLSfmNdOx3pEHOXSxoXOa3+MwdIM0Mmp1yMCaiC4kFABw5LEE280GWSyx0GOTSIa/DIDeNvK5CYVBIY8k6XtPXEJSkzTXI/A29mJImWy+VJMZ45LUgriC3N9Ri5HI2rfsE2cIy029YqjPILZv0eLpsV14Gl0osjBLkBu2vxOZNukY0PKOlY6934tp9FjdRqskgNyfugWMZN+m56cbcwSJ/DYZhGz00gGVO8GRO0OrsAYA1/FYSP4DuRVGStWrS27F5U5TvyPB4EeKEmQk0JO7TwIVjkWYyz9D69IOAPkHuEk7zhs4YZC5KSYxlERyPvOayhSpKDx2TRyiPmc5/biuxcPcgsWhxi8//20zLXCxB3tHHGTbpAcCBE21fQxOrDpv0gIpWTyNZYCVuJfbJdnJ/5ub3S+hdKkkWpLpsEUQaZNWEQ9CkZxQLJy43XcMimprOJASyFLPE7bxJb5l52s9hMY68I2spv2CQy8NC5M+i0FqtjcSiqZlTYvPWqcRC5qixE9fupVBbgxythL0AAN0jTZv0vGyDgcma5Th+NE7mVEBhCyoYJqSE/D1ewm/tqMEIp0ngbmWaGnKnSeBgGSaIk7RTpvZ0vsGNUZVBrsfFcpXHjQlyL7HoAUg39IezjZxBzr0QT0Zec9lCOabths5mtutpkLeLe5xLLNr6My9DavNGX9+0UWJZTB4y1aSJJRZmMR265gzyXpr0oj1LLBTjEuoXJazVOkrMmnsaNMj0dVUY5O1nuOoqQc4ZdxKv9TxugZ3GIOOGJw4ChyXImj7IcUK11B01BhXWd9VhIVIGWeRi0SzfaYzFs8VrpKFqouQ9HC2V2XYtt5PCXYN+jrUBSDJInsWBa+tLgvK4bKSYeAZnBudiz/pFTBNkxiC3IULKEot5S4kFI5wmfn4ma0o/mFxyvonzz7BdJYdhV2LRrI2+Mfabq90dTNp8UugT5C7RsKFv4gQXy4jvYAFsE9G83EwXXQcMcmmUbMEgG2qQJ4GDKMmMJQ0M802MiOQJsmZzEABqZZRsYOUJsmmZa+tiUWnSS0Ig0X/NacEgf0Ca9AwYZNbYp3y4KiQxQk2nhLUqWEpdiGzeVBOOaLnj61skYW0T0xKzrWXhlf8MkCfIHY2aBuh7skjlVYAqinHkHTHIxWdTHRYibdITyF9YsmBgLdY4ktyy8kohn0FW0yDrMchKzG2l12QdayTIRTNcgwbZ1D0if82pbbBHcy72TGKxjMz2fMYgW55ZMzaNa/ssLlv25GwZ5PwM0tzn2c/N1jEQdWOnlmUZThcbJYkFAJyMvWZDgd4HuQeAxg39fEGTpxsTAaNR2ThPxh5Ou3CxYBt6vCq0SvoMci6x8EsPYwssN7FRQ8I2Jvozts8kFoYMcuFiUWGQAaPEfWqbSyyob2nD49iJxELF5k2zIU0pQRZJLJqThZXsPRHGxB/Z2jj2uiEuYSOYaVzRKk/CNC6aJe/Vrpv0aIKsL7HYYZBbagy57L5CsiD0qG7hvSpl9wVrXiqTAvSa9HQY5BIRQhtRFWVSACUEkAknWgLtmvSAkvxMB1wGOU+QTRnknBSx/BYJcqma07Zpnf18Yb2quc+zn7tcRZ1JLK7WMaIkw0lNYiFmkB83jUTvGeQeABoXN9MTF4uuisrGeTKSlC0M4mKJrZ4GeSuxYA9jWx3yIkxADCxttjHR99jxKctnWm5biZr0Sr9DB2OWIBskC2oSiyVlexRQa9KzPaoZlkDb0kyhVClMOCTatIKl1IVgZGvj0JKduHafxVWUmE8CK6O05rUlFqysC9/s0iCA79qYpx69EGpIpwq9baET7SpB1pNYiAeFmCcLUr9swZpXkjVosHxbzbyOBnmFjY6XOaAkwfIdGysjH+TcAakjBrkYBW6qQc7JFNtvI7FYISMWQjitLOeA7Vk6ZhILTSkds4ylDHI3Wl9Wub6hyCDfGNN+KaH0snex6AGgseuaMchHQ1GCvHvLOhl7mG9iM+/JWlzDXINswiBvFzd7iNvempdhDOLrd+xuY6KHshOMAbSRWPASZLUJXjxM7XD3NRSRZZlcv1jRGMow8CoMsuIGpa23VXAaCFyrOLR3EK+FrBV7T4y63x2+zZtSkx6n3LzOHQGMJoGVUUpifLdB58pDOUHu2MVixRxlNJqWNsyWsDObN87lRalJTySxME8WpPIXQeKuNN5ZR2LR5CHOiwkAomXxDCtfchU+w4Fn6IOcv+bINiB7OHENO2KQHX/USmJB3CF8x27tYnFVk1joDTCZlkmrjhJRVrlWsXmj3+djHaX8z4TjZf1hQp8gd4mGDb1gkMdNDPJ2cd8YMwPujhr1olXxMGppkMOtHnNH79QC800Cm2k8W0gs3IC+hmkncaPEwiCuETHTILOSaHOCrHeh8Mud+Bob1LZk3V2TnjDhaCg3h4nCeyKCZeXNLrvPos9jKatIIiBLak16nQzn2GGQre0gFxWUGoM6lVg4NtYGjjKU3e++SU+XQW5s0jNlkGUjyd0BeE2NUpkUoPUschsXm2ICgGi9dV1RrTSoJMhugy67AYmdy/OsNhILnga5HYPs+kN6IUwNWPH8Aj3yndaDQua1BFmPQWY/d7WOd87qNmAMMpvHANsFiC2Mi1XFuU4WhZd1nyD3aNjQz/NEt5lB3i6i406HhWwlFp5tqSc/FTZt3FGCvNzEcPw2GmSaLHgDuhmYapCXYQyLAJ5dej9aMMhDYsYgK5VENSUpO4xPqK4BW+Xjci1LkS1V0IkGjkC/2KBNW4ctp9dxnkUliQWnrLs2nejHiwnINci6EotSk17HGuSto4z6mt/xQbZ9OtijZRxAxaNaqUmPyV94TXqmDLJEYsG5fAH5RUomCdJq0tMY8VzatwoGWVWepJQgmzXpbSy6toZGCXK9AXTrYmHemO07VtHgbWT1lp/VQ89uNckV2J6lW4mFbpNemUHuRuvL3LMYSQdCGp/FG7kzF9d1K6zvpx8m9Alyl2hYRGeLEIQAh8IEuaJBZgxyJ1ZvucRiHWESOOql4gqbNu1Qg2z7jEE21yD7AyqxMGWQl2GCoVd5P9owyBZLkPU2KS6TXQVbG6FiguzaiJKs5I+pyCCHmrIGBT/RgSdikNfC96q1tZo7rLF82ySs4VDjHMpajgCNMW0bQKVJWBXhNUgstBhkNkmvm0N5O3GxyiDLJRZcX+hoadw4aNKkpyQJSmLaEKfcpKcxKMTxARAgWm0TZNXnWKEKEBg26a0zemaMiME5xmvSa+2DHOfjk9tI/GiCPPbbT5adrSMMPRsOu+Bp+jPvulh0JLHIc46jcr9Uw7N4o4nM68jl5kmhT5C7RMMiOluGOMwn5HFRlViM2K2sWwZZr0GPNeB0K7FYbGIEfkB9SltILPzBJH898ya92oHWYuMcIESaEWS2wOtaFIdKMqjJbG9ts1KtJGYVJbu+0DIoNemJbN4aGGTRAAjluOpWXEoJR+FHXpJY7INBNm3Sy3wzXbYAgasvsciyDJu4xCB3wA5ZFoHnWBWbNzWJBfezaZG4B7KR5Jw1rySTiuVMbTUOQNHmjZDi/NEebKMQV+DQ9yTVHPG8zqsTA6MEucnmzdQHOcHQt7Urcrtx0bN66Nmtm/Tmm3jLHgPC6oQIrm1h4NolDXIHTXqLDQ6H7m5VpuFZZGQel0HuqEfhSaFPkLuEO6CMa1JnWM8W4e6NrIpwwWWQOxkWkpuPX60i/QY9YNto0WGT3sB36X+vSYkr75y3/CEGrt2SQa4myOYb54BssIKHdax3iGyHc6hILNSSmB2mRatJL9Xz+5VMjwRyPTRXYiGOqz2DzJFYOAola+bKUGIfjSf61WLaXnLMfZC9zhlk3QQ5SjKkLBnssEM9cCrNnO6QJm8NOlFhY1zLJj2gYSQ5Z20pJaWalnhaEotSXNpWjZxLYRUDnYbBEtjE1CExIHqiJSVRnC3h4DsWCGnHII88p1WlkGl9R77Tuklvto53z2RNmzeAEldXqy5dLEIcV3OVBiJkW+1uYpB7iUUPR5xcnS1CscUb+xlv96bsORYult016c3Wkf6QEKBY3Du31Ragt2ZbaLivHtcAI9/ejg/VxJJny9Ri4wyyNVbwtbV6WhILxfdrpyFNY+PUnsClMkmPJ7FIUyDZCOPSLhNz4zJhkDkaZN1LgwhslGxkILGItt6rfhcNgzkCx8Yq09Mgs8/SZ016HR1+NVZdwbmlmOhXRUubN6BhnXDWPPssG59hzWRBeTR6Oa54vY1F2+atWYMM6Cemi5SeeT4MEuRwd3gWABBCMHTNmduCFGnRa1I06Xntm/So7LF0Jms26QE0QV6sV0AadfIscnOVhsTdd2xMAodvKNAzyD0KNCRX54tI3KAHbDeDHIQQHA89nHeSINOH7qp6W5WBbR6lxJ2NmzZFkmZYRyllow02g5243CGGnmM8zWgdcRjkhkuODD5CrOFpM9pK7JMhg0wTZB0GOdZMkPOSYIOHbuBQPXRSLs+y91dg89Z6OAe3SU/BV7ZY87uT9Lg6V6O46Jr3DZr0MhBs4HbKIPuuXbB8qmtrh6EMF62HhDDUE2S53Gkjaoxr1aQnkTZwpHQrFUmQZrLAlZ00IY9Le1y8YpMesJ1cqIpVniAHMJFYLLif4cBzzKb6gZIz9Oxp0ySeSyx821jeV46nLYM8HbgIV0wO2T4RPV+G9V4pyVl9Y+zjUROD3IG7xpNAnyB3iYZb6ekiFFu8ZRl3MzgcujhbtGNraVx049RmkMM6szAJnMIuzgSsJFWUuVoxyLST2JxBjnfHTAOtNk4v22CV+dp2SEoHmqY2elA+5DWSBa4uuwnuAMhSrqyIgcvISTbOtQqr3hhXfUNnwz4aEw5O17WxHzM3rkEhseB6Q4sQrRBZAQDSsYuFtXWxUJweuYlKDiNdSiyqrLqC3KloFixDYXSyLA722lxwkhj2DDdeXgw6+muykybkcidteVIhKxInMayCossgz1N63viZIYPMuXwNPMtYYrHcMAZ52zCrjWgFuCOM9yWxSKPG/bSKSeAiXM23P98SF8sIR8NKniA5q2+Mvb5Jr4cEguQqyzKcL0MxgxxvaJJR2QyOhl7HEgtDBrm0oU98p/BuNAGzxSlu8Rw/UfW4qBdlGw2yuElPP3H30jVW8LTLf2pNenrM9g5bqiOxUBl2oBkXe493WB/JBDbhAAiduDiHn9ReTcAgd8ba5mvedyyESbrLqjchWiKyArg2x9KsBQLXxsaQQd6LxCLWY5C5TXpJSPdTUwZZJm3gaKOVhnMYJAtazZy5rKj4fDqUWAQ8lxEFLBMLUWbDM0mQoyVYg3gZQ9d8z+9Eg5xPQ6TVy/aT9CZ+WWKhH9ckcBCvu5loCYCfq0iYbeHk34580p8U+gS5SxQb+m7Sd7WKkaRZXfjOUGxQu5vB8cjDWVcSi3iFZRjv6p1k4JTeJoHbSoPM5Bkj1klsqgGzXMB2KYNs6mLBS3wkpuhNcNNcg6yZICs11ehKLPIhAStNiYV2MqgQFzfh4Mh3ylBi5Jrg8Dd06QS7sF6q7MzFoohrqWY5txPXEqEVmEtOBPAdfZu3nXHkHdm8AZzLiwqDHHM+m5bjr6VadY42WqtJT4dB1vEfrjTpqTPIcmabe8lVwCpMsIIHNzUkQrgMcksNsm8rXb7EcdH9dOzbCJMUoabspIz5Oi7mCwAwSpCngYt4U28uNsEqTLCJU4HEQvwcnow9vuNWzyD3KOCyEbe7C4kludIEubK4D4cuLpYdSSwA+IiK2e1K4CTuY99pZfO2rEksTDeoYfE6xuU2nouFxBS9CU66xirztS2IlOQEuk16LCkNI8p27bNJTxKXzytZF8kCv6zbjYtFPSY69tqgSa9TBnml71AQLRESv5tmwRJMBoUwlpf6IHfHIPtCiUUTg8yRWLRsDOKu1zI4yZXSM2zEIGtMsMu9v9dRWsiJlBAtqDyjYdiLaZPeKkqwhg83bdGkV8HQdOw1qMXoLoOsSdCURiczeZ4pm52kGRZhUpFYsAEmOgmyg3TTjVsE63niSyyaNcjnywhRUnlm+ia9HgUEt9KzfMy0MEEW3OCPR1Rioes9WY+LLs4BNpoMMl+D3KZJj/1scYs3NmofFK9jqgMT6m0NmW0nWVGbt31ILEqDAFTA/ruitV7zhrbeVoVB5jFyHDu1MrTLxLy4ODFJ7dXYs5hLLJI0Q5ikHUoshmA+yIBGyTpaYUO6HRICVH2Q1Vi+nYqHoJHKOBZuk16TBpnTpNeyrLttSJMwyKW41CQW+snCQFbxqMaVT9ILHEt9IJQgES1De73mWIYJVpkpgyxo0jN0sYiTFJs4pYmtKYNcsuob+fQ9Me2BYWfhrg8yI9n0JBY2e39bJqIsQdZt0mP9VTVTgd7mrUcBwa2UNdqJGWR+k8Th0EOaUSuYLuIaIMTUyAe5pEEO3HYMci6HGDMNskmTRKl5Y+Q5RptllmV5k54oQdaPy44Nbd5UxioXzLZa4s4O+WilV27WT5AZ4yE+AAe8w1WycWqXiXlxxeuah67UXi1aFPKdchzGWuhaXExioanpjJZYI+gujhyBYyGFhZi46gwyk1g4XTfp2ZVR02oMcu0S1bKsW8hfNCQWSpIgg2TB19Igb5v0tJ7haCl1GTCXWMRYwYeVmPjdiyUWJlVDVtkbtRkUUjoT2VwAU6s3liBPqzZvmnFNAhcDZqPX8llkFWthk57ArYjlNudVU4FoRSWLdoOD1wcYfYLcJQQbujmD7OY/31KHnL/ugGgyyByWj9m8mbLajO0deo7SkAkuSmVdarWjv0GFSYo0Q93FAtBKRMuwkhXWmVmTnudY4imLRVzqiTs75AttmsLGmaQZwliTLXX4siJeLDuJqaRzfh2lsAjUy8RVCDx05U16q9qQEKCFmwYvrmhV0mWrSyy6HhICAI5twbEIYkv9WWS66cBOtUYnyxA4loBBlti8dSyxkNoBcpIrpT4Cg7hoxUOVQd426fk6WvVQXgVowyCHxAMxrhTyJRYmpAgjZ4qzB1CumuzEBID5IAPmCTLr5WmtQR44GDAbPYFkTRWFxILngywYggZsc5vTRUVKw/Gy/jChT5C7hOD2J2eQ+QkyK3Oct9UhlxlkLQ0ym7C09aplDPTctIt4h0E2S0TLEouR52ATp4ir2icJGhkfQwbZildYQd/mTdlnV0OSMigSZHU2zYi1VUhiWAKz0mCQWQOlcpm4Fhf/oJG6AoSLnUNGeyqZNK7hTpOessdtRNdWlxZvDIFrI7R8bQZ5QPJ9qSMG2a/qbRVYvhXPxaKl9yp3vZbBWVtKFymTJj1HopmvxpU36ekzyM0xmWqQl1GCiBgSISGf2R4a+iAXFqO+TRM2zbHOAHb2LcYgmzYMMjcorgZZI3Gf+C6GpCuJBX2mD2sMcjOzfTKifQw1Mq/DJt4ngT5B7hIC1upssUHgWny2EhDqMY9ZgtyaQaZxBdhoTtKr3/6YXsrU6m1Rc7Ew7yIGUEgkdBvj2KbGl1iYaqNXZjZvqt7DGtpoP0+4Uw3vVRa3ViOYis0bV4PcnMS09h4WxCWXWOwmC90nyAMgXpcawdQlFsvM747JLiFwLYQkUB77XrwnyL+/q0EhTkVvK7l8xUmKOM04GuSWEgsVm7fy70FZdtI0KGS5I99RikXLxWIIJBtswkhPihPy7dTK2Pqq6xMRkcblawcCDXLgGkosygwyYHb+7Aypou+JaU8OkyruaJAFjf5NmATOdhBL2ya9PNc4HHAYZED4fh2Jqt0dSrCeBPoEuUsIprCdLaIi2eVCwKYdFQxyNxKLgIT6o6Yri5tJNEx1yDsSC3dIS7SJ5muV/DGLW7ym1RtLBjtr0ksikDTGhgRGo6aVWFuNDd2yCHzHKiXI+2KQDZv0omZttHaZuBYXP7nyVZr0ykNCQs2xvdK4mIsF07kqJhzhEovM7dzmDaCOJyHxtpcWCYp10tGhzMAaKDOmc5Rcvpj0QCyxaGvzJpNY7DLIrk3gNHlUGzh+DLQ0yDSuZLPWW6+RfBqib+iDvNjEiGwDBjkOgTTmxjX0qL2abtVwO6Qqf29MiJCSTGbLIBsmyBvGIH9wNMjnyxBj34FXvehJ4mK5Cp9B/nA26AF9gtwtBB66Z4sNjkVT9AChHpPdylonyLlEYoBwV+8kA8eonf28qRfyYkNHGdsW2W5+LFnSimuXQdZ1suhcYpF/hrEdGFkhKTGU3khr4wxcG5mEqa3GAXQvsSjY0rKWMlwCxMrdOerQLhPX4hIwyI5kgl2FtWLJdLcJ8lLOUtbiWmGRentjkNdkoPwcsvXtZ92UdctxZBntDwAg7egXsvstGWRpMshZ80pe2fmACR1oNaTlBE0WL/UqHgouFpZF9CzncqyiBIlJgiyYDQC0qRoyB6Uyg9xGYsEYZDOJBTtDuRKLUP1M3NUgt2/Sq8kryq8r+Bxd28LBwO0Z5B4NEHjoni0j8RQ9QMggj30HjkU60CDT1z1yY3kjWDWuGoOcJ8iGZaVFmBQbS5G0KTJX27hKTXqeKYNcYrKrcIdmMQFIDRJk5WRQM3EfuDYyjWShuDR4GtuCK7clKhi58vvCLl8CjfE6ammtJtQgSw75Sue80hhw3bjSGIFFX1dJg5x7r84Tb28a5BV85UN5FSXwbAtOwlir7hhkoMTcSpxbhA4jLRlkyyLwHEvL5k1pwI5BshDo2rwByELNBFnBxYLFolsdW4YJEruNlKH+frG9UtdOk/W/bBlkEyJkO7NgVJw9hi4WPIkF+xx0GWSyQWz5jV7WKhBO/FVgto9HHk55CbJhL8AHAX2C3DU4t9KzxUbcoAcIN3RCCI5GHYybzjeZQ1dXysCRWPiMQTbXII+KG7z+ZlB8f9GkZ8YgM/aBm5h6Bs2D+fenzkD7EFGeXqfJeAw8WytZUPJyrcUkZ5D5GuTmsi5l5FpsTwLDfWnJulISNHpPFOIaEPpMKyU/8RpAhnnavYsFQP/blgiUL4Ur5hzRscepX8hOKo16wgRZYI/YwfSugdtQaeAxyCqXXAOJhZacoJS460ks1MrgAwPt72ITIzVhkBsqX+y/TbfXo84gm+zz2/2UNhGb+yDP1jEsUumDKUgjdQZ57DsYYIPICuTfLMG5lEFuTpDPquOm+ya9HjtwB7UO1PNF1JwghwtaHrPqH8fRkFO20I6Jbn4HjiYTzekiZnop8ya9ZMvaFpvBXO9FSlZcQ0Md2ErapGfIIDtDI5s3tQRZLy7fsUB0GGQTiYXtApbTGJdrUwu7HUZOcigry05EEJTnBx5lwTKBnydN3OsuFp3avIE2zJZfvxH5f8NV4nbugwxQBnYJX1liUVQ8Ok6Qg0LaUG7UGwkTd6FmPloBIDvuO9qxNFUaeINCVCZQGiQL2+Y4hXWSfw4kWus36Sk0Wg4MGORVlCCTeOhy0dCjUEgsumCQFRtTt3Ft91PLIhi6ZjajAG3uG/vOrlOPZdN1q5Eg2xbB1I4QEr5cTQcXIgaZrY+GuI5HHn9QSJ8g9yhQYTw2cYL5JpY36Qk2qKOh15nN24Fj0gy3u7i70CCPC4kFe+g0ktE0oZtaMWo6Z5A1JRaNCTLT+qYaTSAlSzxtnZ6KfhHQl1h4NizGoKo06RXviYZOHVBqdgkcq2h4AyC0cCpiaZsgC5jtgWcjzbA7kKKMCsu3F5s3oOg6V2KQ8/1kke2JQXZsLDJ1icWSJYMdMLU7cfCs77yRMHFnyVptvTJf3xbeq412gJzL1zpWGEduIrHQGdCRvzaJV+rrJE2AZCN1sQA05R45lmGCzGn20OWiJGWoYpB/3qtIs2pYldW11CADtEnctEnvah3x5xIYEDQTO8KmgwT5fBHWh4QA2/XRcFafcCUWfZNejzIqSQybLNPcpCdeREdDr73NW76hT2zNpJazoY88GxYxt7ah0+sYgzymf2rclqtm+4xBNvHnBEQuFvqdxGXvVd0Ncx0pHK4sLo0EOXDKCbK6xEI7CVOYiDjwKu4RkhHFyrKTppiA2mfIlXuUUdFjKk1I00H+LPqZBoOcH0qrvdm82VikvrrEgl3oWg7k4MUBVN4TT9wPsBRp5jtoDAqcBraUo41eq0iCDJKFoY7/cP7fbCUr9QudZOR7GSZNestNDGIyta5gkMVNejsXbgUsQqqdLxwaWtq8ATRBNm3Sm6/j3QY9Bm+sdyYCGFkR1miXIMdJiqt1XB8zDSg11B+NaK6yU53rm/R67KCSxDB5RDODLE4WjkYdMMiWhTU8jG1dBnlR26AIIRj7jrEGmZWVAJQSUZMEucIga0ssGpr0DBolyhuntldolKg1xhlokK14Td0iFEZ9FnpbnSY9FpckufKrE+wkZd32TXoCBrmpZJ1ltalizHmjOxcL+tpWvIZnNzSClZF/5it49bHKHcB3LcxTjz6HClWT1b4kFi5PYjEUJgvbBkqOxKJlTFK/7IqUTkkmFRpILAwYZDdZqyfIGp8hkyepIssyLKMEhD3nOnKGJga50CDr7fmLTYyhX3pfjBJkNjqZsqxDzzZv0tuIEmTxmhdhbG2oTKoFLlcNA80UGupPRh7iNMNVOTfo4Fl8kugT5K5RSWKKBLlRg9wksXBxsQzFmklFrOFhZGky0YLb3yRwcWUosViGyVbWYCKxqJR1CxcL7YaNBmbQoFGCxUW8YZF8q2IVJmr+trkDgmqpcuDZcJJmt4hqHIAJgyy3nwtca7fpiWMhuBMLb4SwVkx8F4si4eCtl7wZjudi4atMOtSKawm/+p6IkP83rODvrUlvluWHq6QSAJTY/YYkxjQO9voFGiQWa5HEogPdoy9r5qwQIWpNestt1UwRAx29bf48BdjwpWM8SEa+78Si2aS3iVNkGWAV7KPOPi+ufGldGkpYbJKCkS9e26TXpCTfGfmONjnDMFvHuw4W5bg0E+QBCbHM5CRIE4RT9IBSQ32zBhkoeSHn7js9g9xji8qt9GypkCA3JAvH+a3M1FYNoDf5VeZhREwS5PoGNQkc4ya9ednFopBYaDTpVRgPz7Hg2kS7UWIVJvAci297ZySxoJ+57Q21Nu40zbCKErUDTTOuoWvDTdRtdoSMnAwKjEfNIkrmYhElehP9qnD4E6kaO+A5UwfpwBILlo49YhNKzLZ07DUDY5D3qEG+SvL9SeGyWrClhe6+I4lFfknc0Yc3WC4KJUFdSCxce9e3uwonqDXpSZ8byZrnoZAEqSSm+XM+IhoJsgaDrLxec7BnzDYiQuRNeiaOGqOdqXWGfvelz3Dk2dr9LwyUQeYko5p+9wCdcbBINYaAccDcsrhNeo5Hm7EbPsNtgpzbP8YbIEv7BLlHCe4u43E2p4tF6mIh2DgPOxg3vY5SOqZWJ0FuuP2ZSiyyLMOy7IPcRutb2jiHnmPEIAsPERN/5vx7bX+otXEXgyhUGuMUptaVMfRsuOlK+VBm08Dcpmlg3LjkCXLNXq1Bj5mmGcI4bTc1zrJo4lZNkD0OS1nEVD+UWw8sqaLEICtrOguJha/nUa2IwLVwWSTI8svqKswvL9GSSndszabOhjiACjPYYLkorAIp+vo2YeBau3ZzVVSSq02sIrFo1t3z49BgS/PnfIC12n4CaFUBtKb6AQVpYQWMfdRIRhviGrpmVcNFWE2Qh7RqpNuMXToT2zHIEX9wlzfSZpD9bIN50i5BZgyycGaD2xwXy3FOmdVb0ZejVzX5IKFPkLtGpankbBmBEPCF7wwNOh3WUdpGh3y1jrCGV1hLKYHd/jgb1CRwjJr0NnGKJM1KPshy65gaOI1B9Bav29FcKbeVUcSlw2zT/wZ7MNZikNkmP/K7Z5AHngM/XSt1qAMtrNW8sYLEgqdB5se1vTS0TEw5B01jwsE5lFeRovxFFaVLTuAougKUJBb7GDUduDbmaS6xUFhbhT684wYc7kAZbyy1eatp5sN56wRZypZWyvNSBjkOgTTSZp0M3QAAcVNJREFUTha0LM3y53ykI7FoaIarQndQCPteNxjv/i6luBgRUo+Lfd76EouKpIFVmXS00ZWL/chzjG3eZsImPZMEeY2rxGslxWQWbVyJBZBfVuUJcmH1FoqrAB8W9Aly16gs7rPFBocDt3mCXQPjcTRqzyDP1hE9XDPNjQDgLu5x4BrZvLGNhE0ggmXp6604ZfChr88gNzKDJpq5cAEQC643RJRkiFSM/aGp+zVgkINsjUyRQTZ2jlCSWFjb5sUsa2xM7cw5guOA0KhB5iQLqyjtmEHeNqYGro2NTpNe5rWTnQhAfZDzZEHhWdxKLPQZ0SYMedpSNz+UOQf/KkxgWwReteKhMDpZBunlpcQgZ1kmb9Jja0tTYhHoMMi2g9T2MCQb9TWrwyBrNumxPdkJJvnv0tnnF8LqhJf7qus36SW7RIRpBXPn7LG1p7gCQBin2MRpMXhrBwbaaC9dY5l52peGMgqJhajaLZkwezKil+zC6k1D3/5BRZ8gdw13RBtdUrpQzxeReMExNJTeWLmjZsCtgctVjGXmw0t1EmSxhZMpg1wYtVfLXCb2P6WHbuTZ+pP0ynZzVSh4PtYQUsePwnZOcaNaNLlp1OLiOzOIMPRsjMgaiaMosQgN5QQKjEfg2tuStUSbxrSfrYdieONaFaCRQWbvaylZaO3HXItpu7akTgkM+Tpc7rFJb8ma9FQSZCZPChedlk+5DbfeMG9Mre9/LCkl1QbUDuIKXInDSKlJL0xSpJmk4tEwGa4JunrbxB5iiLW4OlZFA1NbBfNBTlM1lpK5O7gDEztP8SWHEDqgQ9fmbb6Jt+QMYNiMvVs1GecSC13mlp2f3CY9XZu3LIObrrBAYOwuBQBniwiuTbaDVGpxNWujB56NwLW20/Q4Z/WHDX2C3DUqFmGniw1OZAlyQ6dnFxKL2TrCAgG8REMD1sAgT3xn18pFESwZHJdv8brlJM6tdOg52rf4ZVMyWHyGmnF5I36ZWBIHIBhYUoWmn2jg2hhgg9hW1yAbJWBKLhalknXUnCwYNwvW4qoz240MclhPFtZt3TR4MQG5BtnWsnnbYD9NegPX3lpEST5HxpYGzMWiIwcLYOsUsssgi5OYpUjWEM5bxyWXWGz17etQMPK6DI1EtAxdx4bYGWoyyOrMNlt7wiE7FbC9zR9Od3+XUlzNVQDKZmsyyFUNskmCXCGzhp6DNFMc+FMCq8Dym/TyfUs16Y43sLIEyywwHuAFUAb5cOjVL5xFXPKz+mTkb10sega5Rw2Vjt3zRSQWvQPbyXCCRTQNXFhkW/4wwWwdYwkfjk6C3LC4J4GTl4j0NWBAhS3VTpDrydXI12eQG5NBk67rvNGy0SWBF0cx7GA/EoshNohsNZ2osZxAYUOnjFx+iEi0aZ1Nr+MwHs0Mcj1ZUBohrINCVjSnmk6VdRIukBIHG7jdstk5hp6jLLFgydFgDwyyZZHcSqz0LDfIndYi//AOmvT8nC0VMoMliUWhmW/6bFglQ1di4egxyLEdYID1XlwsBoVPteLlP2IJsgmD3Oz4MfBsg1HTHSTIlbXFyB7d84cxvdwmPXeYTx5UPPOjbYXJhLhiOF8KpuiV45K8V8cjr3Du4skhP2zoE+SuUbEuO12EOGmaoifZoCyL4GDgtpJYXK0jLLMAdtyOqWVgt15dq7dFyJFYaCfI7KDZxjXo2sVCwfOxhnzj5OooJXEAqgyy3gCToWdjSNaIrEDp+9emyaA3ApA1Ju47HqqFlEHQpGc60Y8Xl4BBVrZ5U3EnMIxroNr0FC0R2QEAsh8G2bOUJRY7zhEdNMPVY7EFDHJ9za/CpHA0KJBENLHQZGqrYFUDIVtakoZtKx4Nx6mhxMKySK7fV9tPQmuAETYGLhZqEgtAY2/LCZFgmGuQdW0zmxhkVy9B3sQJoiSrVy8Bo0ohAyN7dBv1mMRCOEmP/S6lmOiZuECAq5U5g3y+jJrNBBocZRiOR16JQa6f1R829Aly1yg5M2RZlt/KJENCgMbb8tGw3TS92TrGAgGIbtMZwGWImG5KV+9UNOlVGyUMmuGKDmQYulhU2YQyCs9HzcTdHRVNVOoJso4GWY9BHngOhtggtNQY5GUUm0ssgMbPkckJMtagB4ib9JrGgOuAkyB7tgWLiGze6gmykr+tLvJml6EqCxbOEVk0Ju0phwoYuOoM8o73sMHoZHkslfekIYnhemV3VNZlzK2QLS0xyEoj2ouqiX5cOgM6QmuAAdloaJAXgOUWk+Ea4zC8/I8GA9pwp+MKVElEqxh6upZzAnKG/S6tuLZnIjvLdL2Q2dk58QUSC5248u+jEgtzBvlCyiCPpFXV45HHsXnrE+QeDCUN8tUqRpJmkiEh8o3zMJ+mZ4qrVYQNfJBS86AUDbc/duvVbdSruVgAjTZOXLChKiWd1NBz9E3jw0TcjAAobQY7yG3L2MGkGs9Ki0HWHBTi0AlLG0UGufC31UVx0IgPwMC16STnJJVeCpmer7WlGackSAgRJxwcPeY6SrtPkPPmwYGnLrEI7QEsgrpjQwcYeuoa5IIt3YPEgsWy8540yJ2o/KXqYGHmFlHF1i+7gUFONkCalka0q7hY6CcLOj7vGxJghLWei4XiexXo7m3li66nuZ9KLl+63vdbcqbcIK6ZILNR9OVBIT5rLNVlkJkGWWDzphNXqYm3TYJ8vpTIQSU2b0CVQe5t3npUUUoW1Kbo1TvnqzgaejhftGOQE83yfLPNG32odcdNczcpb6jJLNTLukyDrNNJvAzjwnGCC4XNYDcuyng0NoFx4zBo0lM8aNjkxDVRY5ALf1tdKGi2WQPWOkylDUvbg7UDFwvOehfaVbHvLU2GE+pcW8VFme1hHod03YYLrMkAAc+xoQMMPRsJbCSWJz2Ud+QvEpbPBGKJBZ9B5g4JATpxsQAkDDIARIuiIbeZQVa3U+PFosqWrskAQ2zUR6NHC2VWu5jqp+rQs4nhWASeY+k7M0gS90BTYrFtEG/BIMcbqg3mSCx0yaJmDbKm9CM/P9s06WVZVjTpCaFwyTkeUau5VZiUSLZ+UEgPhpKNExu52DxFT97dfDj02jHI6wip7m25QWIxba1BbimxqBzKrJNYtbs6jFNESSZhkJs9H2uIFjsa5KWmxGIfTXojQtffCooMchsXC0BqAQTkDU0Slo8dwH5bBlnQPChkblmHurXdFjsfFMLiipYYeg6SNKOsehPCBdYk2Iv+GNgyg7E90JNYGIxOlqEusdj6RvNiqUmT2KHcgQ8yALHLSGmfV2vSayGx0PAfXsHHkGzUL1IaDLKUVa9gp8/D1SQcJIk7rTSonz98cqb9mTguGGRDiUUXDDJzU7ECbdKKYRFSjbZUYiGpQjPHrrNlSNeW5VDJ4ocUfYLcNUoa5LOc9VWSWDQyyG5rDbK+rkkssWijQXaqxv4dMAtbHZhaPNzNsgqJ52M9LnObN+6wAx4sG7B99Ul6hPper1j5XIJWPshAs8SirOmUNKZ26mLBaR4UNsdVGoOKARBdD+fI1/xAtWSdJ8j7cLAAttWLyK6P5q6ikATZcT4ZrlsGuaYtdcXVCa4+3LAZrgqpnKDUjL1SsnlrIbFwHeUS/go+RsR8MlwTCkcN1WQ9LF1gTNyKGqY0DjUuDQAwzzXC3Ca9Fmcie3ZMGGTPtvgkgK6LUunyZSqxYIPIpBILoHGPYDMfzubhXipM140+Qe4abOOMFmqLrmCQxZvBUV620GlKKGO2jkBc3c7YBUBswKknV6Ya5GWYYOQ7u+yGrudjOK+x2twBAw1g5bZRU2Oc0YZetnlTe2/YyGtlxqfUHCTDIKMM8iKTJ8g7/ra6UNjQdzrgJY1UWuO3G+Pir3lxgrx7+QqTFFnWQaJei2sEhHP1McLhAisE3foxl8Cen9AaSOVOBYOcVyfaukVUUbPv8sTViRVP/tJRk560Ia2UXKk36RGj0dyBZ2+nUEqwQIABNur7qYYl3kBzxPMijLcMsokGuSEuXZs3Lili2bTZW1nKwBlSxRhkbReLiC+vAHZyCLW46DNrBeYJ8kVOwAnHTAONl1WGHQZZQ77zQUWfIHeNElPLRi6q2bw1N+kB5tP0rlYxrMCgnOSNd5rhGNiDrat3opOMKocIY/liRdaDcytlr6nqRVnofpsSMJ0R2GlCS0/euEg2VA80bdZWQ5ISZDSRVkmQC39bowSZbehNEgum6UylDDL7fDpp0gNqB02zxKI0JESFGTSNK1w2W85V4loi6J7JzsH0qiEJpEkMu6QP2dj6rjXIbqXhtoHl22EoGTqa3lVcXkTuBP728rVt0pPYvHkj7n4qw8C1lOUE89SHAw0PXY2x3Mw6TjUZ3Nnb8kuhEtJUymzrOHsAWzKnRoroECGcs7qoXhpILLjyCmCnCq2E/Jl1/Imxzdu5bMw0oGSLx6rlZ4tNzyD34KB0yzpfhvAdS02bJmnSA2DcqDdbR3AC3VupWF/oOzY8x9K+rS6rk4wA/U5izsbJmu1UrXbUJBYa2uiiMWgI37FACJQPtGWUNMdRhQaD7OaDYWYKCbKWm0btF7E1L5dY0OYNSYK8ocyTZbVsSBMkV40MconhU2IGTePSlFjMs/1pkNmAjrWlIbHAnhJkr+L56/CnRworHh11zhdVKSGDvJVYMDmVVGJhGNPQc5RZ23mqPjKcxtUsZShjpHqhy7EMk21CqtNrwsiShjNx6NmI0wyhYt+JcM93NRJkjsTCsy04FtH3QV7H/DHT5dfXlFi4g7G5xIIlyK0ZZLr+Tuehlr79g4o+Qe4alk039XCO03mIk1HD6EZAaZIRS5BNG/Wu1jHcQW7WrsUgiw+/aeBgpl1WSurOESaejxWJxXbjVtUg5yX8JomFjs1bqfRmWQRD11ZmFFahpvewO1ROkNnamifyJolWyaCCxGLb4JPQZMEZ7DTDlbGMGoa4aMXFP2jEDPJuWXerhd6Di0W0wDB/3cZ1m2VAOMc88/emQQZy7S8CdYlFLt/pXoNc0dsWkwd39wdhxaMjDXIx8Ef02ZR090VFSkaEGCYLdOKiWiI4S/MERzUZ1WD5tlI21UpdXGGQzZnaKgZFpU6XFOFUMLWb9LZxEUIw8vUHVTUyyAo9HbtxzQHbw3AwMG7SYxKLZg2yvFI4CRzYFqFWb3uwgbxu9AnyPpA3eJ0vw+aSBaCkmTsaMYmF/uJP0gzzTfcJ8th3tG+r83WEaXVTMOkk5rhYABoMcjGco+FA07F5q3SoD331pprGiX48uHKWrxrXlUKCXMgajBhkeeltRycuYRaMmwWrEBw0gZBB3mX5lNZJi7hGFn2eGw/5JASyBPPU22uCPPBsrBQkFixWL2uehmgcRz7iOU1LGlpOglyMaK/5IHczvYt95sI9pbRvLcMYnmPBaWq0DZfGyYKOY8OVEYOslrh7jgXXJsqX/529zSgRbWaQAXU7zfkmgWuTelOcUVx1gka7SW8TY8wbEgLQoSrE1qtgukNKWhkyyMy7+GDQwCArkFmWRfLBZmGrqskHBXtNkAkhP0YI+Toh5HVCyJ/h/PsfIoT8Rv6/f0II+e59xnNtyBvPThdhs4MFQNlAYtOHQoBCYmHAIDOd8GA0pV9owdSWMQlczA00yLWykq4/M4eJYayADrNBf07WpKfPIANsw1RN1nU1yOoSCxbXZSqXWLQa7+x4dBpXw9oalnXibNiLAItN3Mzuq0IwWKU2jIKhkrhvZScdxFIGWyfMZaTpkM/f01nq701iAeT2apkv3R/WYQKLbOU7+/BBBir2ahy5E5M+1DXISwBkZ9KmCYYyhrLUALqUDR0CaOJumCwwSZCKz/tl7BZxKaFSNZFh6DnKGuQlz8VCpXmwYJDF0g/9ZmjB5FSvfvkSQnD5GmkQIgzzDYcsYiAEWgO08rN6OnBbMMghpoHTfMlT1EafsGl6vQZZDEKIDeDPAvhxAJ8C8DOEkE9Vvu1NAD+aZdlnAfwfAPyFfcVzrchtnM6VEmR58wZr0jORWFzmov2hdoJcH8hRhhmDzEmQdRjkJKbTqwQuFqrMxnbsqGSSnurkwQrjMfLVD5FVudNbBTpaPpYgx/IEr7XeVnKh2On2lpSbO7NWM3GxKCXuXN/uLuDuJsiN5dn8UL5MvL0myEPPps2ckqrJMqRe2URhAqhpHOz3FODoRFeiikdDc7EOPIdqS4WJT6k6Qd0aJM+YhltEFQPPRsqmUEpwGefnjcp+mmXa48JHnrp8bFne29whHbIRb+Q/qDAbQLnBNcdcdOn2xhqVQv6wl6HvGI2aFrpYsN+hLLGgiegkcDDfxLvVF0WcLyN5tbvBUaaMo5GbSyzM1/wHBftkkH8AwOtZlr2RZVkI4OcA/GT5G7Is+ydZlp3nf/0SgLt7jOf6kJcEz1QS5FBehvAdG0PPNpJYsAR5PJ4AIJ2V3tjDqIPZhrMp6GiQBR3q245zTR/kRps3jbHORVzj4nVV35sdlkUFOgxyHvt51FA2y1GUrE2nxklKlTsDVCRrS1t2IoyJv7aEjFxUZZDzIS7ufhjkIHeCaBwqU1xyvGbXlZYYsARZYVBIwIaEAHuRWACoO1lUnkNhxaPD4SUDzxYnPrZHhyCEi9xNQ8Ygt0iQNUY8n7MEWWnfWgHItN4vY/mYgn51G5eGxEJDg8xtijORWFQS95FnazXpZVmGeZMGmcWlWVWdBA6yTN3NqYxz2RQ9QINB9vMEuZlk+zBgnwnyMwDeKf393fxrIvwbAP4W7x8IIX+CEPJlQsiXHz161GGIe4I3QhouMN/EOJYtOsUu4kLXowmWIE+HnsFDJ5ZYjDX1TllGtdCTGoOssXEKOtS35TZ1WUP557jQYbYrcY18dY9OM5s3dYlFSDyomJ8UGmRTllIyKct3LFgkt82SJAuLjQIjpwLBZxh4NjLe5MXKZVWp0tAiLpYgN+pL89jPYrcb2YkAQ8/BLPWANAZi8T6zChOaqHfUDFcF13+YUwYXVjw6LOuOPEeclBJSJFeLkNN8XEULicVWntS8p2RZhnNWLVIiHORMbRWjpktDCUmaYROnJYmF3OmmgAKDPCqci9Qbs7nPsY6dZzin0h1797Me+Y6Wzds6ShGnmViDrB1XLrHIJ9xeGeiQL5ZRs4MFoHwmHo+83AdZrzrxQcQ+E2RejYvL/RNC/iXQBPlP8/49y7K/kGXZ57Ms+/zNmzc7DHFP8MZI1nQjOG7yQAaAzXzrqdmAw6FbdJrqgCXIBwNXz4tScvubBnp6p0WYIMs4s+cVLMK2MfGbJCyLYOjZ6sxG7sfcaCMmKM/z49pNFmjJTZ1lkeoXd+LSk1iEJFBinth7J7QeksbVLLEghGDkObkGublqsurKxUJgITjkMXJxSBviSs8iY3a7n6RXYZAVNMiLNNgvg+za2wavhovOIsxL1R01w1XBbb7yJnSfLGEZCj6bipd121ga2X1vTF0seP7uVbSQWLDkW9aoFyapns2bQjNcLZaqy4gAq0IjXmrSA9R0tWxtNZyLbJ9SrdTNNyINsq7Wt/4Z6jLIsw09N6UMsnK1l0ksaIKrO58AoAxyo4MFoHwmHo88zJcrup/2LhZCvAvg2dLf7wK4V/0mQshnAfwXAH4yy7LTPcZzffCGyPJFJGWQwzk9ACQwZZCvVvTBPRi46rfSLFNysZhvYqXGEYDqj+nPVW6pOmM1G8q6Q0/9Fq/E+LAHezNTiGs3WRizRFCCNGWjjDUlFhoymdAaYBnJY2HvnTFzq7ChF/ZqEheLziQWtpOP5q5ILMpyD4biM9w+i0sVKY4J8nVix0t4jqXUpLeAv1cGeeDZmCXyBq/iswkXVGLQ0FxsgoBXDfLHQLj7HBYa5KqLRdQdgzzw7GbZVr7mldZrC2a7GIQkYW5XYbIdCqQkZZBbjNZi8dUYZPa+FRcYHb97tuc2JFf6DHKTxGKu1jwoSpA1m/RY5bVTiYU7LF7PxMniYhk1T9ED6H7qDGrPYhXHIw9DMBvInkEW4ZcBvEwIeYEQ4gH4aQC/UP4GQshzAP4qgD+cZdk39hjL9aKULEiF75vZNTLIirflJKSl1oYNfat3Um2SENyaFSzCCjQwHmPfLpJwGRYqjE8xKUuB2Y6qDLLaIVJjWVTgTWijYqKwFsI5Inug5KEq9AlVjmsk/QyLUiRnXHgZy64kFgC3PF94qJbXLjuUywyyihTHKKZtsjD0BA2DDHns+5ykB9A1eJEw9lG8RxTyF4XmYrM46Gez3pFYjGsM8ioSXF461CCPPIm/bR7XUtakxybDmSbIisngKkqwRO7eobJvsffUnyrHosog18bFK0xhK6DCIHuMQVbXIAtdLJCpydYEo5NHmk16W7KoyYdfR2KxLJr0AH0GOYxTzDexnEEG6GeyaV5bNEHezyCh68beEuQsy2IAfwrA3wbwNQA/n2XZVwghP0sI+dn82/53AE4A/DlCyK8RQr68r3iuFe4IVkwPmRsyiYUkWWBoo0F2bUKZFlWJhUIDDpNKqCal7FZbk1goWITV46q/X+NAR9Yg2CzLYEyiZDPYxkWKqV9jnzLIMna9GDCgk/iwQ0OJ2V4itgdKHqrLTQxCWiSDCht64ee6mQM+v2qSZVl3g0IA7qVwzMbDltdLwSCXE2Q6xKX1RL8qCjZtjqEr0avncS2yYL8MsmvjorAIE6/5LYM879zBAhC4WPjjWkzzQh9eTZC765wfyGRbJQa58WJpwNSWMVJ06VmGCTZwkcFSZGqv6J8KBE0Ri6/mYrG9XJZs3gDFuOrPIi8OQJ1BnotIEd0eGG71kl5yE0X3iC2D3OQ5bGbzBmyrxqq4WClM0duJq/lMPBl5GJKcQd7DHnGd2N+OCyDLsl8E8IuVr/350v//4wD++D5jeCLwRrBj2iF8PJJ40CpqkI+GLi5XEZI0g61xYF+uIhwMXDrNzxsC6yv5DykkyGW9050Dueco04rVmvTY71HZDAQuFkBuO6fTsCFLNnQYZNbclU+GG3qUXadaWvHvWZkwlKURtxgeS+KaI3bHWOaODU0THRf5WNjGqY9NUGAWhp6N5TqisQsS5E2cIss61P26dbukrS1gab0UbNr2WVzIEh9TlPSYwql+DCUGed8uFleJB9hoTBZoMuh0mojuxMHzt/UmtKoVh/RCjZL8pfqedKxBvnchYZCv3sut7xr2EwVGtDEORZ/35SYBQBC7I7hKhIM8Ea3FouiDzGKta5AV43KHdCqtAI5tIXAtJQ1ylmXbdVtFeZjQ6IYkLn6CzJjgZRg3J705WDW1kUFWtXnLJ20yFwtAn0FmlWmpiwWgxiCPewa5RxO8IQgyjMgGh02TaQBlDfLh0EOWAVcrvcV/tY6Km6WyrkkpQc4fRtUbvIhBZr/HwC2ijLHvqksswliebGhpkHfLuluGUsL4ROwQ0binFgyySgl1htQdF8l6Yyy6fsy1uKbSDX3oOUg3c1BrKf6hrGTBpwPO2mKvvSx/PkxXV3oWO5voV0XJLknKUubP6xJ+8yjjlhh6+aAQoPGyWqyTPQ0B2BlJzsC5rC7CBIQAQXUyWtSdxGIolViMkIUL2rjYtJ8YSBnKKBhkyX7CLnypO1LbtziXQnkstHFR5rUrlFgoST9mSkk764ORvlxMXSO4CbKidVnxPZy4dCe5XnWpQc4nbcIbGbtYnC8Yg6yQIHsT6Wd4PPQw6jXIPYTI2bFnBklzeTZNczZNgUEuxk3rySyucgYZgFJ5BECjlIGBMcGqDQEskebemiUWYdu4mNa3HtckcIruYBmUJrVpMci7jOh2w2x+b9i/NxrG1+JiI8PVNIZp/l7JDhJqg9QiKfXG9GBrkJWMfFvKpgndCUzBKc+zy5GUQe5qol8VllUw20NXkoSFcySWhwR2u89HgoHnKOlXi3WyrwSZ16THuawuNzGGPPnLZiasTuhC6oyTX76yTHLJZVIG01HTigwy208yb6LZXKz+fg19Wh3bmXTIAYt1K7HQcQVSOxPHim5Bi6azp4hL0V2Dk/CxRHeueP4wkmvaRJ65IyBeywdVlc5qPx8FrjtN77xgkBUkFv5YuraORh5GJNd0d/QsPin0CfI+kG84zwwlD28kT0QZDg3HTV+WE2RV4b+ChRMrJelqkCc870dViUURF49BdpRjkWoGgdKhrM94FE01kgOt0GXrlM4LbbQKQ3RVxCVlnzZtGeQJgKxxfQ1cB6TY0PkbJ2O6O0tM/WntMywY5HISxik3dzbRj4c8uRooNOnFDl3vnemyOShGTQNC5irJXVeGni216msTB1CpeAgY5JoTTbzJrfo6SpBlfubeGFkeU+NnU1wKzeIaFQ1pzftJ8e8KSQwAbmOqPBa16hjTiBcsqU5FbqPWlzNS3PMXIr06UGK21Xo6eGci+2+8VNT+Xq1pvwdXbljEpchss7XlDkEIwTRwtV0sWE5xIuuXApRINte2cMvL8xSNy9cHEX2CvA/kG+GdQLJQNUpcrPxxrjL1oYTLVVSUXuDX/US50GjSU9U7sY2Mm5gqSyzm1FrKqWue2WQ/Fds5pUEUls3Vr3Kxme+UT0eKEovGjVsE1Sa9XJtGgkn+uyTsU9iSLVWIa+TbIFHzmmdxdpYM+nU2jdvgs6knMXtjkNnvCec5S9mcIEf2doT5vjD0bCzR7KG7c3nZzIDATDLQBMuiDcU1H2RgZ+/i2na1lDJUMXQdbOJU3HzljfILX9a8Xg2kDGXY+XsiGz7E9hPiy8vgNK4ZtelzJH0yJQyLy6UkWc/PhWLN2g7dT1WZbYXLxEhRYjHfNBARxeXLXGKh6z98tYow8R2JD7/aWOfqvjXRHOAFgE69g6LEQvHyddOLduL6sKJPkPeBfFHc9iUPTOH3qOKDbCax2GGQ/dwiLN40/5DChCVdz8X5JsLQs+HYnCWn6q7ByqecRrJx4CBKsvp0tAqyLFNvvvJUmZirnY1AlUE20tt6dTaNi3gDpDGsPImRHSRKrHpjXHLpx9BzYMf5QSTYOFddSyy88bbEXYoDqFxgCg3yds135scsjGum0KQ3R2TRC+E+bd4Gni2VWOx42yrqRE1QG9VeJDEliQVPM99SylDF1lFD8Ox4IxBkCBA2X1409nkRRp5cTsD+3QrqVRMuFB2UduJQvfxXNcgA97LKhYYGWcVvnn0P9zNi+5AsrjQVVk2mmmfh1SpqllcA6r7RRRWAJciudpPe2SLE0LPVpqhyhvbwcMPd7MT1YUWfIO8D+YZ+05Mks2zDV9Ig09udjhdylmW7GmTGrMgWeGH/I17cLKlTbtITGbWz36OTIHPAylWyRJAxQkqNcRz9qjiuksSC1wTGQeHsYaJBln6GdG05A/r9KvpF6fAUpbjEB83QsxEkzbKiormnM4lFvrZKlYUtI1dhkC13h03ba4LsT4HNTO6DvJljbeX+2vts0nNtbOAiJY7wUN5JejrU+lYxqmpLOXInrhNNSylDFUz7K7zA5JepEdbNl5dwN4kxjUXGILP9xB6oJqJqWt+dOBQZ5Nk6hudY8MtNlKqEg5YGWd4Yx94XfoLMzkRJXGxtcaomWwZZVWJRquqKoJq4FwkyjWs6cLQb+c8XClP0irjG9KKQNhNRx26IFKR3sehRR+zQh/vYkTC1Cn6PDBPfgWMRLQZ5vomRZthlkIEao1aPS76h2xah1mqKt9XZOhY3o+kwC4Ly6VjxFq+VlHIGFHBRa9JT8+hs3LibYgLkmrn8393BQf675B6qWiOvq1CQWAw9GyNm/yNYW4zt6bRJL41pw0sJxdhrBs6hvFSZuGgc1yRPkCWDFzYzrMgQvmPxqy8dga5BgtgdC60gC/mLS2iVqSMpAy+WnfXK0SAveU40BpraJnA9mcvIn8UhWTdf6FpKLAB1Bnng2rD8qaKmdq7NahcMsjRZj+qEiDIRoq5BVklKlZr0WpyJ0wF9XdXmuMtVVPyMEMoJ8i6ZNfH1NchnyxDHsoFmDIoVzCN7gyUGnQ8Sum70CfIecJFSFkqaIGv4YxJCcDh0i45TFVwW3bL5w6h1K5Xf/nQa4+abWNyUoJwgXwkTKzbCWhaP0pjPclwGtkRjDYmF51hwdRIfx6Pjk6UMMv13dzQtflcT5m2n1ym4a4x8B2PW3Sw4ABlb150Gmc8Q1aYdburJwjKM98fa5mt+4NpYRw06180VlmSwV/0xsL2kRY7YIowlilOy3/Lp2K+4R3A0yHOePrzCprUFc2AQPsf5vj3GWqJBngHEatXUOFKQEyyY1y/zqpX1YxhUAQoGWcEVh5sgd6hBHvu2losF9xlyPNrToszU1uMauDZsi2hokOMtaSWCNoNsrkE+X2gkyIruTlNrhXkWKPUEfZDRJ8h7wGlEE+QDa938jQWDrLZJHQ49XGgwyDtjpgH1Bi/G1EpufzoP47yRQZ5SRiqRNTU2SCwKX+bmTWo75lNxapDsvUoiyk6WDuWh4pSnRtlJE1QaJfJ/94aH0li2RvptNMi6DPI1Siw4cdUYuQqDnDLHhj0zyOUhA1xsZpiTUffjritgn/3GFq8tFuOY5D0K1yWx4GqQOetVofKlF4eqxGIld7Hw+L0Tqhh68vH1dJyyTf/7s0Q+PrkiDVPBWFHKNltz9jaVBDlN8rHcagyyygS7Yuqi6DNSiavh8kUI0ToL9yOxoO/XJHC1bd70GGQ1id8YK8yygbYn8wcNfYK8B5yuLcSZhTGRJMgaGmSANurpSCzYyMlpVWIhY0UVmQXmHKEC7obJUMSlsBkINs5i45YyyHTzUGOQFTTInEPZd2y4NpGWIYsDTRcqftb5vwcjeZOeli5bBCUNsoMRWSFrYNOWXUssBIn7yK/4D1fW1jpOcn/b/TLII1nCsZlhng32M9GvBPb8rK2hsNzM3q8x9utxWmvSc3yqD6+4WNTWa9EM163EQvgc58nCmKzlTXotZR8jmRQHJdcV1UZegyY9qewkh1Bioar1VdQg09+ltucLzx8VIkTSl6OVIKs06RWVL4n0o2JPeTBwsQwTREmzRriM80Wkp0EGpGf1CCvMMSiGkHxY0SfIe8DpMsICAUZQtGhR3KQog6wvsag36SlsBkoJslv8DhkoWyrYFNjvko3BVmGQZQly1xpkge5xqKAZnG8SNSa7ChW7vqJJb4rAtRpjKRKfLpr0Gl0sbEywQuKMhGzaMkzgWASe09HWJIhr6NmNGuSFjHXqIq5kg4mT5L+P8/mkCRDOcZUF7S4vChi4NiwCrIjYiqvQIGf7ZpA5bGnpsiqseHTcpMckFitRYpo3bE2wbL7QddDQWJMEcVBUpJTZR/0mPXWHnqReMVRiatXPxELKpsBmj0QOSspxNVcnJr6r1BwXJSkWYaLBICucid64GMvNhn2onsubOMF8E+N4pHgOKc4HCNIl5lmA0z5B7lHF2SLEDEMMMkmJK5xDRevLoM8g5xrkwKBJT8Hj9HConiBfrSNxUqq1oYs0yOqlP0AwsIQXlwGDzOKRH2iR3pAQBm+sxrbncVE7JHEsnXgPOwFAbCWJRdxgH9i5c0SDxGJZ0yBvD+WtFnpfEgv6fB06tMrEbaLM195Vun8GmRBC35OGBLmYcpiyBHl/TXq1pKdkLxUmdHTwvhlk9p4L2dL8v39CVs1adQOmthZLtamUg2Lktep+atCk5zsWLKLm0FNj1VWYWo1LzkgxQZYytpxhQjVIEuTpQI1BZt9zIGvScwPqUa1JZrEEWVWKyQi3o441yF6yxByDwmP5w4o+Qd4DTucbzLMB/ETmYZhvnIratKOhh/NlpCx8LxjkYTVBljx0azUG+WCgliAnaYbZOhZvUipxpQm1l5G4WKiW25QZ5GjZPO6TM4ENYJpBOcti1HylwiCX4uImHOU4mnxCVUGINK6RTyUWkd2UILdsFqxCsLaGvr27ViqNQew92Z/EItcM5ppsrjQoj/kiDbYje/eIke9gjoGYQc7fkyBlXtbdJKJVMH/bnX2uxCAL2f2CTevmWBvIJBb5ejm01s0OIx0wyCPfkSalxX6iIrHIMqO42EXKWIOcRs0+/DoMsvKeHzfv9/6ktbOTqvZXacz0Tlwq/ULlBFnPDvZ0ThPYY1WJhaIG2Y3nmGcDnC0kRgUfcPQJ8h5wugixsQYg0tuynjbtcOghjNNm39QSLlcRLAKMWcLhDmk3teZDJ4xnQDeFVNYkUdyaRQnywfb3NsUECOPyHRueY8lt3liTnqoGGWg+aATNG0pd5zyWRQUaTXrwxlKLKJZwtE4GJRv6wLUxxhqhLe7m55Zm28YE1OIa+07dB7l0KDPWcK9NekDh6sE95FmCnPh7Z5AB+kzQBFmgQd4ksAjgSoa9tMXId5BmlXHTJfZR6ErQsTczqzIJnx1vhAQ2jmxZM5y+lKGKkWcjTFKEDYOQtCQW+QRAk7hkF26Avme1pFRF4qfRl6NaNZQ2xbVs0gPUNciX1apuEwwS5O1AMbUEmVWk9Rnk5rjsaJ4zyHoNgx809AnyHnC2CBHaCtPhFP0eGXQX/9WalpaKkZYFy9dNgjwduMgyue63poWuQkX6odChPvEdzCUuFrNNjMBVtFZT0VsJmjcmgSPt4G20vpPFpbq2LIva8TVqkDtgkIu4xGuL2bxtLDGDPDN19miKCagzyF5JdpJltcvqcu8Mcp4g5wwyN+HIYz6N9q9BBujnc5kOqCtLXC+NsnHkpGOtLy8OoJL4lBjkwumElyB3ON0vcC3YFhE3/hKCjTXEkS1rxtaXMlTBLmpNUxeLC7fKMCFB5UsFsmQwTiiJU3OiKVyUmvZ59bjY66tokOUMsoKUwR0VWt8qpqoM8nrPDPKAMchq0gYmgdD2QW5aW1kGEs6xtoY9g9yjjtNFSHWWKnorTQYZgHJn6OWKc3P2VB86FQ1y/jCumuPZ3ppbaJAVEuSxwi1+to6KyUdSqLh+CIYATAcuZhL5CVenpxqXVGKxTRZkDT7XxSAzDfLKGgi/Z96kVTeBNwJAOBpkG2Gc0m7vaAVkKZ9B3nOCPMgb3vgMMk0kTmNvf82CJYx9G5epeNz0cpNQC8OOtb68OIDKOONSw6xQ/tIxg0wIkV4uV9YQB5aMQVaTrDVhVMg9+LGkabYd9qMyTGhjfsmZBE6jnSa7eHKb9Mq/mweNy9eWQW6uqDKiSAjVBLkhpmnu6CSrpm6dpVQqmFO1s7r0HB6OmAZZk0FWlljk+2nTmRgtgSxF5o76Jr0edZwtQmRKiagpg6yeINdYW5neqtD6qmmQ2e9pArs1yxnklgmywuCS2VqDtVVikPlxTSUMcnGgtWGQm7TopWRBJvdonDSlA3/c+F4Fro0xWdEJSwI02gGagBB60FRdLAr/4YR7KG8bF/fbpNecINO19TgO9peolzDyHJwneYLM2SMYg1ztnN9HHECFGSw1zDItbu3ZURwwoYOx7zQyg3MybPa7z7JOJBZsvYrY0mVUek+UJBbml5xJ0DytrZhWymvSk8WlcfkqNMgS5laJQU42Em108+VrEtBqqkxWJz0Lq3GtL5u/p0JmTXwHtkWkpBUDY5BZc58UhMjdnfLPMAumfZNejzrOFiEy1UYqjQ39ZOwVr68CcYKsn/DxsO2Ybd6gas2CVQhYPt24KLPRstxWhoreSrCh00OkiWVhSalBkuGPAWS5jlAU1/ZQHks0yFs5QdsEWe76MSZrLBAI/914eEpjXHXNdsHIbWLuZ6g1ktwoJrqO3WgOxyKNEotZOtifFrqEse8UQ454zyIdvW13wojK4gAqyWDpUJ4Xl5f9MshA7vXelAxmQ0ya7DyjFR3a0TKusWTE844uu9hP9StfKpBJLNj7VbvAKGmQ1eNi66QplizLqIuFTIMMyM9FydkjiwXYvwaZEILDgfrE3fNFiIOBqzfN1W+W0rH30QqmvQ9yj10kaYbzZQjbn9BFlDYYdm+utG7wJyN6eLHOUxkullH9Zih76DQSZFUGWbopMJavUZvWbNQO0Ol40ia9TcNEvyrYht7kzxzOudq0ie9gE6fYxKIDTcCCKcWlyLiXGeQmiUWh6WzJCMqqJlmGEdaYpQ0J8jpWl8CoglM1GRUMcsxd81ojyU1jAkBCOiyEyyDn626OwbVILEa+g9O4KUGOMXSdvSSiZRRsaZmNC6bFflpM9Ntzkx4gH4Z0lQ2a/e5baH3LkI14nperQCq9Jhr7fBWyy38Ri0hi0XSJXl9Ru0iFsdyeY2Hg2o0M/zqiloBSiQUg74GRMMgApDrkq1UE2yJqFSHZZyhwIjkYurhUTJDPlpG6/lg1rvx9dIJJL7HosYuzRYgsA5xh7swQNbB860tgcKj82gcDF7ZFcKoofD/jzVhX3jgVNMj5pnOhmCA3lpU62NCngdO4cQO5Bll1OEeQf4ZNZS4Bm8Y2ZFHCzpoJjdhST+GgKTUGjX27bptVwmITgxAgcNpqkCWlt3gDFzGuBAlymmaYhxoXGOW46lWTUVnnur6gXyw9i1frCJ5jwW/7nohQcpQR6lyZawOC7i8NHIx8B48jb+d3l7HYJNT6bM8JMmNLd7SlwQHViYez4kLH9UHeg8SiKUG+SAcYZQ0JcotEtAwmOxFVyGrOHjKv9CJx149rKmOQi2S98uyoNOmtL+lnrWh9KrMavVKx9dQkHHjQYZCngQOi8t8n0yALqhNHQ09ZYnG+CAvppjKCg+YzMV9b3uiwl1j02MWjGU1eg5HEuixN6W05OFR+bcsiOB55SgxynKS4XHFuhx0yCywJlE0QulpFcGS3Zpk2WqF5Q+XmrCWxYAlTY4K8637AINsw2eFvlCArJe67DHKWiQceXK0iTHxn63ZiClY1EWmj88/3LOVrkGkSz9EutgVnQAFLrhZhvH0f2fsK+rkJm0q7ACEF4y7Uzm9mSNwRUlj7Y7JLmAQOLgoNcn2PmDPrro7dIqrgDoAorfllkQyW9hPGpnUc11iitz1PAgzSJqlTNwkya+oS7yeV90QmpeOseVWM8+qYyHKusNKsEhEqiagmaTQdOEXjGw+1YVk8KDVjNzeubwmR5vPnfBlqWKpJtNGCtXU4cHGuaK/GJdFkCA7lZw+AYHyAZZhgrWhL+0FEnyB3jEdzupiH00P6BdFmsLkCkGlvUCcjT6lswVjdeoIsuZUWUgY5gxy4NgLXUpJYHAzc5luzauLecAAeDFzMNjHihjn087UGQ+lNAJAtw8iNi68jZ4yfaMMUermqgK2ZVVNc28RdNnGqcYiLDvxJzvIJEoY83tOYnyALS7NdxFU5/EZFyTopJQuH21i6bhYUxbWZ0dHKvOaezRVih36G18IgezZmWf7ZcA7AYiLZnhlkfoJ8WMS1CJN6xSNed6L1rWLsi9nSME5xmQbNA6E6cvyYSveTyoXbHzcTDmzvMEiQt5f/5r2t9hy7Ctro9YVWTDJ7tSsVqZQSg9ysu1eVG54vInXHiEKzLXi/BNXew6GnPOH2bBGqx8MQHMjPHgDDyWHxOz6s6BPkjvHwinY0jyfH9Auixc0OII3bMkAb9U7ncokFE8fXFj8T2Iu00Qpa3zIOBq7Uc/FSNuoToBpDWYIs6Zxnm5TIPYKV8JWTDcuiccluy5zDT84gt3COKJjtC/6/Z1leqqTfN5I0+EiN9FVRsHyCuPKvP4wECfK+dL+cSyE7vGebiJssaNkBGsdFqybjwOVbVW1miBzqGX0dDHIxSS//3VUU1RdFG0jjODxm38VnkOdr6qaxU/HoiKmtgtp38ZON+SbGLBvCziIgEjhZcOQ7JmDrVcSW1hptZSzf+oLKfBzN5Ajly7/gws32tqoExrLk46aZxEIRqhIL6ahpQBwXq04E4jXP5IYy5vZ8qSFpkGmji7N69/w5HLpKTldZluFsacIgSyQW+fs4mhwB6BPkHiUwBnl6lCfIkmRBn0H2lRhkoQG4rJykedAcDuS31SsVhlJF+C+JiTUkiuIxKuFLy0lX3GRhUhxo+2CQD+mforW1mVE2LT+UWalTxPhcrTRkJypxidiF/H18yJwSKpi1uTQ0gWOXNC1fYNaXVA9cuuhoSXHaxLWZY+zbfKuqzQwb+/oS5LHvYAUfGbFrz+I6ShAmKb1I7ZlBti2CgWvzJRarC1ytOe48a/XKlw7GvoN1lPtlVzBbR7hC3kwmSmKKy9dhqzhc28LQEzek1ZpKB4fNLN/6wjgm6eW/cLHgkBmBpBm7dLFXwXTQzCCzGBvlUrJENPf1bex/GbggRD6g42KpwyDLEmSxxGIZJsIGcYZlmCCMU3XJB8PgkH5OIildvtdOD2kO9GFu1OsT5I7xaLbB2HcQTE7oF4QJspkGjDLI8gUnNAA3fOhEoAyymsSiESoSC0mZUlbmMnImkN2WVxfA4Kj25amEZVFqXGyKif1uHorL1+HO7xCxT1IjfVXImO083vfDgNswuDfniMERvRAm23VRdJ2vIvr5+lPKcJViuZ4E+SofBc5nkFf51MFOPh8J6GWNIHHrLF/BxLFBIS19fVViqTXpAcD6kmrmq5/N6pz+yXkW22DrtVt/dmbrGPNCkiLYTztikAG6p4guubX9JDhsloatLozkFYBcPjZbRxh6NhyedVhwKEncDRjkhvNHS4Ms+gwVzkTbIvQslEksdDXI5d8viqtyLh7mry/rx2F5hBGDnCViKd36AnACHB3Qy+qH2eqtT5A7xsPZBrcm/najZht3FRzdowpujH3MN7FU+H4qYpBLWj4uNjMARFkzdzBsLnEBuXZRlmzItNEKzRvscBDd4rcJmEayIdNbrc65cU0ltj/S6YJNcAPACcSfIYs3j4s1+DRdHLqRWBzu/v4q8gP7Ih1xGwaFzT1twWm23FpExTSuymdI/Zj3nJTml69xIPCp3sywJEMQwilX7wGsmhFzEmT27By7ET0cWzKiMoz9CoNc+gy5F7oOE9HdODhyjxyzdYxZIUlpYJCJ1XrUNJCPrxddclcRPNuC7+RHOmOQm1g+w/eqYJAFPQ0Xq6iQHNQwOBKfiYB24j7Nve9FE+yU9nx3CFiOAmnUXJ2Q+Q+vwgSbOFUfyiFLkIs1v3spLOQekgSZVbtvTvgVPSFkUrrVOTA4wkmee/QMco8Cj2Yb3Jj48mTBsEmCLTqZrqfQII8qD2ORuAviWufezJba0pBpwAANBjmcA4mgI3l5JmWHDvI59KJ4Cmu1rhjkaA3EK25cY0kZ8nIVYew7fJZFKa7D5g2KfQ/K2myRxKKj8c6KDPIVRtz3hX0+e2GQgdrBTDvgIy5rddX1yGtRXKtz6mLBs+HbXGGBAcZVve2ewJLB0B7V1jxj4o6s+Tb2PYJ6d5fWSOFJfomrFedCtycGuUlvO1tHmGUSiQVrOlPcT5swHbjCEc/s0lA0QgeH9CLTlFwZXnJUqmPCisfgULw/RGvq2qCTIA/oBDtRsn61juDaBIHb8P4T0py4F/IdmcTPa5RYaI91LhJR0eWLv+a3iWlzrxJz3Lo51k2QD/O4Ggia4DAfQELwcNYwafIDjj5B7hiPZxt6I3MDwBkoMMi6Egu1YSFnC5qA1XxcZcx2fvtTxaFEYsEmGUkTZPY7JbfSJmylBPx4WJxasgamt+KhgbWyLYJRg2ZQ6dLQhCZmuxJXk/SENS52I7GQXb4uENsDROD7VbMDt3MXC8FlteiAryTIaZphvtmzzRtQHMojz+Lb8K3OcZmNr0V/DGw1o2tnWnsO2WdzgLyseg0J8k7SY9k0SV5f5MlgVWJxsZe42HsvZpDzBFmYxFx0FtO0gUGm+0npPZFeVvWkDGVsL/+CvY03oKocl+xM1LJ5a97zWbOt1He4KUFenW2/pwFHw+az8EzUOC9CsW81nNXEriXuNyZqOcLj1gxyQ4I8OAIhBLcmAR5eqc1t+CCiT5A7RiGxAJpvy+tLAES7qYRJJh5LbodU68TZpFQS5KH6hn408rCKEqwEDgnLMJFPMgKAwbEkrgvlBFm0SbGSk5YxelOTnuRQng7EHqqXy5a636bEvdIYNHBtuDbhJsizDW1c7CQZ9Ca0nNzQmBp70+L3VlF4uXYtJxAyyC5NOHLGg6Fo5ty3i8XgCMhSHNn0Wd5hTKM1EC1xno2uxeINQDFAZ2lPacWmhEKDnF0Pg3wwcOtJT/4sckcHF1UTs6RPhO044/qzM9+UJRbdM7VVTBoszWoXbpWG2bYSC8HedrEKxZf/Jg2ygexQLmVTvOg2JsiMqT1ufImjodfoHnGhe/6wz0dGZlWSf8YgP5a4XT2abUCIoQYZaCZo8tjvHAR4cNUzyD1ArXbmm3h7IxscNS+iYKpdersxziUWUgY5xDHvpipNkOVSBl48onKOcjMa+52VgxkAlV1sLqVxeQ7t9BZJLFj561DH9zE4oNMQE85rVqQMVUwaJvtdNun0lOI6lDuk5JsUIQTTgC+FKZpYumCQLauZ2V5dIPPp5sovWccYeTbsruUEAjZtGjhcBnlvTHYtLrqejwhlZXcuDfnaOk2vn0GeW9Pa/lC8J1nOlD6RBPkA2eoCsw2n4rG+oBc0u9vLxLiRQS5JLBrZtMNOYpkOxJ7MV6vKe9LEIKcJ3U8NE3fXthC4lmRvE+yxgyMqS+PZ4hk4O8kasy9Um+KaEuSlGoN8IGGQC4mFakJq2fl+yjkTAWFV9WjowSJqDPLR0IOrK/OTDdAqxXV76uN+nyD3AIDHM7ogC02P7LZssEExiYXsdijslvVGgOVKbqXNN+Uyjkc0HpEmWrmsNGxI3IvSm/xQbuokPl+GsC2ix5Y26a0ETRIMk4YpXHuVWKwuaOmt1GjJTTigaIOkFddhY9Uky99PLiOnM8RFB40Mcj1BZsnQtWiQARyAsrI7Tgn5ofgoGV5bguzYFia+g0uM6O8vaaLZ5zVIcqZ0zwnyIe85Dg6QLM/5FQ9Bs2xbTHwxWzpbxwidMQDSIBu46IxBngZ0vfIcYLQY5BZT9BgmgSscwX2xjHAglFg0SOlMGORBsz+0kCjixSVlkJvjOhp6mG9iriUgUCZodCR+x9pySDpx11dikLX1x4CyBhlAL7HosQUTo9+a5uNaG4X/ZhqwkWdj4NqFwF4E4cYga0hQaIYr44QxyILbKutgZUyzEEUSw7ktazTgNDUNni8payvVo5XRpLeSxDVhDCUHrRPkRvnORa30NhW8L0XpvKsyfqPG8ALW8BAA3zaLjjLeg5xAUBKcBi5Wq1XeaHlYfJ0lg9cisQBwQGiCvLNW8vfwQTy8NokFQFmws2wMJCH1f81xtYphEcAP9XWiRnHkXq4744wHh0hXucdq9dnpkKktg733XAZ5E2MUePl+2sTydRPXJHARpxlWHAej2n7SmIjmX2sRF93b6u/JOqJODcK9rUk2YJC4y/pOzhc6DPIF/99WZ3mjpXhIFbCVTsglfhoVzMERv6oKNPbl3Bh7eCxhkB/NN7gx0R8Us22Yvaj/WxzSimse152DAPNNLLxMfdDRJ8gdgpUSbk8VNMiGPpSEENye+nggSZDPm2asixLkNKXxDtUZ5BujZkb7LJdeSHVOTRrkjhLki2Wod3sHmi1tKnZqVUxlDLJuLDtxHdLGIN5ERE6yMBUwyJ1KLFhcwoPmEnZeKeAycps9jXe2XVp+57hYVD2jAcXxtF0gX8+TjLKyOyxYfijeDwfXxiADlN16nIx2YgBKzU7rc9p87PKnIXaFA97Qn+AAhA0h4GmQ98BqB64F2yJCH+RJ4ALDE2B5Wv/hLKvp29uAsaXVZydNM8yq0zCLRPSi/kKGFqNliKpjUkldUyOvgcSiaNITEBHKk+IGR9SJRCSlU6iqHgyZixI/MT1fhpj4jp6kYajPIAPUDlbmYvF4bsgg2w7dTxurqocAtrnQh1WH3CfIHeL9C7oInjrIDw8Zg2x4g781bRa+L8MYizDBsYi1FcW1uaQTgzQOGvY7RBILxiyfyB5Ef0obvHi3Zd0EWXSDX2hMMWJoakhYnYM2WvI39OnA4SbrUpZFOa6Mby+1Oq8dfqKLQ+fJoITZdoaHIIQvsZjt01qNE9c0cDHKclcGjgZZa+KiUUx0PY9TmiDvfD75mn9vM7hWBvlw4OFhPNyJAaDrZBI4e0tEq+BqS4MDkJCu95qLRYdShjIIIRj7IteVfL0Oj/kJcjjfmWjZFkVDWuU5nocx0qySlHpjKrPiEg4X9M8WEgvqqFF/T9jnJSQimpwZDOIaew4I4WuQV2GCdZSq7fkF485J+hSrqoxBFvkPny9CHPIa52VxCasTFxIGWZwgZ1lGLWlNEmRAbH9aOatv59X0PkHugfcuVhh59lYfFxzSMmXMWaiGEguALrqHDQuOaX5uTwL+N4gS5KIZQZ1BHnk2fMcSmoGfLkK4toLu17LEcXUmsQj1GvSA5oYEicfp0ZCO4U4qJvadsLZNTTicwRcHA35JdNa1xELEIKcJsLkCGRxh7Ili2RODDHClH9OBu7UtK2uQTQbKmMYEYJDQpG83QabP4uNkWE8G94iDoYv3w8FODAC2DGWHtmWNcRQJcmlfCQ7gRHPYSK6NQQZYs23Deh2eAMumhO+wszgA1J6dS559JSHiy2oHEovDfG+rQmqlKdMgOwG1SFWEZZFCm13F2ZINy1J4jpua11fnSlVVloiLJsed64yZLuI65q+tJKLkiGDNn4z9xia9RX550LZ4YxAmyBf5vx8C2CbIH1Ydcp8gd4j3L1d46nCw1bg2lrkujDfO2xMfD6423GYNYHtbuzUVLH6R3srAS5QQgpORePz16XyD45GnpvsV3ZY1EuTDhsl+F8tIz+INkGuQG2I6HnnIsvpkP9Z81NrFQhjXhZBBrq4ZVtbvnEGurs2Sx+kkcLiatItlpH+BUY6rvuangYspyXW2pfdrq0Hec2Lq+IA7gru5hGuTmgY5s32s4F8zg+zi3oYlyCUGeXW9DPJhUa4uM8iHAIAJlrsJGJMy7EkXLdpT5oxVHwgY5I6n+4nkBEUfQXU/EV1WO5BY0Klx9T2/YJCFLhb57xRpkA1II1Gl7lzHd7gpLkVnp8JmVHD+nC1CgwT5iFZ2qwO0JI3rN8Y+lmGCZciX+BVDQkwTZDapsQoBg/xhdbLoE2QF/Ndfegu/4z/5B8KElOH9yzWeOijdfkW35ThvgDFNkKcBVlEinB70MF/8bHHWIGqkYsmphgYZyG+rAr3T2SIsnC6kEHXsanicHgxcrKKEO4pb6OzRBJkGWZIgA3X5ibL1XRNkl6+qBjlwkaQZFhW/6qt1hJFnm0/0qyI4BNIYCBf1mAAgOOA2DGZZhsuVgUZcJy6OBnlaMMhbP/LZmjakDb3mppxOMDgCWV/UbfiWZ0j8QwCaristcTh08c7aL2JgKMY778ktogqup3n+LB6QxS6DHK3oBLY9Je6HA76/7SXzYx4e11w/AHTOIIskFsXY+mqlQcQgS3onVHCUXxqq1TFGBgj3Nv8A1PWDE5dhgnw89HDGkTWwfVdZgwyIzx+Fqio7W0TT9B7O1tsZCapgZ3H1c5Q4a8ia55n8op3E4qL+9cqlcOw7GPuOVGLx+sM5ftt//D/in36Lc9F8gugTZBVkGV5/OJc6R9y7WOPpg1LziiiJUbSNEYExwyKZBVuMjRKLcFZvSFA0RK/iuIFBfjwP5Q4W5bhEGmSFLmJgq3WuJqWrkOp+tRMwdwjYvjiuhs/wJL8YVOUn3JKoLkSJe5pyLQRFfqGs+aoziKQfpWThcOjWDpFlmCBKsnasemNcR1wN8hHJbcuGJ8XXr1Snb3UV1+q8Lg1anSPyDwFcA5NdwuHAw1k6KmJgmF2zBvmQt17zZOEI8107QE6jZZc4GPKtI4sL9/AEiNc7rh87cXWmQeY36V2JLtxCBvkCsBy6txnicEirY1VtdnH5F+2zhVc6T+J3qn32APT84ckatHyHRQlyEuf9QvI1P/JseDZfbpikGR7PQ3FVVxiXoHldUlVlzXePBDpkaZVZGpdIDnlRi+v21Mf9y+YE+c3HC7zxaIHBdZASGugTZAU8d0IPjG+fLoXfs4kTPJ5v8NRhKSkNBA/d8jH9c3TDKJ6ibHHJX/yPZht4jiXWLoo6iRUN0as4GXuNPsjKk3qGx+KyjWJMxcZQucwUm6VuiYsQ+jnxSqgKEgtgXwxy/nuriXs4yxstD3e+LLJDogMGOkzARGurtKHTiVO7cZybeIRqxXVIYyixfNOBi2OWIJcO5vNlpD9dqmVcNZeR1TlCl7La123ztoGH1BlUmvSYBvl6EuQpj0Ee0v3yGW+xO0xGQ4JlgkNO4+/OhZuxfNVnsePx11PBJZfJpGr7iZBBzj/DFhfAQ0FD2uUqAiGSBldhD8yp0Zl4NOKfPwWDrNOkV42LSRkUqqqEENyc+Fwi7XwZIkkz3BKRVrK4amurec3LGOR7FysAwNOHhm40wxNg8ZhTNalXe585GuLd81Xjy711Sit5zx+bX9r2gT5BVsDHTuiHxj5EHh7kySqXQa5uUos8QR62S5BFZYsHV2vcnvpiBky0GRgy2ycj2jHLk6CcLcKCSZWiSYOsmiBPZAmyQbLBNoMqJDryYpPaR4LM1s6yEpdg4xQxyOfLhrGwJhD5WbMLxugGDodeXZe9ZN3ve9QgJyEtx+eYBg6OMcPGPaDWRTnOF3uUevDiyhnkq4rEYmnTQ8ZozRqCMbexv63mpGmG+SbGsRtTpvQaEmTbIpgEFW3piLL8T7uVfbjjRLSKo6GHi4p+f+fCzaoP1Uu0ZNKmLnzHgu9YtWdYuJ+IEtHFY2B0s1UsRUPasr63HQxcWE3TMEWJ++LxTiVHFScjjyvxO1+EsIhiM3Qh/aieiXqk0a2pz21IY1/Tl1jIzmqxBhmon4MM9y7WmPiOeXP26AaVNYXz3a+vL+h7War2Pns0wDvnYnIRAN46XWIaONe37yqiT5AV8PThALZF8FYDg3zvkh68Owyy6PbXkkFmD9mDmShB3jTfVEUNCYqG6FWcjH1s4hTLir51HSWYb+IiUZRicEwfuLhy6zVJkCulpVYJ2PCknogqNAaxQ6Q6FnyrGWyxGbgB9aJcVA5llshXDkAR+3Su6hOqCpa4Vy8Ui0d5XDdwlI9kLScc2+aePWqQgZ3EfRK4OCZXWDq7usfzpUEzjSnyJOZo6BZd9zTOc8ysCQCDqkcLsOcj9LZlcNrcCdxyV9uYrwE12UmePN12qglyO8maDIdDqt8vN5buXLhZ9aGaIC8eUXmWP+kkDtYQzatIWQQYeRXWdnSTvjfVBi/DRLSMw2IoRv2iK71w8xL3NDVmkI9HPtZRilXl/DnLXYuURtdbFr83R1N2eHvCt2DdDhHTlVgICAdJgnxr4sMi1DiAh3sXq91cRReifX51Dgx299Nnj4e4WEbC0eQA8NbZEs+fjK5H1qaBPkFWgGtbeOZwgLfOxAkyW4hPlRnk4JB6UbLkgIElzIYM8sh3MPEdoXXKw9l6O6yEh6aHzlADBtSHhbCN/EQ1ARMm7uoJMkvGO5NYAHTT5m0EWdLIxHiOhUngFMNSGC5X1D9VaeOWxlVZW6VEtAwRg6zVRKkUU/5+1BLkx1T3GBziaOghTrOdJtO9M8icuDzHwk1rhrl9uPOt5ybd5qbIk4Xjobe9SGUZsDrDJSYgZI/vCQcs8Vk7B8X+wBL32+5yG/M1xbKzXr0xQri4ac92v5GtecP9VAZew+DOemXJZnXfYkxth4c+T05wuaINlDXWdiSoMi0edccgL3b3k4tVJL/kDjn71vqC7qcGnyGzcauyyNT3XmesM6cHRlN2eGvqF03yZbCv6UssJBpkQVOjY1u4Mw3w3oUgQb5cmcsrgNLaqlwK5w9ra+vZI1qBb5JZvHW6wHMnHyx5BdAnyMp4/mTYKLG4lw8Jebp8K7MsulgWD3e/mR3SLQ6aWw3C94cyBll0+9McM13EIpA1MP2TlgYZ4B80ioyH79g4GLicBJmN+TSRWHA0yPP8M5UcNLT8t3ugPZ63MGgvY3SDf/hx4uLpodM0w/kyUr/AqGB4TAe+8BL34Q2AkC37VDpc965BHt/axlHCDWuOC0x3vnZuYgdoitENIAlxOwhzb9KENnslIc7TEQ4HbvuLlAZYcrOwtpMHi4sup6FxnzgYVJo5CcEFOcBNS5Agt0z6RDjkyAmUJBaLh8C425iOOfuJsM+juBRWCZrHxtVLhq18bHeffTzbyIdCjW8B80e7+tWSBEsX7IJfTda1bdWGnP2UnUVDtXPx9jTA5SqquSgZ26qJBmgtHtHkuaHa+/ThoNAaV/H+xXqXzNNFU6VwdGvnS3eP6O95R0AwRkmK985XhZT1g4Q+QVYETZDFDPKbjxe4PfUxrJa5xjfpZlDG8jFNRO3K92rg7tGQq+tZhjFmm7i5lMOShfmDelwGh9+dA77XIds8pRsmA/vd5Q09WlMfyPFt5XhuTvwam32a/92IjRudUOlHVPrvY5ee8S3+z+Q45jA+NEHuICkd3axLLASJ+8h3MHBtPC5dHK7W1KZJ2/quCZada7ara35bPuXpF890PEtNwN6P+e5l9RhXeJxtE+R1lGAVJd2+J03I1/XTDk36zpdh8d49TMfXF0eOwmvXPijiKD6bLE8WJneuJZbDQX0YxWk22TZWMswf0mqds5/3iiWf5cR058I9OARA+ElMx0k7lVjs7m2PRBduXoIch7TxrGVcY9+B71h4PDfY28a3gHi1q19lCbKJBplVDee758/ZQtPWc3yrtj9sqxNqcbEEuFrdfXi1xjRwELiaLg2WlftsVxLR+UPpmUgT5DqJto4SnC5CPNNGYjFil0JeXBUGOW+8e0fAIN+7WCFOMzx/PDKPZ0/oE2RFfOxkhMtVJPQ4fPPxAi/c4HzA49scBrn9xvn8yRBvny5rjXHbZoCGxe8OqJC+uhnMHgAT9USU4U7hqrH7MLJYlOe9j/ODt5y4F4moRoI8rncSP5xtcDLy4DkGS744aErvV5GIyhJkn5Mgh90wyLxEdPGYapPdOjtwUhk/eqorgVHF6CY/LpYgc9jsx/MNDgau2eejAt6lME0wza7wIN1qRFtJcVrEdYvQbvnTeVisrffiA7UO/A4RuDYGro1T5DrReFN8TtP4bCfmfaPqlx0nKR6kUxymlQrT/IHW/qALtn+VL5dMDnM49OilcHDIYZDbN8NVcTzya0ypMClle1OZ5WuRiJZBCMGNsb/znqRphtNFKGdJWVxz3n6q/37dEiSlj+YbPcZ2fLtOGs0fAM6AMrkKKCbHVfqDHs42uCWaSyDD5A49m3fieih9Dp8+HOD9yxXSilf1+5fr4t+NwSMc0oQmzJVn8WjoYuTZQgaZEY/P9wzyhxfP51Zvbz7myyxogjyu/8PoVp1Bnt1vzcI8dzzEbBPv2iCh1Cx4IHkYx7dqyQItCerHdTBwEbhWLUFmD+LtA8VNiiXns/vbr80NEuSJX2vSe3i1Np8aNHkqj6ucuOefqWST4jXVPJp1JLEY36IbUpruxiUo694Y+7ssmI6Rvg642uitNo0nyemMVRfBGwHuaDeuxWPYSPFOtD38trKga5JY5Ov6BDTpO1+Gxfp/azO5dgYZoDKXh8hLyvOHxfodRad0FLBistAWxyMX58uoOODPlxEepoeYRJxmuD0m7TcmrMdi++w8mq9xNCxd6Kq62izLiZBuddEnYw/zTYxNvC3hn4ou3Ox3l5OYhXkiWsWNyj57kQ8Oke5tYw6zzfZ8ttdqoGBtS/vJJk5wtggL8kYJ49v0AlGeDzC7T88lRR150UBfZZBnG30Hi3Jc8/u7X1O4FD5zGCBKslo1lckuWkksvBHdB8o5xPKMWoxWSCNCCJ49HuJdgZPFt5nF20nPIH9o8cptmvx+48Gs9m8XyxBnixAvchnkXINcZnpn7xttBGU8l5ct3q7cyt49o4ufCeOFGN+ubJyP6eI2SNwJIbgzDWoSi/cvV7gx9uE7imWl4JB2fZc3A/YAahyAPC/Kh7ONeLKgDOw9qcaVN5014XhMp3Axpj+MU1yuom4S5MlTdGpd+aCZPxAefjcqzPpjXY24KkaVy1eWAVfbNc9zGnk864hVb0K1hDp7HwDw5npafD5brWCL8qNWTPSQO0xKet/8vfvWenztDDJAWdH34zwJnj/A2SKk0xaXeSJ6TZ3mN8c+kjQrmgRPFxs8wBEG4Sm90DNwGoO6xNBzMPTsnUTj0azCTk7u7F7sV+fUVlBSYdLFtiGavieN+0lwANje7rN4Rdc8pk+3juXm2Nu9NMwUp7MVDHIprvl9up8aMNu+Y+No6O64RzA2ubFZvQpen8L8gRZpJGaQDaboMVQZ5CxTZpAB1Br1WIL8TBsGuYjr/e3fi2pv/Vm8ezTAO2d8icXX788wDRy9z+qa0CfIinj2aIihZ+O1+/UE+Y2cVRZKLJJwK/bPsk4YZHbbqjprvHO+hEUgt3CpMsgs+TMsVd45CLgMspTJLoOQeuJeJMh6DPIyTLAouSQ8uGqzQTEGucJsj25RjVgDTkYeoiTDVT79iumyGSvVCkVc97Zfu7onPPxujHcbfIqJi6YXBxGmT9ODmF0Kl2fUMzOPK3BtTAKHwyDvO0GulFDzzf295KCw8CrsmEzXii6CQ8ByMc5Z0UezDTC7j4zYeH3h47bO89MRbk99vLnJZSez+3g8zxuv9ixlqIKVpFmyczYP8SA7gpUlW9lAluVx7Vf2UZUn1RLk6dP02WNg/7+DRLQMlkSwZ7dooORVXwihv7+cxMy6i+vGeLfXQ3l8MVtDO5fV+zQRleynItyeBjsMstHeVsRVPhf1ZIdHQxeuTXYY5CzLaOO86T7LZJqsUriZUQ23ggYZQE2H/N7FCoRoVHZFqF4KZ+Ic4sWbY7z5eIE4SWv/9vX7M7x6Z/qBs3gD+gRZGZZF8MrtCV57v54gv/koT5BvchLk6TP0z6v36J+MWWjJID97TBf/2xVnjXfOlnjqYADXlny0bHGzJIbdUA3j4jUN3tdNkAG6GdUeOqJVqqyapLMxn8aJ4PAGtesrHzSX7wIHd6U/uh1cQjcpbV12E6b5Z8VYoSyj64ytOU4sp/MNkrxkff9qDdcm3WuQD+7ShJjpHdmhXFpbVZb/0b4lFgBw8Az93Bjyz/NBdlTEUnw+15UgWxYwvg1//QCBa9GDfX4f6fAmksx6IqzK7UmAry/yvWx+H/cv17RUPbt/vQlyUTqnz86j+QYPs0P6j+xZXF/SZi+FZ7ENqsngo/lm9xmePEVjYkkMS5A7jqsYEpWTEVLWdvoMcPne9u9X96grQgfM9q18P2FJj/L44tFNwHLrz2IL0ujmxMfDEoPMEtQ7OucPW9tX5QuFHoNMCMGtSbATy6P5Bps4LdwctMEqhcV+qkZmbRPkXeb2248XePpgoF7ZbYqrfCayHIez5l+9M0GYpDWJapZlNEF+qhuv8K7RJ8gaePXOBK/dv6o1xr35mI4+5coaDp6lf7LNgG2cLRnkoefg5sSvSSzeOV8VyXMjDp4FosWW2Z61i+u54yEeXG0Ke5ssy6gZuXaC/NQuE3PxDmU7bHVNaFWT9mhGk0JjNs6y6rdlxQR5W+aiG2ZR3jLdLMuY5CwQ++xW53TSmSBBvnMQIM22CQdl1YPmqVcmYOxUseZZWXcbV7mRch0lmK3j/TPI02foJs6SmNl9ZCB4jIOi+vFwtsk19S0PDx0c3AW5eBd3pgHV7V+9j82AJjC3r0vqUcLtqY9vLgJkxAau7uF+PpkTF+9s97NrAGs0Zs/x+5drPMhybTR7Ftka23OCXF6vWZbhUbXpavo0kEbbJIYlCx0zyHcqU1RZz4mwXD59BrgqJaJX79PEqoWDEsPThwOkGfAgf1+US/eWxbmstquqPnUQ4F6pgsnmEmg9P4eVs3ozpw5KmnHdnvpF/w2wtTd71nSMMvv9bJ+/fDuP97nGH5sGDsa+U5NYvPl4gRd5ZJ5JXGWS7fJdAIRLsn3iDk2AqxX49y5WmG3i4t8/aOgTZA184s4E58uopm/91qM5nj0a8DvwD/KkoEgW8o1z0n7jfP5413ouyzJ869Gc3yxYBdsMLt6if56/RTVghhs600QzM/DTRYjZJtYX3h89D1y8vU1iLt7WPpSfrfguMmb7uTZz3qfP0FgAuiFcvrv9bBtQvcW/15X+C8j1oPY2AS1u8Py4qrE8uFrrT3ZSAVtDLJ4iWdhlkNkkyE4vDU04eJZWb5g10eW7SIa3EGN7iLTSCpri8Dng8m3cnuZTuC7ewlVA38PO5S8KuH0QIM4sJJNnkF28jfuXa7w4CumFWnIodwm2Nh+VErCZnzOfl+/QP4s1v9/EnVlmZRmVS62jtM4gl+O5eo8ytQZNz004GnpwbYL7V7tJqdCRgMmdikvhvdbVS4bi8n/O9rY1Tkae2uXy4Nntmcj20xaXiWePhng02xTT9N45W2Lsa44uHt2kTajsTGR/Hj2vFcvzJ6OdmQmMxDI+f9jvP2dxsQS5ec0TQvCxG0N869HWTi/LMrzxeMHvl9LF9Bm6nzLN9uW7dG1xyKyXbo1hWwSv3b/a+TqryL/aJ8gffrx6hzauVG9BX7l3hU8+JejsHt3aLSedvUn/PH6xdTzPnQyLDlCAJqUXywgv31JIkNmBcpEfNBdv0a9pjplmKLwO882AbRBcXXYTDp+n5XmmA7t8W/tQvns0hEW2+uy380vEs20SsKOPAeffpv9/8ZjGqHAo3574sC1SOkRWGHm2fByrCiybJsNsI79svnw9U2Gzi9J515je3Y3nIr98lZKFu0dD3LtYIUmz4lLVyaWhCYxlZMnV2ZuwTl4AsHVcuX/VopnTFIfPApfv4empgweXS+DibTx2aRLzpCQWALAa3UVy+iY2cYoX3NNtrNeEwKXPCWMD712s4R08TW232LPIPss9M8h3jwaYb2JcrqKiG3+nZF4lHC7fo+u9A6a2DMuiJfyCQb5YIXAt8WCbg7uU2WYNVOdvdfYZ8i7/ypfcg7vbM3F5CmyugKMXjGN5tiBo8vPnbInnjod6ulZC8sQ9X1MsIT38mFYsz58Mce9yXVRT3z6lml/j/e0wT5CLxP0dup8qXHReujnGtx5uE+RH8w1m61j/XObh6GP0T5bTNFRVfcfGx2+OahLVr+emB6/c7hPkDz0+metkfvO9y+Jrl8sIb58t8Zln+CMfi3ISW9xnbwDeuBP7n1fvTPDgautT+nr+ILykkiCzpLPYDL6tfVMugz1w7Lb65mNDb0P20F28BSQxPWg0N3TPsfDUwaDQZ79zvqQbVJsE+fgFugHEm+0NXuFQZiM/2SFy74KO+OysIeH448Dp6/T/n30r/xr/8sXkLvcuqDfmexctx42KML5FLdXO3qB/P/0W/VxLycJzx0NESYb7V+stq753Bjn/vNjBd/4mrOMXcWPsFUnY209i5OnBs0CW4KVgjuzqPpCEeDe7RfXh+5adcMB0mxf+08V79Sx5vI31GvHc8RBv593v71+u8NThgK4ldihfvE0JiI7dIqpgyc275yt+yfz44/TP0/wZPHuD7hn7iOVoUCSC9y7WzfsJSzrP3qD2ZRdvbWNtG0fFJeHexQpPq1qHHdylbHYclkij9gkyqxa+fbo089U9fHa7vxsyyOwsZMzxG4/nePpgYC7bGhxSR5LypXD6tBKZ9fLtCe5drosm5K/eowzuqyJCTwdsbZ2XnsWGM/ETd6Y1cvE3373Ec8dDTIJrstXURJ8ga+Bw6OGlW2N8+dvbiUksWRYmyABw4xXg0Tfo/z9/ky6sDhKkTz1Ffydb9F/PF9/LtxUS5MERHRbCkqvzt7Y3VQMcjzzcnPjFA/Dm4zlsi+CuzG6uChbD+bcpe5wlRnE9fzLcYZDvTIN2TQlHLwDI6Cbw+Ov0azdeUfrRZ48HeDNP1t86XZo3a/Bw8nHg9A1apnz8DTp1iU05qmASuJgGDt49X+L9qzXWUdqNFq0KQoAbL9F4gDxZ2D2UnytVHN49X8K2yH7Y7DJOXgJAgMffBKIVbTA5fhFPHw7w7vkKl8sI58vo+kee5onBJ7yHuJPSysnXN0d47nh4rWOmGdgB/x5uwVk9wgBrPJPlMh52gb0m0Amm9Nm5d5EnyMcvbC9fj74B3HjZ2P1AFWwfe/d8VSQ+OwlyMKVJOrukPs7j2gNevDHCG3lj+Lvny2ZmksXw+Bu5dC2me0YHGHg2bow9vH26RJJmeOdsqdb/AgAnL1Nb0bNvbROsFgwy20/eymN593xldtE9+hhdW1lGz0R3pG0997FcVvhGTha99v6svYTg8PltgswIBwWwajKzp/3q+zRXEFa8dXD0PABCLzjRisbXcCa+emeC9y5WxbC1LMvwy98+w+efVxvj/STQJ8ia+P6PHePLb50XnbtfeuMUtkXwuecOxT9081Xg9JuUET39VmfMwqefpoucJem/+vY5bk18tUSDEOD2p4AHX6V2O8vHygmfCKyJEQB+670rvHxrrD8Z7ehj1Lvz4VeBB1+hX7v9Ge1YXro1xjcfzJGmGb76/lX7Eg5jZU9fBx5+jcaouKF/4vYE33wwRxin+NajOV7pUm91/HHaSLJ4TBM/yWf48u0JvvFgXpTdXlTRq5vg5GUaT5rSA+eEnyC/fbbEW6dLPHUQwJE5r7SFN6Sb+qOvbZm+4xfw4o0RXn84x1tnizy2azasv/VpAMDL2dv4hEUrOr80u4EXb+7ps5Fg5Du4Mw3wWkxLuC+T93Bj8U0qnRkcXmssz58M8e75Cvcv1zhfRvj4zTF9Fs/fpPvpo68BNz+x9zhY4vfW6QJvny1xMHDrMqmTj9N1tTgFVmet91MRXrw5wumCeu9/8+G8uWJ48CzV1T7+5nbNn7zUWSwv35rgtQczfPt0gU2c4hN3FBOvW6/SPx9+LSdpSKsK5o2xh6Ohi9fen+HNxwuESUrXii5ufYo6o1y9Bzz8CnDzFW0y65XbE9gWwVfuXRV7fmuXhpufAB6+Rv2/H72mfCZ+97OHAIBfffsCAPCV967w7PGgG4mf49P1dfpNur6QbT9XDlgi/EtvUoLxW48WOF2E+P4XjtvHsif0CbIm/sWXb2C2jvHlt6j7wz/+1mN89u5Bc4ng1iepmP39X6M35qe+u5NYjkYePn5zhC+9QfWB//ztC3zuuSP18v3tT9NE9P1fp39/+ntaxfPqHZp8raMEv/neJb777qH+izgefb/e//U8QSaND50I3/UM9bZ97f4Mrz+c4zPPtLwx3/40bbp575/TDerkZWV94SfuTDHfxPhHrz9ClGTdNiTc+iT98/6v07gkrNWrdyZ47f2rgt34+D4YZIAmB5fv0LiiJb0klvD0YYDAtfDa+zN85d4VPtUFo6GCm6/Sg+ber9K/P/U9ePWpKd6/XOPX37kAAHzsxjUzyOObwOgWbq+/hU+Tb2PtHuKXz0f7YfcV8eLNEf7JipZLf3j0HpxHX6PPwDXj+ZMRkjTD3/0qda345J0J3T/jNf0Mz98Cbn5y73EcDj08dRDgK/eu8PX7M/5nc/NVumc9+C36930lyPml9h984yGWYYJPNiWllkX3qodfo89ix3G9+tQE37g/w9dyZlJ5b7vxCt1PH71G99SbrwKueWWNEILPPHOA37p3id987wIAzM4flnje/y16Bhmc1QPPxiu3J/iNdy/x9fszxGlW9C8Z46nvpm4k736Z7qeKz+LtaYBnDgf41bfPkaYZvvTGKb7/+Q4T0qc+S5/DR6/Rv98Un9Xf+9wRAtfCP36dyrX+/mtUF//DL3U7bbJL7DVBJoT8GCHk64SQ1wkhf4bz74QQ8n/P//03CCGf22c8XeBHX7kJz7Hwi7/5Pt45W+JX377Ab39Von9jD9k//c/pn3c/31k8P/zSDfyzN0/xtfev8PbZUu82dvsztDnit/4K/fud72oVyw9+/ARhnOL/88vv4GwR4rvuNshOmvDUd9PN6b1foayMp58ofDbfHH/ul99GnGb49NOGsTD4Y8ouvPPPgHd/WWvjZBY2P/dLlB38xO0Ok8G7n6dOFr/yX9Fml2e/0Pjtrz41xdU6xl//jfdxY+ztz+/3uS8AyIB/+B/nf//BnX92bAuffeYQ/9M3H+HNxwt8V5NEqUs89T1UIvPNv0N1fccvFp/Pf/2ltzDybLz0JJjbO59B8PDX8T3Ot/GV7GMIkwyv3HpyjSuv3J7gHz4c4Apj/Ij3Gn3PnkCC/L05A/bffInqQj9xZwI88330H7/05wBknREOMnzmmQP86jvn+I13L/G55zhl4ed+kO6nv/QXAJBtnB3jU3nl8C/l74mUnXz2B+i+9eY/pJeJYXcJ0ifvTLGKEvzCr92DRRT7XwCaDN/4BPD2P6X7/N3279Wnnz7ANx7M8EtvnmHg2maXf7bGv/rXKJNsuLa+++4BfvXtc/z/8iTwCy+2fM9ZHF/+L3fjVMAPvHCMf/T6Y/zGe5c4XYT4oS4T0rufpxXC1/4mlaM06Ns9x8K/+PJN/OJv3UecpPibv/k+PvnU1Nz+7hqwtwSZEGID+LMAfhzApwD8DCHkU5Vv+3EAL+f/+xMA/p/7iqcrjHwHP/HZp/DzX34H//5/9+sgBPh9n5M0a936FLVE+cp/T5OZp7u7B/zuz9zBOkrx4/+3fwhCgH/5uzQsfF7+nfTPX//LNHEI2iUpX3zxBJ5t4X//C18BIcDv+KThUIEXfpR6+n7z7wAv/26jl3jp1hi3Jj7+4j99C65N8MUX9UeY1vDcF4E3/wGN7ZXfpfxjn717gKOhi7/z1Qe4PfW79Xz0J/Ri87W/Tv/+4o82fvsX8wvUr7x1jh955eb+phc9+wU6Nvxrf51q+DjM9ueePyoaS1kpcO94+XdR7ePXfgF49ouAZRVM0zcezPH9LxzvX+ohiuvhV/FJvIn/YUUlA//iK0+OWfnRV25iFaX4x8kn8cXl/0i1q6+YPYtt8NKtMU5GHr7+YIaPnQxp0+Lxi9TL9yt/lcoHXviRa4nle549xDtnK2ziFN/H000+n18CX/sbtBrXYSJaxtOHA7x8a4wvv3WOSeDI5WMv/igdpvLmP6B7WIf44ZfpGv07X32AL754oteI9srvAt78n6gcpXKBNsGPvHIDUZLhL//SO/jCi4bPcTClsfz6X6Z//5jZ2vqdn7qNq3WM//TvfQOffGpaeHob4+nP0QT0N36OuqPc+azyj/7EZ5/CxTLC7/2z/xieY+FHP9HhWHb2uX31rwEf/5doBbgBP/V9d/FotsH/8i9+Gb/2zgX+4Of36z7TFvs8CX4AwOtZlr2RZVkI4OcA/GTle34SwF/MKL4E4JAQ0o1J4x7xv/ptL8OzLXzpjTP8sR96QW7fQgjwuT9C///3/VH6EHaEH3zxBN//MbpZ/9Tn7upNDjq4C3z8t9P///1/vHUsQ8/BH/0XqI7sxz59Ry+WMl79iW1jxPf8jNFL2BbBH/pCHstnnsJxF9PivvCz9E93uH3fFODaFn7ye6g38e//3N3uG69+8E/SP5//Yakl3su3J8Xh/nu/R+7jbAx3sP3svvBvcnV8P/V99PefjLxuWY0mPP29W+34D/5bAGiD6U98lm47f0B22d0XPv37ANtDarn4b5Mfxfc+d9j+UG2BL754gqFn4/+d5pfo448Dd3/g2uMghOAPfB/9TNjzDEKAL/6b9P9/+vdTbfk14A9+njp42BbBj7zCSTIOnwNe+h30/3/+39hrLOw9+anvuytPSj/+2wEvT6J/4E90GsfThwP8Cx+ne/Xv1312vusP0j+HJ8Bn/kDrWL74wknRAP1HftBcz4zv+9fpny/8CG02NsCPvHITT+fn38/+aHtLV/hj4Lt/mv7/z/0RLTvWH3nlZiEx/ENfeK7bgUzPfoGSawDwvf+a9Nt/5ydv44svHuPvf/0RXro1xk9///X5qpuAVKfCdfbChPwUgB/LsuyP53//wwC+kGXZnyp9z98A8H/Jsuwf5X//HwD86SzLvlx5rT8ByjDjueee+7633nprLzHr4P3LFd58tMAXXzxRm0SWZbTM9dR3t9Ja8bCOEvyTbz3GD790U78pLt5Q/dCdz3birBElKb70xil+8MWTdkzc5XsAslb+plGS4uv3Z3jp1ri7yWjv/waNSZMdivIxmy/cGMnHgOsiy4Bv/yNa0lVIFk7nGyzDZP+lrSSicb3wI8IN/RsPZpgGrvllygThgmoyS1Kn2TrCvYv1k53oNH8EbK7w7ewOnj4UDB66znA2Ma5WEZ7evEG76P0n0zSYZRl+7Z0LfPbu4fZymSZ0P82rANeF1+5f4Xjo7U7RK2Mzo3vEx35o77F8/f4Mz58M1fa2+UNqU/lM9yrG+SbGg6s1Xrwx0q9IMWeNDuYCAMDFMsSDq0375/jRN2hvwMDcYeFqHeEr713hiy8ed1OpC5e0h+nWp7XX/PkixG/du8QPffxG95NTZw+ovO92VSDAxypM8EvfPsP3PneI6QfE3o0Q8itZltW0r/tMkP/nAH53JUH+gSzL/u3S9/xNAP/nSoL8H2RZ9iui1/385z+fffnLXxb9c48ePXr06NGjR48eShAlyPu8er8LoOwqfxfAPYPv6dGjR48ePXr06NHj2rDPBPmXAbxMCHmBEOIB+GkAv1D5nl8A8EdyN4svArjMMuZI36NHjx49evTo0aPH9aPbQfElZFkWE0L+FIC/DcAG8F9mWfYVQsjP5v/+5wH8IoDfA+B1AEsA//q+4unRo0ePHj169OjRQwV7S5ABIMuyXwRNgstf+/Ol/58B+JP7jKFHjx49evTo0aNHDx30k/R69OjRo0ePHj169CihT5B79OjRo0ePHj169CihT5B79OjRo0ePHj169CihT5B79OjRo0ePHj169CihT5B79OjRo0ePHj169CihT5B79OjRo0ePHj169CihT5B79OjRo0ePHj169CihT5B79OjRo0ePHj169CihT5B79OjRo0ePHj169CihT5B79OjRo0ePHj169CiB0GnPHx4QQh4BeOtJx/EdgBsAHj/pIHrsFf1n/NFG//l+tNF/vh9t9J/v9eH5LMtuVr/4oUuQe1wPCCFfzrLs8086jh77Q/8Zf7TRf74fbfSf70cb/ef75NFLLHr06NGjR48ePXr0KKFPkHv06NGjR48ePXr0KKFPkHuI8BeedAA99o7+M/5oo/98P9roP9+PNvrP9wmj1yD36NGjR48ePXr06FFCzyD36NGjR48ePXr06FFCnyD36NGjR48ePXr06FFCnyD3kIIQ8u8RQjJCyI0nHUuP7kAI+b8SQl4jhPwGIeS/J4QcPumYerQHIeTHCCFfJ4S8Tgj5M086nh7dghDyLCHk7xNCvkYI+Qoh5N950jH16B6EEJsQ8quEkL/xpGP5TkWfIPdoBCHkWQC/E8DbTzqWHp3j7wL4TJZlnwXwDQD/myccT4+WIITYAP4sgB8H8CkAP0MI+dSTjapHx4gB/K+zLPskgC8C+JP9Z/yRxL8D4GtPOojvZPQJcg8Z/lMA/wGAvpvzI4Ysy/5OlmVx/tcvAbj7JOPp0Ql+AMDrWZa9kWVZCODnAPzkE46pR4fIsuz9LMv+ef7/Z6BJ1DNPNqoeXYIQchfAvwzgv3jSsXwno0+QewhBCPlXALyXZdmvP+lYeuwdfwzA33rSQfRojWcAvFP6+7vok6ePLAghHwPwvQD+2RMOpUe3+M9Aian0CcfxHQ3nSQfQ48mCEPL3ANzh/NN/COB/C+B3XW9EPbpE0+ebZdn/N/+e/xC0bPuXrjO2HnsB4Xytr/58BEEIGQP4KwD+3SzLrp50PD26ASHkJwA8zLLsVwgh/7MnHM53NPoE+TscWZb9Dt7XCSHfBeAFAL9OCAFo+f2fE0J+IMuy+9cYYo8WEH2+DISQPwrgJwD89qw3Rf8o4F0Az5b+fhfAvScUS489gRDigibHfynLsr/6pOPp0Sl+CMC/Qgj5PQACAFNCyH+TZdm/9oTj+o5DPyikhxIIId8G8Pksyx4/6Vh6dANCyI8B+E8A/GiWZY+edDw92oMQ4oA2XP52AO8B+GUA/2qWZV95ooH16AyEMhb/LwBnWZb9u084nB57RM4g/3tZlv3EEw7lOxK9BrlHj+9c/OcAJgD+LiHk1wghf/5JB9SjHfKmyz8F4G+DNm/9fJ8cf+TwQwD+MIDflj+3v5azjT169OgQPYPco0ePHj169OjRo0cJPYPco0ePHj169OjRo0cJfYLco0ePHj169OjRo0cJfYLco0ePHj169OjRo0cJfYLco0ePHj169OjRo0cJfYLco0ePHj169OjRo0cJfYLco0ePHh8xEEJ+HyEkI4S8+qRj6dGjR48PI/oEuUePHj0+evgZAF8G8NNPOpAePXr0+DCi90Hu0aNHj48QCCFjAN8C8DsB/LdZln3iCYfUo0ePHh869Axyjx49eny08HsB/L0sy34DwIIQ8rknHE+PHj16fOjQJ8g9evTo8dHCzwD4+fz//3z+9x49evTooYFeYtGjR48eHxEQQk4AvAbgbpZlG0LICwD+AYDns36z79GjRw9l9Axyjx49enx08FMAfjHLsg0AZFn2JoD7AH74iUbVo0ePHh8yOE86gB49evTo0Rl+BsBnCSHfLn3tBMC/CuAfPpGIevTo0eNDiF5i0aNHjx49evTo0aNHCb3EokePHj169OjRo0ePEvoEuUePHj169OjRo0ePEvoEuUePHj169OjRo0ePEvoEuUePHj169OjRo0ePEvoEuUePHj169OjRo0ePEvoEuUePHj169OjRo0ePEvoEuUePHj169OjRo0ePEv7/jimpYfVdqoAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ax = plot_ramsey_fringes(Δ_min=-5, Δ_max=5, N=1001, η=1, label=\"Ramsey\");\n",
"ax = plot_ramsey_fringes(Δ_min=-5, Δ_max=5, N=1001, η=1, label=\"ideal\", ax=ax, func=pop_e_ideal_func);\n",
"ax.figure.suptitle(\"Actual vs ideal fringes for small η\");\n",
"ax.figure.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "cb4e65c5",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:42.102610Z",
"start_time": "2021-12-15T20:18:41.996916Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGqCAYAAAAWf7K6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9edws2X3WCX5PbJmRme9y19ollSzJliwLCYzxgnuMEYjFsmk+A9jQDW5w03Q3w9jTPXQPM9M99AyM2WzD2I3bBqM2bmzcDY3BGEzjtQ1eJGHJ2qWSqlR1q+rWXd8lM2OPM3+ccyIj3/sumZFxIq+q4vl89FHdd/29kZEnnvOc5/f8hJSSHj169OjRo0ePHj16KDjbLqBHjx49evTo0aNHj4cJPUHu0aNHjx49evTo0aOGniD36NGjR48ePXr06FFDT5B79OjRo0ePHj169KihJ8g9evTo0aNHjx49etTQE+QePXr06NGjR48ePWroCXKPHj0eCggh/l9CiB+x/Ds+JoT4ujM+93VCiBst/R4phHjTGZ97RAjxi0KIYyHE3zjja/6CEOLvtFFLWxBC/KdCiFeEEFMhxJUWft5zQoh3t1Fbjx49erQNb9sF9OjR4+GAEOLngd8EPCqlTFb4+m8Fvk1K+dstl9YapJRfuu0agD8N3AF25RlB9FLKv9xtSedDCOED3wV8pZTyw9uup0ePHj1so1eQe/TogRDiDcDXAhL4xu1W86rH64GPn0WOhRAPo3DxCDAEPrbuNwqF1p41D+n16dGjx6sMPUHu0aMHwB8HfgV4H/An6p8QQjwlhPjHQojbQoi7QojvFUK8Ffh+4Kv0kfuB/tqfF0J8W+17v1UI8Uu1f/9NIcQLQogjIcQHhRBfu0pxQohPCCG+ofZvTwhxRwjxm4UQQyHEj+jaDoQQ7xdCPHLGz6mO9YUQoRDifUKI+0KIjwO/9cTXPi6E+Ef6735WCPHnap/7CiHEL+vf97K+JsEKf8f7UNf3z+vr9m5tLflf9N9wBHxr3W4ihHiDtmz8CSHE8/rv/r/XfmYohPgf9d/xCSHEn69bRVb4Oz6gX49XhBDfdUrNbwE+pf95IIT4Wf3xr9bX+lD//1fXvufnhRB/SQjxb4A58MYLrsu511P//f+5EOIzwGf0x/68/tqXhBDfVre1CCEGQoi/rq/XK0KI7xdChGf87m8VQvyS/vr7+hq957x6e/To8epHT5B79OgBiiD/T/p/7zEEUwjhAj8JfB54A/AE8GNSyk8Afwb4ZSnlREq5v+LveT/wTuAy8A+A/1kIMVzh+34U+Jbav98D3JFS/jsU4dwDngKu6LqiFX7mfwt8kf7fe6htDLTi+c+AD6P+5t8JfHuNOBXAdwBXga/Sn//PLvqFUspvRV3jv6qv27/Wn/om4H8B9vXnT8NvB75Y/67/Rm9SzN/xBhQJ/V3Af7DG3/E3gb8ppdzV1+HHT6n504CxpuxLKb9eCHEZ+OfA30Jd8+8C/rlY9ib/hyg7yQ7q/jkPq1zPPwD8NuBtQojfA/xfgHcDbwL+Dye+9q8Ab0Hda2/Sf/t/c87v/22oTcA14LuBH7yg3h49erzK0RPkHj1e4xBC/HbUsf+PSyk/CHwW+KP6018BPA78X6WUMyllLKX8pTN+1IWQUv6IlPKulDKXUv4NYIAifRfhHwDfKIQY6X//Uf0xgAxF0t4kpSyklB+UUh6t8DP/MPCXpJT3pJQvoMiewW8Frkkp/zspZSql/ByKNH2z/js+KKX8Ff13PAf8DzxI0tbBL0sp/4mUspRSnkXu/6KUMtIe4A+j/OLm7/jLUsr7Usob6/wdqGv3JiHEVSnlVEr5KyvW+/uBz0gp/76+Bj8KfBJ4b+1r3iel/Jj+fHbeD1vxev5/9WsV6b/57+mfPwf+ovkiIYQA/mPgO/TXHwN/ufY3n4bPSyl/UEqZA38PeEoIcW2VC9GjR49XJ3qC3KNHjz8B/Csp5R3973/AQk19CkUe8jZ+kRDiv9A2gEOhbBl7KNXwXEgpnwE+AbxXk+RvZEGQ/z7w08CP6eP2vypUU9lFeBx4ofbvusr5euBxfeR/oGv9CygvLkKItwghflIIcVPbIv7yKn/HOXjh4i/hZu2/58BE//fJv6P+3+f+HcCfQimtn9Q2iW9gNTzOg6rw51FK7Wl1nIsVr2f95533N18DRsAHa3/zv9QfPwvVtdWEGtS92aNHj9co+maHHj1ew9C+zD8MuEIIQxIGwL4Q4jehiMfrhBDeKST5tCazGYqcGDxa+11fC/xXqOPzj0kpSyHEfUCsWK6xWTioJrdnALQ6+ReBvyhUs+FPoY7L/+4FP+9l1AbANJ69rva5F4BnpZRvPuN7/zbw68C3SCmPhRDfDvwfV/w7TsOpDXsr4mXgSeDj+t9P1T537t8hpfwM8C3aivEHgf9FCHFFSjm74He+hCLfdbwORUSrH79i/bDa9az/PPM3G9T/5jsoi82XSilfXKOGHj169KjQK8g9ery28QdQ/s+3ofya7wTeCvzvKF/yr6HIyHcKIcZCNcR9jf7eV4AnxXJz2oeAPyiEGOmGqT9V+9wOkAO3AU8I8d8Au2vU+mPA7wb+UxbqMUKI3yGE+DLtlz5C2QaKFX7ejwP/NyHEJSHEk8D/qfa5XwOOhBD/lW6Cc4UQbxdCmEa+Hf27pkKIL9E1bQv1v+MJ4M/WPnfu3yGE+A+EENeklCVwoL9nlWv3U8BbhBB/VKiGyT+Cuod+suHfsO71/HHgPxJCvFWfKFT+Yv23/CDw3UKI6wBCiCf6xrsePXqsg54g9+jx2safQHk5n5dS3jT/A74X+GModfe9qEan54EbwB/R3/uzKPX1phDC2DO+G0hR5Pl/ZLnh7KeBfwF8GnUcH7PGMbyU8mXgl4GvBv5h7VOPohrcjlA2jF8AVhk48hd1Hc8C/wpl1TC/q0D93e/Un78D/B0Wx+7/JcoHfYwiY/V6usZ/h3pdngX+NepaJLDS3/F7gI8JIaaohr1vllLGF/1CKeVd4BuA/wK4C/x54BtqNp11sdb1lFL+C5TX+ueAZ1D3Bei/G3VS8QzwK9qy8a9Zzeveo0ePHgCIM6I4e/To0aPHFyCEEP8piuhu0jT4BQWd6PFRYNCGX14IIYE3GxtPjx49XnvoFeQePXr0+AKGEOIxIcTXCCEcIcQXo1Td/3XbddmGEOLfF0IEQohLqFi3f9ZWM2mPHj169AS5R48ePb6wEaBi0Y5RtpefAP77rVbUDf4TlJ/9syjf9DZ94D169HiVobdY9OjRo0ePHj169OhRQ68g9+jRo0ePHj169OhRQ0+Qe/To0aNHjx49evSooSfIPXr06NGjR48ePXrU0BPkHj169OjRo0ePHj1q6Alyjx49evTo0aNHjx419AS5R48ePXr06NGjR48aeoLco0ePHj169OjRo0cNPUHu0aNHjx49evTo0aOGniD36NGjR48ePXr06FFDT5B79OjRo0ePHj169KihJ8g9evTo0aNHjx49etTgbbuAdXH16lX5hje8Ydtl9OjRo0ePHj169PgCxwc/+ME7UsprJz/+BUeQ3/CGN/CBD3xg22X06NGjR48ePXr0+AKHEOLzp328t1j06NGjR48ePXr06FFDT5B79OjRo0ePHj169KihJ8g9evTo0aNHjx49etTQE+QePXr06NGjR48ePWroCXKPHj169OjRo0ePHjX0BLlHjx49evTo0aNHjxp6gtyjR48ePXr06NGjRw09Qe7Ro0ePHj169OjRo4aeIPfo0aNHjx49evToUUNPkHv06NGjR48ePXr0qKEnyD169OjRo0ePHj161GCNIAshfkgIcUsI8dEzPi+EEH9LCPGMEOI3hBC/2VYtPXr06NGjR48ePXqsCpsK8vuA33PO538v8Gb9vz8N/G2LtfTo0aNHjx49evTosRKsEWQp5S8C9875km8Cflgq/AqwL4R4zFY9m0JKyTO3jilLue1SIIvh8/8WpORwnnHrKN52RQrze/DC+5FS8uEXDigehmsFcPgi3Pokn7p5zM3Dh+RaAdz9LIe3nucjNw63XckCRY585WN87POvkObltqtZILrP8fMf4dk7s21XsgR5/zl+40MfICseomsFfPYjv8IrNz677TKWcDjP+Oyv/wLED8/9LqXkky8fkHz+/VBk2y6nwlGc8dnnX4A7nwH5cKyjUkp+9XN3SW99Bqa3tl1OhU/dPOaVoxhufOChubeO4oxPv3IMZQmf+3nIk22XBMAL9+ZEaaHqee7fPBT3VpwVfP7uw7WuG2zTg/wE8ELt3zf0xx6AEOJPCyE+IIT4wO3btzsp7iT+6Ydf4t3f9Yv82R/9d1v5/Uv46b8Af+/3kvzsX+Grv/Nn+Orv/Flu3J9vt6Yih7/7u+Dvvpsf/p9+mG/6vn/D3/75Z7ZbE8DhDfjut8F//9v4o9/zz/g9f/MXibNi21XBMz8D/7/fzMEPvJf3fu//zr/86M1tV6Twi38N8be/mo//4LfxJ37o17ZdTYX8H/0n7PzQb+d/+O7/ls/dnm67HIUsJvq+f493/JPfyY/+k5/YdjUVnv/kB/iif/Qedn7wq5genadRdIsf/cG/whf9xDdy64e+ZdulVPjnH3mZD3zfn2Tw994N//vf2HY5AERpwdd+589S/p33wPd+OXz6p7ddEgDf9b99mv/kB/43+P7fDn/9zXDw/LZL4vm7c97zPb/It//Vvw1/53fC3/6ah2Kj81/++If53d/9i3zkf/7/wA9/E/zkd2y7JH7mE6/wtX/15/gjP/DL8KPfAu/7ffCh/2mrNWVFybu/6xf4ur/+83zmleOt1nIatkmQxSkfO3U7I6X8ASnll0spv/zatWuWyzodf/eXngXgX3z0Jvdm6VZqACCZwgffB0Dx/r/HLM3JS8k//ncvbq8mgBvvh7uKED/xmR8B4If+zXPbV9w//k+r//wj7s9xMM/4uU8+BOrHr6tr9Pr8Ob7K+Tg/9v7tP2woy6qub3B/hY987gVePIi2XBRw71m8ZxRJ+MPuz/EP3//CBd/QDYqP/QSjXClW4jf+4UOjIr/8sz8AwEgkfOoXfnzL1Sh85pVjfstdtYm4fuvfKGX0IcCP//Iz/PvuLwFQ/OoPQLn9zfMvfPo2Tyef5M2OXtN//e9vtyCgLCU/+mvP84fcXyAo9Sncx/7JVmsC+FG9bv5x8c/VBw5fUEryFvHCvTn/6uOvAJLHPvXD6oMf/jFItksAf/TX1Lr58o3n4LM/oz74y9+3vYKAX/3cPW7cj5AS3vdvn9tqLadhmwT5BvBU7d9PAi9tqZZzMU1yPvLiIe9+63WkhF/49BYJ1osfBFnAW7+RUXyTr5rc5l2v2+cXP70dZb3Cc+ohc+/Jd/Nb+Djvees17s1SPndny2rfM/8arryZ55ynePfkWYa+w689t2VVrSzhM/8bzz76Hkop+CPXb/Arn7tLkm/54Xzn03B0g39UfC2hSPly51MPx2bi+V8G4F+I385vdp7ho5/53JYLUrj7yV/kWIZ8PPzNfLX8EJ+6+XAoIFfvvp+P+V/GkRxTPvtL2y4HgA8/83neJZ7hg+OvBSD53L/dckWQ5iXuC/+GsUj4J8VX40Z31Xtgy/i5T97i3YOPUiL4Gf/r4LM/u3Xi/ombR9yZpvz+vWd5pnyc+eW3PRTK9vufvcc7n9zjK9xP89GdrwHhqjV/mzXp58sffXPJ1fI22Zt/n3pmP/+rW6upKCW/9Mxtft+XPcq/53xEffCt3wi3Pg7Rwdbq+plPvsLAc/iaN13hV599eE67DLZJkP8p8Md1msVXAodSype3WM+Z+NiLh0gJ3/IVr2PgOXzsxaPtFfOCPvb+mm8H4HdfepF3PLHHJ29u2R/9wq/A9bfxkd2v5ZKY8p99mVLTPvzCFj1hUsKLHyR58qv45fRNvK34FO96cpcPPHd/ezUBHDwH6TG/Kn4Tz4kn+KrweeKs5NM3t7yZuKkWzn+Qfz0A7wxu8MmbW7zXDV76deaEfPTa7wfAu/2xh0KtdV98Px8qv4jdt349X+S8zMeevbHtkpgf3+fp/FkOH/1KPjv6Mh45+PVtlwTA/WfejydKxG/5Vg7kmONntk+QP/3KMV8snwPgn/jq3uKl7V+vT9w84ivCFzkYPsVPR18M2RzuPbvVmj70wgEgeZt8hg/LN/L58EvhlY9s1cOa5AW/ceOQ3/14xBUO+enkHfDo25WItEX8xo1DRoHLf/C40vs+9eb/GByv2uhvA8/emRFnJV//JY/wVcPniJwxfPmfVJ/couL+sZeOePsTe3zFG67w2dtTpkm+tVpOg82Ytx8Ffhn4YiHEDSHEnxJC/BkhxJ/RX/JTwOeAZ4AfBP4zW7Vsio+8qEjeb3pqnzddn/DpW1skMq98BC6/kfja20mkx9v9m7z1sV2mSc4L2/Qh3/40PPJ2PpQoG/nbBzcZBW517baC2W2ID7g9fJqPyDcyzI/4ymspz9yaIrfZnPDKxwH4t8ePcHP8JVw5VP/+7La9tTd/g0L4fFh+Efnu6/iK4YsPhSpavvjrfLR8PcGT7wDgjfJ5ntnmexCgyNk/foZPuW/iiTe/C4A7z52aaNkpXv7cR3GEZPDEO4gufQmPFS9TZFu0hGnktz4FwLU3vpOPlE/jvPKRLVcEH3/piLc4N8gnj5E9+i4iEcJLH9pqTWUp+fQrx7ypeI7k6pfyseL16hM3f2OrdX321ozX+UcE0W2e9d/CJ8onVUPc0fYOfZ+/OyctSr58qGr4xekTFFe+eOunAB958ZAvfXyXp4obpNLlw/nr4dLTW63r4y8roeOtj+3wNv8mz4kn4Ynfoj65pXtLSslnXjnmLY9MeMeTe0ipxMiHCTZTLL5FSvmYlNKXUj4ppfy7Usrvl1J+v/68lFL+51LKL5JSfpmUcrvGoXPw78U/x89d/26ujgPe8sjOds3k9z4HV97EM3diPicf43XlC3zJY7sA2yMzWaS8X1fexK8eXgLAvfdZ3nBlzPP3tkna1UP5OfEkz8pHAXhrcJsoK3jlaItdxbc+AcAvHV4h3n8T3vwVdpxk+wT51ie4NXwDg2CA+9jbeZN8nk/dPN7uZgKQd5/hM+UTvO7J15MPL/PF4gU+s22CfPgCLgXxzhsQ174EAPfu9o/nD2+oe2v/qbfiXnszvih45fOf2mpNUkr2Z58jdkY8/tQbeV48Rjjdvo/8mdtTvsS5gfvIl/KWx/b5bPkY8u52kz9euD9HZHMupy8SPPF2PiOfQOJUa8a28NnbU7760gEA0d6b+HDyuPrErY9vrSaTaPOEPnj+XPkoB+M3wtGLW/X7fv7ujC+6NmEye44XeITP3InhypuqHp1t4NM3j3EdwZuuT3hd+QIfyx4l9ycwvgb3t3M6cWeacn+e8ebrO7xzco+fu/Y3ePx4+xvnOvpJeivgLZOEp4/eD9F93nR9wsuHMfN0C0cBUqqjtstv5IV7cz4rn2B//iyvvzwC4Mb9LTVU3fscIOHKF/GxuyVH3lW48wyvuzzabnyL3rF/NH2UF1AE+WnnFYDtxoXd+yzF5HHuZQHelacB+K17R9tXRQ8+z4viUZ66PEJceprL2U2O4oyD+Ra7wuND3Pg+z8vrPH1tB3H1zbzBeWX7qS33lA/aufJGuPQGcuGzc7z9WLX8lU9TSsHjT38pO0+8FYC7z29X2T6YZzxV3OBo8kZc12E2eh1hcaRiIbeIF+7OeFrcRFx7C2+8Oua58hrF3e3625+7O+cJcQeAncfeQorP8eA6HHx+q3V99vaUd4wOAHCvvpFfPb6iPnFve9frOf1suZbcIBte4ZgRz7u6rWlLau0sybkzTdUaeucZ7gyeUuv6lS+Cu59V/SdbwI37cx7bGzLIjplkd/l08Tg3j2K4/Mat2XdMGtGbrk+4FN/g6eMP8tT+YCu1nIWeIK+CvSfV/x88zxP7IQAvHWwhT3d2G9IpXH4jN+5HPC+vE0xfYj90GQfu9giyVl3mu09zGGUcT94Ad5/hdVdGvHA/2p43+uDz4AZ87HiEt/8EuAMeydVx3HPbJO4HLzAfKQVm8tibAXjH+GC7Fhkp4eB5nsuv8NTlEey/Dq+MucLRdpMs7iti8Ly8zuP7Q9xLr+Mp5+727nWN7La65wfX3wyux/HgUfaSm1v3RnsHn+OmuEY4GnH9DV8KQHRzu4kRn78350lxh2JP2QWS3TeoT2zZV3t47xYhMew9xeP7IS/I6zhHL2y1Ie7F+xFPCtVwHVx5A4/sDrjtPrLVSLW8KHnpIOKN3m0QLvuPvIFPHg+Q3lCdHG4Jz96Zc2nkExw9h7j8RgCeyTRx39L1Mmv46y4N4d7nOBq9npcOIqUgFwkcbadP4cb9iCcvhdXr9bx8RK2hl9+4tU3OS4dqDX/iUggH+j7af+qc7+gePUFeBeZFO7zB4xVB3sID+v5z6v8vvYEXDyLuutcQZYaY3ebJS6PtqWpHKo7oZVQEX7HzBBy9xFOXR6R5ySvHWxrOcfgi7D7Oy0cpj+2PYf917EQ3cB3Bi9skWIcvcN9/BIArT74FgDf7t7Y7xGR2G/KYT8aXeOrSCC4pMvOkuL1lgvwcAC87j3J1PIC9J3mEu9y4u11v9PyVZ4ilz+41tXlOx4/zqLi73fsKGMU3F/fW1evM5EC9D7aI5+9OeUzcI7jyOvWBy29Q/7+lo12D0pCovSd54lLI8/I6Tplt1Vf70kHE6xylILP/Op66NOKGvLZVgnzrOKGU8GjxMuw9yZPX9gBBNn58QWy2gBcPIrWZv/95vCtPMxl4fC7dV5/c0j3//F31DH7jKIYiodh5kpcOI+Se5hBburcUQR6puQDAy/KyWqsuPa2e31sYZGJExsf3NHEXLkwe7byO89AT5FWwpxf2wxd4fH8IwMuHW3gQmjfX7hPcuB+RT7QP7PBFnrwUbk9VO3oRvCEvROp4xL/0BBy/zJN7AbClzYSpa/dJXj6MeXRvCLuPI45f5tpkoI6XtoGygKMXue1cB+CRRx6DYIfHucudabq9qDf9AP5cfkUpDfvqnn9K3N7e6weV4lHuPYXjCNh7Co+C6N52EyHTgxd5WV7m8UvK3iT2nuBxcWd795XGbnaH2VARZOE43HGu4s+3O4Tm8M5LDETG+JradI2uqnsrub894j5NcnYTfV32n+KJ/VARUdgqGX3pIOJLBvfAHcD4Ok9dHvFMekWt/fl2mi3Ns+5S9grsv47H9tQzcBY+VhGubeCVw5hHdwI4fhl2H+eR3QHPTX3wx5Vo0zXMWvm4q5KSvEtPEmclR4Fa77dRV5IXvHIcawVZvV4vyStK+NjVHOK4+zXipYOIy+OAMHDVRmv3CXC9zus4Dz1BXgWjy+CpY4BHdoc4Al7chsXiWKfg7Tymb249ePBIKdsvbYO0g1q8dx7jZd34Fl55HciCx32l8t3aVkPc4YvI3ce5dbwgyBzf5JG9oRpNug0c34Qy50WusBf6DAMPdh7hKmpBfeVwW9fKKAtX1LXStqLXefe2q4oev0yKz+6+Ji+auPvTLQ/GOXqZW1yqyIJ36Ske4T63DrbnI5dlwdXyLtn4sepjh/41RvErW6sJILmrNjmDy0pFu3rlKnM5YH5ne+rjzcO48vqy9zp2hj6z4Kr693R7G4obBxGv9w/UWuU4XN8d8EyyB0g43s6m8GV9shUmd2DnMR7ZUff8ff+RrVosbh7FPD1OoMxg93Ee2wu5eZzA3hNbI+6vHCd4jmAvVTaZ0RV1z79Y7Ksv2IKCfOsoQUqt1B69CI6PmFxX6/qOXisMt+gQLx1EleDI4QsPnb0CeoK8GoTQ5OplfNfh+s5wO6ra8cvgBjC6zO3jBO+S9kYf3uDazoCDeUaab8EDefQy7D7BywcRjoCd64rEPCJVE86t4y2QPq3URuFjZIVURGbnUTh+mcd2/C0SZLUQPZ/t88iubkjYeYzdXD2st7bJmSoSdUvuc31nAINd8EJeH0y3q4oev8JtLvPInrI2GcXjUn5nq5mZwfwmN+XlynIVXnsdrpBM72yPuB/fe4VA5IidBUGOho+wn293iFB5oMiK0Juux/ZH3JSXyA62d61uHcc8Iu5TOmo9BRbHu8fb21C8chRzXRxUxOX6zpCXyz31yel2hva8fBADEn/+Cuw8wnW9bt1xrql1YwujneOs4DDKeONA57TvPMqje0NlU9vdHkG+dZRwfWeAM1VEeO9RdWryYhRoZbt7Imqev9d2td1q9zGu7YbcnibqmQhbIcgvH8Y8uhsufr9Rsx8i9AR5VUweqRaoazsD7ky3QPqOXoadRykk3JsljPeuqaO445tc29GL1lbqUl7fW8cJl8cD3H31INxNX8FzxHbI6OwOyIL7nlKFHtkdws7jUOY8PYq35/fV99Cz8UTVBDB5hFGiCPLWiPv0FUrhco8dru8M1aZwcp3HvKPt3FMa8vhlbpZ7XN1Rdh0myj5wVRxyexsbLwApGSW3OXAvM/RdAIZ6sxrf2x7pu39TNTR6l5+sPpaPH+VyeR9ZbG8z4c60IqtJ3yO7A25xCbFFpfb2ccI1cUAxuqbudWC4e5UMbytkweDOccKl8j5M1JH89Z0Bt6WKzjSb2K5x8yjmET9GFAnsPMbQd9kLfW6WO+oLZne6r0mv3487eujTzuM8ujtUfumdx7ZiGQC18bq2O1RKseNx+bo65b09TRUB3ILFwqyT1yYDdW/vPM61nYH6uCGlWyDut48TtdmSUj0X9dr+MKEnyKticr1aoK5Ogu2QhuOXYecx7s5U08S13aGqa3Zb3fzQPWmQUl2XnUe4M025OgkqJcaZ3eLazmA7CvJMqWb3hFJfru8Mqt3yG4JDjuKcKN2C31ffQ8/MR4qIAuw8ijd/BZDcmW5pqMPxK8z9y0icarPFzqNcFwfbqwkoj25yU+5X9zfhZaRwuSYOuLWtzUR0H1+mTI2vEBATZQHJtqg+Ht9Rqtn48hOLD+48hi8Kju9try4vukOJgJFKGLg6GXBTXmIw315Nt48TrnGI2Fk8lK/uDLkjLm2NiM7TnFlasJPfrdaq6zsDbkmjIG+nrrvThC8e69QfTWIe2R1wIzMEuXtl2wgJjwpDkB/lkd0BRSmJgytq/d9Cfvuto4RHdgbqFGJ8jcs7SiG9Y9TaLRD325qrXN8ZqOsyuca1iSbI4SUtsnVLkPOi5N485epkoJK5srnKZH7I0BPkVTG5Xql/VycD7hxvgTRMX4HJI9XvvrYzgPFVmN6qSE3nBDmdQh7D+Dp3pomqQz8Imd1RC/xWCLJ6rW7r48mrkwVBfsxVx3Jb2eRo4v7paVgdVbLzKCKPueRE3N2WWju9yZF3hZ2Bp5omACbXuSzvb0+p1XXdkpcWpN1xKMKrXOWwWvi7r0kRlWR4dfGxsSLLckvH4ADpoaprcnVxVOnvqroO725PFR0k94i8/aoBZxS43BOXCJPtkBjQ6pVziLuz2ORc2xlws7y0NQX5znHKkIRBMVsoyLtD7rKnhoVsafN1d5by9FCnxtSsH5+PJ+pjW7jnzaZ9v9QEefIIl8dqjTj2LilfcnzQeV23jmO1rs9uw/gaA89ld+ipZ834Gsy7V9tvHycIAZfHgXqtxte4ujOohDZ2HumcuN+bp0gJ1ybB4v7pFeQvYEyuQ3IIWVzdXJ1PGNNvOkMMFEHWCrIhyF2TBk34GF/jzjThyjhQD8LwMszvLI5yusZU1XWzUFMGr0yCirhfEYog35ttZ5NTDveJSlddK6gWhjeNZtzdllo7fYW7okZEASaPspvf4zDakrc9i3HTY27LvYWCDDC5zjVxuL3mT32kXI5qiodWP4L47jYqAiA/Vg+a/SsLgjzcV/fW7P52jpyjtOCSPCAeXKk+JoQgCS7jyxTS7eSR3zpOuCaOELWH8tXJgFfKPcrj7Wxybk8T5T+G6hTu+s6AEod5cHlrCvKdacqTvm4+1dfr8jjguXisPrYFgnxvpt774/w+DPbAC9QaDxw6+7qubr33eVFyf54pMUY/qwHFF6ap+ves+36A28fquexRQnQPxte5NhmQFZLDKIPR1c6JuxH5rk4GNYLcK8hfuDAL6ewWV+s3V1cocojuw/hqzVM0VDfV7La60dhCYoTxn42vcXeaVnWYxeDyOOD+NoioXoheyiaEvsso8KoFa18qgnx3tg3ifos8VHWYBd0Q99eH8fb8vtNb3Ja7i5oAJo8wzI/wybdzrSLV5HmfnSXi7u4+wjVxuL1rpR8mzqSmIPtDYmdMmG6PIDO7zVwO2N3bqz4UXlJEKz7YDkG+O0u4Kg7Jh1eWPl79ewuKGsDd4zn7HFVKLSjB4b6cUG5pwt/t44SrHKp/6LrGA4+B5zD1Lm2tSe/ONOERT2fs64bGy+OAz0Uq4nAbxP2ufqYMU/VMBCrB4Q76/u+YjBo+cGkUqOeiIciTgRKuxtcgPuw8ru/2caKey+a9NrlWrae3jhN1/Tr2kZu1++rOYGHR6RXkL2DoI1Smt5XPlo6P6DVZYHS1IpyXxn5FRAMHdgYeB1HHZFQvQlFwiSgr1A0Puq47XBoH+jila7X9FrgBL0X+gvQNdsAN2CnUQ2grau3sNolW08yRoFngnwxm3NnGZkJKiO5zu5iwF9YI8kg1B+0x246lSBOV+3KHKzUFWYyvc9057HaDWoPUDxOvdjwPMA8uM8nvU2xpcqQX3eVA7CF00xnAnrZb5EfbIVf3ZilXOKI84S+U+p5ntqUNxfwuLuViXUdtWA+Y4MT3t2L9uDNN2BdaqTXJGsD+yOdI7CqBpGOUpeTeLOWqOwUEDBX5vDIOuJ14yGCyFeJ+d5qyF/o40d0FQTYikT417NobfX+u1qP90NMKsqrr2kQ39Zt7vuNN4cE8XdgrAMbXqs3E/XmqFeRu34dG5FtSkHsP8hcwzIIV3a9U0k4JVqXUXuEgSvEcwWTgqQW+zCE+YG/kczjvmDSYZji9a79sbAPjq0pBHgWkecm864a42R3li55nC3IlBIyuEmaKeG3FYjG/x8zT12q0rCA/5s+340HO5lCk3M5HXBr5i4+HiiDvi+PuN15QbQoPGbMX1uoaXWaPKQdbIsjpkbrnw92ryx8fXuUqR1sj7kFyjyN3f+lj+5evk0uHsuPjZoN7s5Sr4hDnxPGpO9kOWTCQc002a0T00ijgvpyoaXpp93nWh1HGJfTv1e89U9chk4VI0nFNRSnZZwrhPjiqP+GyFh2K4aWtEPd7s1QJH7M7iuAB+6GPI+Dl3Hiju73nD+Zqjbwc5JBHFeG7MgkWFgvoXNk+iDL2R37NDnmdPb3OH8wzGF/RqU/dbQrvm2s1DiA6UB8ML5/9DVtCT5BXhVmwovvVw7rTB+F8YWU4mKsbXgixRNz3R373pKEiyKqj+ZIhfVrZvqQJc+dkdH4XRpe5a3zRBuOrePE9Bp5THdN1iug+M6EW8MuVxUIrDe7x1kg7wCtZqBZSA0OQmaqFtGvoB28a7OM6C1WU8BIhCbPZdoZypEe3OJBj9nfGSx+Xw0vsi+PKH9k1Rtk95v6lpY8Fvsd9sYu7JSJ6/3jKRMQEO8sE2dEWArkFTyYAsSZ1NSK6F/ocoMnVFkjfwTzlqjc7ta77cryVmswauSuPl2oya2rm722pLr2uz+5UyqzjCC6PA24kOlu34w2FWSOv6R6XytIX+hzFGWVomte7Ju6ZOhmMFpvCff2cPow0cS+STjeFB/NMzUwYeKquYAJecPE3doyeIK+KbRNkoyCPrnIQZewaRa2q64D9MKh2sd3VdReCCQepupUqpW90BaL7XAmV4tA58YsOINzn/ixdkHaA8VXE/A5XxkH3FgttZTAP4UpB9ocQTLjEMfO0ICs6bojTC+etfFwtnEC1o98Xs+2otZq4l8Nl0ke4D0A+6/7BDFAc3+Ku3F2clmiI0SX2xIx7s+0oyJPigDS49MDHj5093GQ712p+oI5uh7vLHmRfE+ZsC9aPvCgJUu311fcSKCJzIDVB3oIP+WCe8YgXgXBU45mpa+Rzpxip92nH1g/zjBsVR0sKn1lTY3871o97s5QrI08JIePFSc6lUcDdeQnBzkKZ7AhGFb2ETvzQJ4O7oY+UMPP21cc7tBVJKTmMUiV8RItN4X5YU5BHxu7U3Sb6MMqURcYRqq7wwXXrYUBPkFfFcF/9f3S/Op7oVkHWb6rRFQ7nWXWDn6yrcyITH0J4qboWlQKpHzxXA6Wm3euauMcHMNyv3ogVRldgfpf9UaB2z10im0OZcVCqxsEqTg1gdJndUj20Oz+i1wvngZycqiBfEsccbYMgawVIjE4SZP3v+XZIn5zd5T471emIgTe+zB6zrSnIEzmlqBErg8idEGRHW6gIomNNkHeWCfJoskci/cqu0iWO4px9HlRqd0Of+1Jn+27JznDVm6s13Vk8mvfDgFeysbLSdWz9MO/7QXa4ZEcxfR1zZ2crcWoH84zHhhnIYhErihJoDqNMva4d12XW7Ullk9kHWKi16BOn+LCzmpTgIhVfMBuG4T6jwMVzhOILlTe6O+J+UH8uR/eXNqoPE3qCvCpcT+9K7zMJPBzRMZExb3ZNRiulz9xY8QH74RY8yJqImuOlvRPE/Yqjup/vda3WRvcph5eYpcUyQR7uQ3SwWEg7rgngrhwve30BRleZFFsmyIzZrzfpafJw1Z13fzIBML9HwoDRaGf547oukXT3oKlDxAccyPHiBEBjsHOZsUg4OJ53XpPMU0YkSLNhriHxdhnmx53XBJBN9SbnhEK0Nwo4ZLyVU4CDecqeeJAgu44gHeyrf2xDQY4yrjizB9S0/bHPzSzcSl1mLQrSgyUF2Tx/ps7OVhTkwyjjuhepf9Tu+T1tZyDs3vpxf57iOoJRcbxUl3n+3Cv1a9ghcT+oC1fxAfgj8AKEEOyP9DPQXL8O6zo8SZBPWbceBvQEeR3oXanjiO4JVnRQ3dwHUbpQkGvWD+NB7jQxIjqA4V51LaqbXhP3Pa3UHMVdk74DEl91M++G3uLj4T4kR+wNHY6ijsfvGoJcjBYWmVpdQ72wdk+Q1UP3AQV5sAPC5REv2k7jWXTAoZhUJzYV9D0/yA67t6MAbnrEIeOFh1wjmCgCkU67T2aYHanfKcIHFeTU32VUbocgy+pYd3/p4/sjn0M5puj4GBy0eiWmSMSSlQFY1LkF0ncUZSrF4iRBDgPuFqOt1GXe926yfAy+M1Rr6rHY6dz6EWcFSV5y2RDk2r21G9ZIX+cWC3WyKyoxS9VVWTITwB93WpcRNpQH+eABb/vhPKvd893VdRhl7BmBIT7oLRavCoT71QK1F/rdNi7Fh1XEzsE8W5CGymKhPMhFKZkmHRK/+ADCfY6ijIHnMPTdpbrMg7lTMppFUCRErvITLivIeyBLrg+yrSm1t/OQ3eEJ0jfcZ5BviyAbBfkEQRYCwktc82ZbatK7x325s/z6QS1dY7oV4u5nR0wZqwaTGoKJOurNZt2rj7NDRZDdU44qi2CXidxOQ6OonXzVsRf6HDHqnMQAyqKGtqM4y49AJ1w0PXeNg3nGrjyFII9q3ugtEGSPHCedLlksBp7L0HeUbaBj64cRWy67+qTmhIK8NYuFbp6vWxlgYTtUde13q9TOawryCaV2f6TENsMrurR+HM7TExaLniB/4SO8tESQO7dYDPfJi5LjOF/cXF6gdqU65g3olsxEB6d7ffWD2k0OmQy8bhVkvUDNHHU0/4DFArjmxVtRtQFeScNlVRtguIeXKp9o537f6D65MyQhWG7SAxhd5rIz2woRlfN73CtHi9MSA3N0uY10jbIkKGak/u5S3jAsbATFFmwDc02QvfGDUUlyuM+ECFl0/xp6xgZz4gh1L1QK8jZsMgdRyr6YnWpHGY9GzEW4FYvFYZQxKY+XiCjo5sEqXaN7i8VjgVFql0nM7tDnfql9tR1udIzYsochyItTgN3QZ5rk6rXdQpPepVGgntXeUDVfw3JTf8d1PWCxqL2G+0bk25rFwqsa13uC/GpAnSCPgm4b4rSCfBSrxWH/JBmNDqqPdU7cw30dJXNCqdWf3x163ZI+/Rod6zi13VPquuJF3SdG6LpeTk9TkPdw0yOg4wmNuq5Y21EeIKOhSmbYDkG+y72Ttg+AwS5SOLqujr3RySEOkjLYffBzepGXW1AfY22xGOyckiWqN6vzo+5Jn2+aA4fLVoZdrSCbTWGXOJhn7DF7wBcNqCx5djonokleEGUFo+LwFAU52KqC/OQgVv84Qdx3Q5+7ZffWD7MW7VY+8v3qc3s6MSLdQrrGfaMg1057TU2ghauOFeSDaniJsVjsL+oaaYLsD8EddKYgl6V6xu2HQZXB3xPkVwNOKMjdkr4DTUQVIVhS+ob72oOsPtaZqpan6gY/TUGuWT92TeNEV9AL0KFU6sZpyvZlV6ki2yDuN5LBgx7k4R6iSBmQdd9oOb/P3NklcB1G9WQNUARZHm+JIN/n4DSLheNQBHvsM+N+15Fq+iFyWlqEubfEFmwDqbZ1nEyLAHD0w8f4lLtEkB0RO2PV5FzDzsDjiPGCQHeI+3Pl9XVPUdv3Q5/7crI1K8OgOKVJb+QvEhC2UNfjg9MV5L3Q51bePUE2z5KJ1AS5riBrb3Tk7qhs3yzqrK7DeaqewfpU1WDouwSeo541nSvIhi+cYrEIg8W6HnZX1zTNKaV+Ltei5x5G9AR5HZibSEr2Qq9jpVbtSo1qvXcyjis+qJS2zqae1ZoRDs20HgM/BDfQCrLfrQdZv9HN8d9pyva+Vh+6bbS8j3R8bifuqQQZ4BE/3oqCfOzssGeGz9QRXmJSHndvZZASJz7gPifGX5tPh5fYF1uYpqfvrfI0gqwfPm7avW3ApEGM9q4+8Dl/rB4+88Nuh4VIKRkVRyTeg2q74whid4dBPoWy20bLw3nKJed0BXl/5HO3HCO7TouYZ+way8ApBDnFJ3PDzm0Dh1HGo76p64SCPPS4lZqhHB0S5Cqb+RiEq4ZMaJi13tjrurxepknPnKrWsV95o/c79yBXvUEn6tofKTtKVpTq+dORgnxYT7yqpujtn/n120RPkNdBeAnKDNJZtfvqLDEiPlhKizjPYtEZmTFvKF3XEukTotot7wy79iDrtAh9/LdkZzD+VaEWfWNZ6QTxATK8hJSiUjoWdSnC9fgw3QpBPmLyoL0CILxMWBwRZQVJ3uG48OQIIfMHkzU0RHhJT/jrOl9b3fPitFgi/Rp6WyDIZnTyZP9BgmzSNeKOLRZJXjKRU9LglM0EkPm7OJSdZ/seRJnKQT7NYqEV5M4JskmwgAeIqIlejL3dzr3RR1HGNdMMd4rF4uVU+Wy7JH2GIIfFVL3napt6Q5CPnW4tKXGmLDKXxg8qyKYu5UHujogC1dRd8kSd9p6wo4C+nsO9zl7Dw7rI1yvIryKcmKbXWWJEWUJ8pKwMVVfqgxYLQ1A7I1i1bt0HLBZQ7Za3ZbG4nYcErsPQr93mmsSYrv6uFeRCk4UHFeR9AB4Nkq0Q5HtyvDxx0CC8RFDM8ck7Hoyjo+eYPHhfAe5oS95oQ5BPiVPD9YidMYNtDOWID4hkwM54/MCnhrsmfq57crUnZhSDU/zaQGk+3iFhADicJUyYnapa7YeBslh0TEQPdLIG8ABZCAOXgecwd7v31R5GGVdd4/U9qSD7vBhrgrwFD3KQHz3wGpqT1SNphnIcdFrTohnuRF31hrh0Ch01zKpI2OCBZI2qVnQj33C/OwW5HgnbE+RXEbY1bjpRzVsM92q5hicU5PiAoe8S+m53qppefPLBLtMkf5DIaAVZNel1bbEQ3EkDdsMTtoHBLiAYleph1LUH2ahpp24mgOtBxxYL3UV8txg/mDdcq2uf6Vb82mcqyKNLXHK6j58zDXin+VcBYm+HYd49QXaSQ47FWI1uPYGxHvPc9VCOQ63Ulmb4xglUH+84jiudH+JSnq4gj3wO2FHpGmV3JybLCvLp1o8j0f1QjsMo45KYguNDsLz52gt9biUO0h107EHOGXgObnL0YPOnPi28ZwhyRxaL5Wa4w7MV5GqwVzdktIqEPSVucal5cLjX2bXqCfKrFXWC3GWkmnkzhfuV53LpiD7cV8cneaIyM7siDfoNNRXK7/VgAsJ+pSAfxxll2bEdJS4fjFNzHBjuEuqhHF1bPxJfK8inpFgAXPU6JsjZHIqEW/noVKXW3PN7ouNItUSRzEN5Yrpfra59Zp17kNPZAQD+eP/0zwd7TOS0WzsKytYxE5NTPzfWvuSy49HcR7FSkM98+BkVvmMFubJPnGGxOJIjBLJT64eyfSyPKK5jPww4ZNJpukZWlMzTgh0RPWBlADWAqShB1uYDdIEjc1qpo0/rqKbWmcEqHW2+jvVzZHcgIDk8VdlemlrXIRldGjO95EHWI7CjVD+ruyPt6vf3BPnVhVpe4JJ/xzZqXt+DecbO0MNz67YBXZceodwZaTBpEbrD+gEFslKQfUoJs7QjFVnnKp5q+9B1Bfk2LBaHqrsaTs1BBrjizrtPR+GM4SWwGMrRdeZwojYwiTNetsjU6pow43DWXZc6qNHJhRQMzyDIRbDHnphx3KW3HfCzY+buzqmf29nZIZF+50rtkY5Tc0f7p37eqQSHg85qAnDOGF4C6qF9jG48S7qbPnh4xvhrg52hp1J5tmBlmMi5mqp5Ama9KILu1EdT1274YJwawChw8RzB7bzb5sFjbbXccx4cfw211KtKQT7opK4qftVch+FyDrL5msob3UFP1ZKCHB+o0wl/ZP33NkFPkNeBWbjm97q1WJg303Cfozh7kMiYunRixLSrh7NJiyiWA9EraOO/IYOdNcTpSLyzCfIebnJI4HY8bjq6X3VXP/Aaaj/mJWfeLWnXJOBONmRysnGwVtdEdKxsxyY/d+fBZA2A8BIOcvF1HSGf3+eIMTun3Vco28A+s86HvQzzI+IzCLLnOhwxxkkOOq1pNjtmILJTh5fAIl1DdkjcpZQE2enDS0AptVOpyVWH99ZhlHHFT9Q/TiGjk6HHYRlC0p2qbd7vo7MIsn4PZMFe5zFvVQLCCaVWCMFe6HM7HQCiu+gy/WzbNacAJ4j7XuhznOTkJj+9q7qSXG8m9O87pUmvUrZl0cmpyWGU4buC0He1mLX/wOnEw4KeIK8Dc9Mnx8sGd9uoKcjTOGfnJJGpzVKfDL3uRk3HB+CFHKTqNnogjivch/iI3YHK1u2MNOijt1M3E7ouER+y22VUX1lAeswUtVN+QG33h+AN2RVzZl0OMNEEeUr4wOhkoHowToi2Qtyd8HTSZ4g7HU9iK+YHHMrxg+9Bg3CfPTHrNh0F1dGf+ac3wwFMnYnybHaI+FjlLgenZDPDIl0jnXZHrpK8JCwfzM812Bl6TLegIB/FOZe9BLwQ3AfXrMnA46AcQh511uBl3u/DcnbqtTIEK/F2uh1THGXKYniKggyKuB8mJV0mM5hn7sTcW6fEvAFMjQ2qg7pKHSIwGXg1i8VCQR7r9X6W5J2Omz6M1JhpIUQVPvCwoifI6yAYAwKSY3Y08TruwsNa8w9VN3wd5tgkus940CFB1jt4Qwb2HrAN7AOSS55SRjojyCsoyJ2na+id+ZEcIQRMglMI1nCPHdQC29m10qTpWIZnKMiaIItILaRdQZMTcUYCgqlLdKioARAfcMSoev+fhDu6xN4WFOSJnJKfda2AubND0HG6RqabAoenTfcDwp19Sik6TdeYJTkToY/BT1FFR4HLsd7EdkmQj+OcfSc+tSZQxP1+Pui0riotopida7GInXGnfu2jKOfqoFSDQE4hV7v1hriOlG2jII+lfm1O1GXU9qMOB74YS+Nk4NVOoRcbisBzCDxH2UNqIpttHMX5QrhKjmFweu/Ew4CeIK8DIdRCkRwz8l2EgGnSQTNOTUGeJfmDRGaoH4zplMnA687/qJVaszhMBqcnM5ihHJ2paskRcrC7aOY4CR1powaYdEVE1cJ5WA7ZGXinpg0w3GcsOx5gouuaMXxw4wXVg3HfibvbeAEkRyQMCIfD0z9vHtgdZ+iK+JBDOX4wx1rDG+0xEBnT2ay7osqCCfMz0yJApWsMOk7XyGZq3fJHp+cg74QBx4TkHTYPTpOcCXp08imkTwhB6euPd6i4T5OM3XMI8mTgcbdjgmzWRj+fnmGx0FPrxKhbv3aUcS3Qr+EZyvZhlKlTpo7qOo4zRQ/y0xstzdp6bAhyB0ptpWoPPXUdggk4y5NSdwZe5wryEodJjs+85x8G9AR5XQx2ID3GcQTjwOvG7xsfgHAg2OH4NAXZTBJKjtgZet0pffqIy/y+8eDEmGIzlIOOI9WSKZk3ppSnNMNBFWmz2+W4cL1QHxTBgxnItbrCQl2rWRcbr1pd07MUZH1vXfaSzgnyTISnk3aoLBZudtzdsB7ATY7OVZCDsXrQRNPujpwTrdSK4dkKcubvEJbdbiYK4+E9Q9meDDyO5Jhy3t21Oo5zJpytIAPIwWI97QqzRKdFnEmQfe7lerPYEekz73c3PYMg6/fAjGFnNZWl5DjOuOaa8df7p9TlqXV9sNuZZ/s4yZkEHk6yELPqqAhy4YE37MRiYZ7Lk4Gn7uXgQaV2MtQcphZAYBvTOGdsTlDT6Znrw8OAniCvC60gg7rxOiGj8aG6iRyHaXwKQTaLV6IU5CgryLvwsOrdn+ngHZ+0DegHzUSo3X4ndoaygGxG4qhj0gdUbVCLah5xZSA7V2rv5YPTfdEAwz2CXBPWrsioruv4LA+yozZm+27XCvIxU84jyOreGsuIKOsuUs3Ljs71IA81QY5n3ZG+2dEBAOIUNc2g8HcYlt0mfhSRJk2nPJhBrZ+HdJvMMNUWi8INH1DTKlT+9u5U0WmSM+YcgrwFb7R6tklEenwqiTHvgWMZQh534o2epTmlhMueSYs4w0ee5GqN6GiTM43zhVILD7yORnyYxrl6P3RA3M1Jsqrr9E3OONDXqkMFebqkIB/1CvKrCsGkehOMB243pKHWjHCqB7nmjV4Y7zsgDVpZmCU548B90DYQqBt/JNVi1klihD5yj111lPWAqg3VYn/Fj7uxyEB1z9zNhqer2qAIsvaJdnYKUFkszlCQAQY77Dtx5x7kYzk6tyZQ3ujOUluAIFeNlqPgdHLlj9S9ZfKSu0A8Vb/LDc9WYqQ/Zsy8o4o0DDk54wE4Hngcy5EiYB1hGufKjnIGaQdwBxNKvZ52VleSM5bzM9W0nYG3SNfoTEEuGJAhyuzU19BzHX0K0F1d5nm7W/nIHyTI40ALV4OdzixY1XPZEN8T91f1XE67q8tcq52Bd6bXdzLUlsyuCbLhMMb68ZCiJ8jroq4gD/1uCLLe/RWlZJ4WD5IG441Op5UKeJx0MeFPvelmSV4tAEvQb0g3nzMO3I6mDqrXJhJq0T7PV3vJSTononfy4HRVG2C4h5dqgtxVZnRyRO6GFLgPngAYDHbYcaJOs31lcsxheYYvWtcEMCauTjCso8jxy4TMG58ePQcIXVcedXc8b9Rq/6zED0AGEwJyZJ50VdaCBJzRhDMZeEwZIjr0kSsFOUaeo1pNwkCtH10S5DgnLE+PUwNNZCoFuZt7a5bkPDrQU1nP3OS4HJfdeaMr20Blk3nw3hoPPOZpgayJWbYxTXS6VDpVmb4nTifMOrZQtjvYTJjGwYFXiVknsTPwFqQdOlG2Z4YgS9l7kF91WLJYdKQgp2qXtdSVehKBOk6qjnK6Iu7GF31OAgLJMZOuvNH6DT4XymJxKnHXO9Y9NyHKCoouJvwZBTkNmJymagMMdnAyVX9nZDQ5JtVq+5nRZYMddoi6I+2AjA85luHprx+Ar2vuUkHWRK7wxmd/jVYAZYfpGtlcESb/HAXZEIlk1h1x9zKjpp3deDZjiJt119B4nCgP8pnpKCgFcs6osxzkopREWcHgPIK8DQU5zrkWmGzm06/X2MTPdVSXOfE7z0duno+ZN+7OgxznTIb+mZaBiiDHuXo/dGGxWPIgH5/6Pqw8yK4P7kBxDcuYGkEtj6HMe4L8qsJgcXN35kFOpjCY1NIiziCj2oMMHRzRa6+vUZDPJO1QWT+mXRAsYxmQatE+/VotCDJ0pNbqum6nwdmkbzBBFCk+eafKduKes5kAGOwwplsrg4yVB/lM0u44FP6ECR3Gz2mCXPrnEGR9z8sO1ceKII/P9iA7uoFvftyd39fL56RiAO7pr+F44DGTIV7eHUE2MW/OOQ2Nld+3K/+q9voOzohTW6oJuiPIac4VXyvIZ1yvycDjoOiOIJv3emgI8inH82YdS5yxzo22vz5Mk1xbGaan1jQKVOrVzCjIHRBRc612jDf6NA9yPRZ2YN8bneQFWSF1TeaEqSfIrx7UFORxV5FqqXrTVcdLp6q1kyUPsvW60sXNfWrjICwWCh0/1wmR0QvPsTzHYqF30ju6ebCbutT1upX6Z9sGgi1kDifHRHqcs++esRwMdhjJeedNekdydLbtAygDRZA7s1jo9708QxEFqsXe6dBXa+wcw3MJsqqry+bBQTGrTidOQ+A5RE6I3yFBnsY5O0Q4w7N9j5OBx6HszmIxTXIGZDjybDVtZ+AxZ4Ds0Bs9S3KueWdP9wOltt8z8XMd+mpDeTZBNs/H2NEbii5UUfMMTKen2j6EEEwCT61VNQ5huybQG4YzPMg7dYIcTKy/hlVNgXthj8LDgJ4gr4vBjnphpVSkrxP1Ub3plo5MTqsrnVaKm3UyU2tGqI5MTsJxqo7dceAx76IhTi88R1pBPs8bPe6SICdHSH/EPBfnKsgA14Ks0+bBuRid7YsGGOwSdkmQpcRJdYrFWQoyiqiOu7RY6HtenBdsbwhyh7aBMlb3fDg5myAbf3JXBFlKyaCck55nRwEyd4wvk05UPtBKnxOfa7GYDDwOy2FnpwCzRJF24FwFWeJo20B3dV2+iCAPagS5A8XdrNWDcq6nDj64PhgLW+R0N/ClSmZIzo4tGxuRqKMUi2mSL4SPMzzIk4FHnJVqcuvAvvXDhAdUpB16gvyqwmAHkJDOlC8szu3nsKbK63uuxUI3JCx5nWzXBCrFIj1DQTZ1pcfdJX7oN/hhcY7FQqsOxsfWCRlNjlXTCOdYGfTnr/oZ0y6aLHVds/OsDACDHQbFjDgru4kPzOYIWTCVZ0TPaQjtje6MuGslyqixp0K/hn5m/wFoUGpiMprsn/k1nh7WkXXkQY6zkjHR+X5tIPc0ielIca9ykM9r0ht6HMsQ2dH45OM4ZyJ0wsg5mdGAUuQ7G36Rs++aoSpn1eVyJw3UPzq0WAyK+ZnNn+bUaV5NRLT7Xlwa6XxOKsN44CqC2FGKRTUzIU+gSM+1o1TE3fL70IQH7JwTifcwoSfI66JmGxgPPPJSkuQWSUPV6TlZnoxzEnpqUGdNejX/0JkWC1iyfnTp9T0oBjgChv4pt7heWI2PrRsF+ZjS18T8rCY9fW9dCdJOB4VM5Tl5wwCDHYJijqDspi4zvIRzmvQAN9xRMW+dWSym+vee0wznOMROiFd0OEkvmZJIn/EoPPNLzACTrKN0jSpv2D8/win3TJ9CR3FccXpu3jBoX6YMO1WQLxpeYkhf7Iy6S7FIc/ac8wnyaOBxu0OCbMQMv5ifQ0T1M5BuvNGmt0alWJw9Onky9BcWi2yu+ngsYlYn7XDqa2j4wnFs0jU6VJDNJqGPeXsVoRYi34mdIZ0BsrIywHlNesfVQmqfIOtFOpgwS4pzG7xIpovjJdvQO+CDfMB44J0ex6U9pMbH1pWynfsXKMh6Yb3spR2SviOO5DlxagCDHQSSEUl38YFwfg4yqvFsR3QYP5euQJBRtoGgQ4LsZFNmDPHO8pCz8Cd3FT9nSJ+84OEna4JDF0iSCJ/8TBIDypd5zAjRZUSYOJ8gO45Qx+FOlxaLgj1xdpwaqGfR7cxk2nYTEeYIcLPTvb6mJmCR+mFZFV062T1jIIf6vLtQasE+cb9geAlQndDN0pz6jAdrNennx0XE/WFBT5DXRRVddlSRUavEr5Ylat6IO6f5RbVS6wrVMduVxSL1RqRFeb4qWjXpdaQ+ugMOM3E26XM98IbKx0Z3CnKmj5vPbDzTC+d+V2Od9enEQTE8l4hWQzmIOnoNFYk7c7qfQbDDjog7s6MYcumdZ7FAHYMPinlnI7BFOqtiDc/CUNsvjF/ZNtRkuPPzhqE+1rkbglxN97vAgzyVofKRW1b5QKvtFyjIpq5Zh/nM01idAuAOwBuc+jXjwCPK6CxzeJqoMcUinZ0ZH1g1qneUz1wN5Bj651ssAh2pNuhmU3j8gIJ8dkNjVZftJj0T02fGX0NvsXhV4US2L1hOjKia4XaqN+Lp0+F2QBaQx2qB78hiYXxe5w50SI4ZBW43mcN6B3/m8BKDYKJ8bHRHkNNqut/5CvK+29EAkywCWXBQDM8novWpdV2QUZ0/Oz0vB1nXNekwfi7X5OrcvGGg8MdMiIizDvzagJdPq8E4Z2GsCbLsKNvXxKmJCx5+1ec78iDLFR7K40G3kWrTeEWCPPSY0Q1BTvOStCjV9MVzIvHMs0jqHH7bqNb1M1IZYPEsOijNa2iZiBrhKpBQJOdH9RmLRQd1Keujv9QvdBLVZiLJO8lnrtT23oP8KkVN8egkczhd7P5muiv11KPU2rHNZOjZj74yPlF9jHW+xWLRPGjdh1zza19kGzDxUt006R0p/yBnbHCgUkT2nI4UZP0a3isGFyjI6gGpGuK68yDPRHjmSGdV1w6jDglyFh2RSZdheD4ZLfwJYxF3NljFz2dVlvVZGIcDYulry5Z9zNOCCefnDQO4HU7wAha2iXMeyjtLU+u6aTybVFaG88ioah7sshluJM8eXgILMlr43SjIszRX6+c5Su3Qd3AdwUHRrYK865yf+FEJV8FCZLNd18RcKzhVcd+pcxijIFs8+ZpVIp+2owgH/PPX022iJ8jroq4gd0H6anFq6sjkjDiumje6k8zhKm9YLUJnpiBoi8W4i80EVHE2FxPkCW4+xREdKcjptCLI5zY0AjtO3JmqDXA3G1y4mQCtIHdBRnVdRbBz5khnU5dLSRZ3dDwfHzFjyOi8SDxA+hM1ebAjH7lfzM/NGwbwXIcpI0RHSu0sihiKDPec8dcAjvl8Rx5kZ4XGoMnA41h2GxG2XzXDnUPcBx6HZTcEucobLs8eXgILYaTwxx3lIBfn5g2DyhweBy73c9082FG27644O5sZFoPFZKDfq5bfi7PkYg/yksUimGASumyhOgUPzCnADpy3xm8ZPUFeFzUi2slQjhMe5LPHAdcUZB0/ZxXJFITLtFD1nGsbSOoE2bICqUdqqqO4c9THYAeRzJQvrCMyeu74a1A+P8dnQtxRTepI9LAcXmhlAOVB7sRicY7isQR9z5cddfWX8VQna5xzXwHSTB7siCAPixnZBQQZIBJhNcrcNtKZGX99djYzgKftKl14o4tS4uVnHzcbjPUIbKATMnps8oYd/0yvLyzymUmPobRr3zH37rCcn/s+NO+FzO1IQa4sFtNz65oMPI5SVFay5fXBrIkmV//M+DmdelVtZm1bP4ygdp4H2TQ0GgUZrG4opknOKHBxHT3w5iFu0IOeIK+PWpOeIatWSd8JD/KZD+fBQonpxINcKbW12Jaz6ioSJq76Ouuqmt6VnpusAZhxn52ka+gcyhnnTPer1TUWEVkhSfIONhPAVI5WUpB3xLwbi4VeoJ3zBnJAtbjKjhrPZHzMTA7Pne4HylerpiF2E9U3lBH5BXnDoCaLeR0NMEnnKkPYH53/ABxogtxF/NwsVY2D6hefXdfO0KslIHSTzLDvxheqaZOhx/2OptaZNdEvonMTP8x7IelogMksyZkEDmSz8+sy63qHwy9G0mRZn22xAGUdA6y+hklekOaljp47x4Mc1ES+yvphr65Z/WQ3OXqo/cfQE+T1oVW+um3AqqqWLo5HzrUNnPQgW1eQj6uagLObvPSbzvizuiHIK3iQzYS/gduNLxrl13YdwcA7520X7DCSJp/ZMsHSC+eUi2PegO4a4tIZOd6FXl9TV1e2AVIVp3buxgtlGxjTkU0GFVdY+hcT5MQZ4XU01tk0NA7OGX8NMAxHZNIlm9sfyjGNL45TAxh4DqmjFeQOPNvTWOcNX7AhnAw87nfsq/WLCIKz7y3zXkicUWfWj8u+ft6eY5MZG5FoYF/ZjjK1Tg91KtJZynZFkDvwt8+W0iL07zlljXAcZUepNhNg1fpxXH8up9OHOgMZeoLcDCaZwXcRwnKTVzWQY3LBQI7d6uvHQQdDOXSTxCJZ42JfLXSQOZxOkcEKKRaDSU1t70apPZYh48C9wFc7YSg7GoGtH/5zhuc3w+kH5K6bddN4ls2JxQWkHaoFvStVVKRqqMq51wrwhrsMRE4Uze0XVRaMiCkvsqMAiTtm0FE+c6mn0LkXROKNh8rO0EU+s2kcBM4lo0IIpCETmf3XUA1VSS4kC2Hgcmh8tZbrMgTLK2bnEmTzHo07IsizJOdSNf76fB95Rfosq+3zNMdzRNX0fZ7FAuCog01O1WQZuAs7inM63Vuka9iPXKx80bDwID/E6AlyE+hdqdp9Wfb7mje3P2aenkP6qpv7iNHAZZ52oD7qODU4Y7ofVG8Ac7Rpva7kmMIfk5fyAgW5wwEmeiE8KgcXqo8E40qJsH4KoO+tmRwyOq8uNwDHY89NuxnKkU6Zc7GVoRrrnE8pbccHAk42W0lB9rStIOlAFa28uxfZUYDMHVXZ37axqOt8i8XOUEWqlR00Ws7TnLGIkMIB//zUD9FRVi1oX6ZIziWiAOPA5ajsxmJhTkWd7OyJdbAgfXMTP2c5+3uWFOwbgnyBN3qWFHqdt90MVxAaIgpnkr5qsFjuVqfQtmCes2OTN3yBTWaWFktTgm1hGueLdT2ZXnjPbxs9QW6CYFKpb0qBtGixSPQxhOMwT4uz1auaB3kceKR5SV5YbOQ4Mf76ouEXY+3PsqoglwVki47+i7y+ZDMmgWOfIGu157AIViDIEwKTz2xbra0U5MH5qqgQEIzZcxPmXSjI6UzVdEEznFlcQxJi235tlFI942IFORjpsc6zDlTRqSLhYgWCXPhjhtq+Yx3nNAbVMQ48ZnLYyVjneVowJqHwRhd2zosqacC+4j5P1SnARWQhDGrNg5brUqdqEpHNz91MTCqCPFQ5/EVqrSaTzbx/QZyaqstfZA7btlikxSKVAS4cgT3LCuvWD/PsCAO3ErPOQhi4RGk3+czT+sluen5CysOAniA3gT+qFijram26yHtUBPkMguWPVKagHsoBMM8sWz+CRTaz65zxwBksj3W2Skb1grPIG77Agwxc9rNuGhqBg2IFBXkwwS862EwApOr3XGixAAgm7DhJN41n6Uyp2hfWpAjFSHRTl5fPmMrh2e9BjUE11tm+ghxpgnxR3jBA4e9U70PrWCFODRaJEbKDHOR5mhMSIy9QjwHcIKREdEKQZ0muXpeLrlXgEkmjINu2WOQMyBCyOJe4D30HR8BU2ifu5tmxyBs+z2LhduZBnmdauDqnGc7UBLWGOIv3fGQU5MC7UKkdB3rKbaUg27te87RYTN1Npxee5GwbPUFugmBcqYKjwDJBTlTeo5SSeZqfTRqEUCb8dF49wOc2SUM6hcEuM7N7Pgt6sRiUc4TtzGH9msRCLdZnjr+u1XXJ62BqnX5oHGT++TUBBDtVI1UX48ILZ0CJc7GdwR8xFilR1o2CPC0HK1gsNEEmtq9sS0lQzEmc8OzNoIY7UHXlHdgG4tkBsIhLOw8ymBCSQGH/NRSGKF2gii7GOneRFlEwFsnCX3wOwkFAIoadEOQoLRjI+EKyMKrHz3WQYnHJ02rwOcRdZQ57TEv7mcNVQ7iJU7vA+jFLcvVaW/Zrz5NcWyyOwRuCe3pOeqjXsygtrHujlzzI6ezcaxUGrhLTalGxtjBP8+o6kM17i8WrEjWLxSjw7D6cdTNckpeUkvPVq2AE2WyhINseYBKMidLi/KNw/cYU6fHC62QL+jWJ9ENklWzfy14H6qNWe+5l/sWkbzDB1U1nkXUf+YxMT2BbRa0di7gTpVamU47lQD10zoMmOmMS+972PMahIFshTs3c82Vin1yZvOFVCTJA2YGdwclNR//5qugocJkxxOmg0TJa0cpg6ooZWCeiUkrmWcFAnp8WATDyXeaVgmz3es3TgiuBfn5c5I0eeBxXBNkeGTW2gckKQ1VM5nDhhZ1cq3Gg49TOVWrd6uuVsm3PgmWSNUaBqyLxzqlrFLjMk3yRcmFR2VbXyoUiU3ac13KKhRDi9wghPiWEeEYI8V+f8vk9IcQ/E0J8WAjxMSHEf2SzntYQ1CwWgWuXyJxohjuXyGjrx6j+RrQBKatJRvM0Z+SfR9qNl2+uHoZWx3IvUhnggmul35h7TkxalKS5Rb+2fsjezbyLkxmCCSKbAtK+KprOyFx9rVaoa0Rsn7QDMlmxSc/1KJ2AkejAG60fGvkKAzkI1KajE4Ks49SCCybWATha2Z7P7BNkN59T4IIXnPt1YeAyo5t85lmaMyJZ+IvPwWjgqXXEMrlK8pKilAQXxKmpmlzmaIJsWRWNsqKmIF9EkOvNg/YtFqaf5VwFOTADTPSz2mLzoFJFjVJ79rUyG/4o07YVm5uJ+nyCC+pSIl+hUi705FsbKEtJVNlRzAnTa9RiIYRwge8Dfi/wNuBbhBBvO/Fl/znwcSnlbwK+DvgbQojzV9SHAcF4iSDbVUWV19eQ3QtJX81iYY2MFqlqyPBHzNPifKXPHBtmM/sDTCoFWS3W4XnEvYqf6yCfWT/M7iTeSh5kUSr/n9X7CiCbkTgqkzP0L1aQQxLmHVgsZKI8yBcqyEDpj7TFwrbarkhlvsLxvHkYyQ6O5wtt4wjCi5UYM3gl7qB50M2j6t46D6PAYyqHneQzz9OCsYirjcK5dflK2bZNkKO0QFDil/EKHmSv2vzbVrajrGB/BYsFKJvMQRU/Z3NMsXqPVz7680ifXmdVnrWEzJ73vmqeT2enZg0bBK7q1ZkluXouWtzkzJea9M5vtFQ2UXNaYM+zHecFUmqryYoWrG3DpoL8FcAzUsrPSSlT4MeAbzrxNRLYESoYdgLcA7pJ198Efp0ge5YV5DkEoxpBvsBikU4ry4O1Jr3azT1Pi/NH73oDEOpNaj1SLVs0nQErEfexUATZakOjvl73MneFZAY9lEN0oNamMxIRnt9kWdU1Yigju752g2xOxODCkc4ApT/upklPP2BXafAyD0nRQURYqe+tYHQxQTbe6GRuX0H2izm5ezFBdh1B4oT4pf3mwblWkC+c0IhSa6dyYJ0gz9KcEENEL/AgBy4JPqVwrdcVpwV77qoKssdBrn23FuuKNIkLpG7Su4D0AYtNmlUyqpvnL/DUCiEWPUvBuJOYt5F/sbI9GtREvlp/la2axoPa/buK4LBF2CTITwAv1P59Q3+sju8F3gq8BHwE+D9LKR846xZC/GkhxAeEEB+4ffu2rXpXh7mJylIryDZJXwR+WO3wzvf7qroqi4Ut0lAjyLMkP1+p1RFhpDM9tc6y2g7MpFGQLx5+MdIEObL5GqYzpD8myc+JwzPQD+9rQdaBKjojEitYGQCCMYMysl+TlFXe8Ln3Va2uTpr0jAK1CkHWREd0MGTC2DiCC0Y6A3hDdW8ZW4YtSCnxy6jyt1+E3A1xZa58iRZhmvRWslgELtNyYP0UIEqLxfjrCy0WHiDI3ZH1FIsoK9hzTd7wBXXVB5hYvF5m7RnIBLzwzMEXpiaAuAPFvWqeT2crbXLmaW7fYpHmBJ6D54iLPch+LRbWt3dvGT4S+u7ipOE1rCCfJkmdNAK9B/gQ8DjwTuB7hRAPrPRSyh+QUn65lPLLr1271nad6yMYAxLyaOHfsQWdQ7m0IzwL2oNsCI810mAe/P5o4Sk6D8EYspmOk7FJRHU82ioEWROdEYYg2/Qgz5CGkF/YeKbq2vcz+4kR6YyI4cWqNqh85jImygq7QznyBCEL5nK4koIs/BHjLiwW+p53VlnQ9WvoFh1EqukH/2AFD7IhyFlk31cbkqgGqRVQGKW5CzIqVm3SU9YPaX0KW8FohVQGqPtqh9YtFnFWsOOspiCHgcf9DhRk8x73ywT88+8ts7mOhCHIlhXkgbYyXNiUqvmCZYtFVDXDpVDm527sx/UTZ93obwPGnlf5ouE1TZBvAE/V/v0kSimu4z8C/rFUeAZ4FvgSizW1gxONZ1aHcmTREkG+MNu3iya9KuN0BYsFVLvSMHCr7lo7del4NN0wMgzOub31azjUBNmqApnOKDVZuNBXq+va9/IO0jVmKgN5FaXWHxGUESA7eQ1nFw0v0RDDCWEXTXpaQXYGK5A+xyUVA7yig6l16ZxEeoTh8MIvDUaKROexXQXZDOQoV0n8gAWRtj0+Oc1VzN0KpwCjwCVigLTcaDlL85UVZLN2pM7I/mYiK6v+jFXSNe5lXRBk9R73y+jiSDzTEIfd5sGilCR5qdbQbLZSXZGxWOhTaBuYJdr2URHR82PeQKcm2VSQNR+pfNHwmibI7wfeLIR4WjfefTPwT098zfPA7wQQQjwCfDHwOYs1tYOKIE/tDuUoCygSTZBrpvsz6zIpFkZBtkWQFzf3/CKLRa2u0Lec+KF3vsdFgCNUU8SZ0AvZQOoR2DZJXzan8NZTkPfctBOLxUyuMLEOIBjjyJyA3K6lSG++1PCSi4m7G4w7VZC9FRq8AFI3xC9imxUpaL/20Lt4Kfd1I18e2469ygnFagM5AKQhyJZtA3GSMmC1aCkz4a8LVTvkYk8tqPXMcwSJM7S+mYizgolYjSCHgctdQ5AtNumZ97hbxBcqyGadNXY7a6qosT6uYbGYGYsFWHsdo6xm+4Bz6xrXm/ptepCTui96IbI9zLBGkKWUOfBngZ8GPgH8uJTyY0KIPyOE+DP6y/7fwFcLIT4C/AzwX0kp79iqqTWYhaxGRq0Qv8r3GC4U5PNIgz62GfoOQti3WEh/xDxbQUEOJlU+s331UXBceIS+izhvnKw3AOEwKBWJsR3VZ1SylTYTdGexWGkgB1SkwnrUm1GQV5mkhxqxPBYd5CDr96K3QoMXQO6EBKV9BdnJZkQM8M7bDGoMtE+5tJ2AoBVkueLDryLSlqPeimT1h3IYuMwZIizXNDO2D7iQuJsmr1jYz/ZVdpTViHsYuBynAhzfcpNeQeA5OHl0MUE2Y50tT/gza+E6FotKqQVrZFQpyO7i568QP1dZPyxdK8NHliwWD/kkvRWejM0hpfwp4KdOfOz7a//9EvC7bdZgBeZNkM0ZBZcASzFhNYJsfv75CvIEsjlCShUqb9likTpDHduygioaHxLa9mvrBSrKy4tr0pMHA9kFQZ6RaZ/lqgryrm0FuSwhm3PsBCvFqS2m1lkmo7Us61UUZDXAxP40xCKZ4QL+cMXGM29EEMVIKc/fqG0IN4+IxGpe3+FYWSxsj3WepwVXxGpWBmDRNGdZQa7sEitkr44HLjM5wCn05EHXzqMy0skaqq7VvNFdDDCJMj1UxR+Bc/76MPJd8lIig9FigqIFVHFq2fmxZaYmoDbhz65tYOQ7K1ssXjqoje+2SNxHZngJnJsWMa6fOAf2vNFLFouKuL+GB4W8anGaxcKKglxrhlspB3mxKx0NLE7404vNXO/Oz20cNHVpi0Wqg/GtIFNHXHFaMLyoJgA/xNeNVHZj3uZkznoEeSJSu5FqufITH5WDqvnnXOh7ayQsJ0ZkRkFezYOMP+5kgEkarZ43DKrxbExMnFls/kRNrEvExf5jgHBkJulZHr2rkxnEinaUxbplVxWV6eoP5dCvZQ5btg0sPMgreKMHbicDTCqCvKLaDqixzrab4Xy3SnZapaZqgIml19DYzcZuAbK88DUM6zFvYO11nFXJGusoyHqanuXNxLhO3F+rFotXNcyboDaUw4p1oK4gpwWB6+Cfd5Rae9OpqXWWSEOVN6wWn1WmsNVHYFuzWei8xygrLh58ARCM8AqjINv11VYDOVZs0ttxU7tDOfTCfFgEF79+UJEK637f2rjw1V7DMUMSZondiLBM+3YHKyrIpT8iFIldSxHgF9HKBHkU+GpUsfUpbKvnDUN3CnKVS72Csj0e6EEhYD2ZIay8vut4o+1dq6KUpHlJyMXT/WCxppW+3WzfKNMT67KLm/QGnoMjVD8KYN1isWhoXGHYiyGiYFWtHS2lRayQYlFXkC1MHnxgeIlwlNXxIUZPkJvAvAnSWbU42LFY1BXk/OJmqupNN7MbP1c1UmmCvIoqqlMswKI3Op2DrwnyiuqjSRqwHdWnJjpdMOgFFvFzIrU/whw4yIOLTwBgKTfaarqGXtALb4Rz0fASgGCES0mW2I1UKxKVFjEcrragl/6YMfbTNbwiIl1hYh2A5zqd+GqjOGEgsmowyUVwBwvLmk2IfPXO+VHgqs0EWE9m2BGrpViAIhdqgIk9IhrrTd1whel+sFj/Cze0PpBjPNADOS5QkJVf2+Ow6MZiMXFW82svBoUs+pjs1JVrtf3iFAuTYlR5kJGQt99gvDQNOJ2pmizaz9pAT5CboGrSm1a7LztNeoYgKwX5wmaqmoI8ro+PbBt69zfNVT0X5yAvLBZg0e+bTiFQdpSVLBbBCJHNCTzHugfZ5HFeeK108+DYOhFV99ZBvqqCbDzIsd3mQf3gX7XByyz8peUj5zKdEROspmqjGs/CDqwfaiDHagoyQCwGOJaJqLGjuMPVFGRv2M1obmeFhiWDUUdjnWdJwZ6XAkINv7gAYz3AxGoznCbIgVzRYqEJVu7ZjZ+bp/pkcAWLBejEiBxwA2uvYZViYab7rWCxSPKSwrNMkBOTzXxxM1w1ebeermFhQzGvn4Kn04feXgE9QW6GWkSL2X1ZmRBXm94VpSuoojXrR+V1soHMKLXKX3mhKhpM1FAVX+0WrdYVjInzcjUio5Vtq+kauhkuZkWLhRDgjxiR2B3KUTXDre71BRjTjYK8OkHW5Cq227RUpipObaWTCZRtoIt0jUEZrTTS2SARQ9zcLkHO9aQ+f2WCrL6usNg8mBWlzvFmZQW5C4tFlOqBHP7o3Mlwi7o8jsoAygzy1FpNoO6tVTOjAdWIbPlardqkZ+qyPZSjUkVXtMkYkSsSxhvdfl1SSuZmgNcKHuSlPiqLiTJRmi/WzxVfw22jJ8hNUPf6VgqyTYtFqALlLyTI5qhytvA62YBWapeOTM6DaTzTk5msepB91aS3qn9VbXIsbyao2VFWJO7Glxjndm0yMzlcsUlP3fOhSDqJefNWaFgCFousZdIn04hIrq4gi2BMiH0P8kDGavTwikhEiGd5wp/xa68y/hoWRDqLLTd4rZkW0YnFIivYddKV1bRR4HJU2G08MxYLv5iv5UFOHbsEWTWeeSsryGHgqc28HqBlpyZtRzGNlitE4gHEFuPnEt0Ir67VxRPrhp6rYmGTfElkaxszM90Pqn6hhx09QW4CxwVvaH9q3Ykc5JXi1KCqy+qgkGBcdfCuZLGAKlfTnsVC+ZpW9yCPKh+51ZpQRDRwnZXyaglGDM0AE8vEPWKwcpwadNGkNyURAwaDYLWvr/UD2ITM5sQMVrPuAM5gwpiYyHL83EDGi+PaFZC6Q+sT/srYKMirPQDD4YBEeuQWTwHmab4Y6XxO5JVB4DkkJj7PosVinuRMnNWsDKAyZA8Lu1ProiWCvErihyHIdtM1orRg7Es1PnnVaYhZXln87NSk3t9mvV5lUAjAtEpIaf+9uJR4lc7A8ZTN5Aw4jiD03Q4U5NpzuSfIr3IEY0hnDD3dpGc55m2e5mt4kOcqDsi2xaJ6I65gsWBBkO0RdxXzFmWre5BVlrVFtd3ElpUr5g0D+ONqgIm1qLdqpPNqAznMvbXrWm48S2dEIlxteAlUDyTXcuOZyCIiVn8N3eEYR0hii6ooRUZATrkGQc4c+xP+Cp03LFZMsQj1WGebFovlOLXVHsyl5SguUHVNRLJyHmwYuNzP7TaemXXdy1dTkM36kYjQeiTerqfXnhU9yFWkmrVmOGNHWW3Yi3lWzqS9dI0qei7wqsb1i5rhRoGnOIxvU0HOF1yhJ8ivcug3neMIPV/d7qCQlRTkpXxmz97whIYWCzNS1dqxs/Egr2qx0JmPVv3aegE8XjXXFyAYEeimD2tRbyaJRA5Xa9JzfXADdt3M+rCXeA2vr7nn3SKy59cGRB4RycHKFgvjq03nR9ZqMvdWuYaXL3dHBKVdgixXGE5Qh2qIG1AmFslVouLUJGIlcgUs6recYjEiWSkDGVST3rHJ9rWkbJv12Smi1bKZNemxPeEvSgt2PB3nuCJBVlPrLI5PTguGvoOTL8Ssi2oCiHKhmwfbv15LAzlWbIarOIzFEdjVoBfoCfKrHv642i1bszPUFeRkhRSL2vjKkemWtUEatMViKdfwPASGIFvMHNbNcIuYt9WsDGRzQs+pfHetQ+/Ej4t1FOQQv7RssagpyCt5kAGCMbtOUikUVpDNma+1mVBENJSxPb824ORKQV7VYuEN1dQ6m6roKmNkT6LwQgbSrgd5lcagOsaBSyQHSIsDTGZpzphYqe0rRks5gSZhmb3rpbzRq1ssltM1bHqQJW4erbTJqdKJGECZW2kezIuStCjZdfTas6qP3ESqWUyxUErtxV5fVVPtxDmwQ9yrgRwD3dC40ibHPaEg27FYVOu6flY/7OgJclPUjm2sKZBZBMIF12de7wA9ryY44Y221DzoKwXZcwTBRb5aTWKs+mr1QlP4I/JSrp5iIQt2g9J6ZvRhEaxO+vxxNeHPnjfaeJBXJ334Y3Ycy016WaSTNVa0WFS50XbTNZw8Vsr2itfK1xP38tieolaNjF5DQS69hb/dFqq4thVVUWOxkBaP5yPdpFeuqh4D3iCkRFjP9h2akc4roIt85igrGKJJ7krNcPpZYzEWz0w63XFXV5BDE3Ua2J0OFxqvL6xAkHWKRTW1zoKCrE+OQ99bWamt1PbaNN62sWyx6GPeXt2oGf+tJUaYiUFC6JD0Cx7OS82DtfDvtqFvbrM4iIsUGb34D/SD2c7UQfWGNgM5VvMgqzfonmfRNlCfWOev7qs1SQPWbDLZnNwdInHWsn6MndSO375W17z016hp0Txo7RQAZeGIZMDAW23JDEKtIFtsPDN5w6t6fUHZMYbEViZlGSzyhlery1gsrI8pFrEah7wiRoFPKgaWFeScgUxWJgth4FaJOLaIe5SWlR1uFeIeeA6eIxZ1WVIfAcaOIe4rqKJV45lFi0VSi54T7rnNcFBTkJMCW82DDwzkWOGeHw88dTJY2YrsNA8uWyz6mLdXL2rRMfYUZDUxKM3L1VVRrWybG9EKaahZLFZqptKLv1/MEcKSKqpVi8zRdo5VUyyAPTe164tGEeTVLRYjXKMgW6sronDUA211BTnUE/7sWSxkNmdaBmvZPsAMMLFHkL0yJnWGq033A5yB/eEXqc4bdtZ40MhgjGtpUpbBqn5Mg5G2WAiLSm2cFYxJ1jrWHQ1cYuyO5p6nheo3WFHZHvq6JrBG3KOsIFxDQQY94a+0R5DnDxDkFT3IWYG0abHICiVGGaX2omY4M5Qjs2exMOvgYmLdajaZeVJXkC00Dya5qqnIdRJJryC/elELHx/bGuus8x7NDR+uQkb1btmQaXvEfbRsuj8P+g0qbGYO6x1vrCfWmXSRVepSjWe2muHUQnOQeWupooZk2Esiici12r6qbQBfZfvatDLIdK5sH6teK9endHxCy6O5vSImc1afWFcNMLHoQU7niiC7K8apAQhNWguLDXFuPlfWhBXJ1UirojYHmCjbQIJYYzMx0tYPW8p2UUqSvFT9BmttJrRKaYm4x1lR5bCvTJD9GkG2cTyvT9JGrKEgDzykVI2p9hI/8rWI6IMWC3sEeeiv7kEOA1f1cHj2fPdRVqiG8OqEqVeQX73ww+omCgPXzlG4JqJGBV5NQVa7ZUMwWlfVTDNczWJxIWrG/9DWZkIT0diQvpXqUovB2EmJs9JOCoK+R+5n/lpNeiKzb7FI17lWuq4hiVUrg8wiYgarDVTRKL3Q7lCOsiSQCcUaI52NOiIt2gYybd9wBjsrf4/QtodoZi9dwysiUjFcuRnOWCyc3J6VQZG+dC2CXKm1tqwMJm+4TJQ1bgWEfhcWi4KJY7y+qxP341LnM1siVwAjsZ6CDHrCn6XJgzNjsdBDqi6CeYYvLBbtb6ArvrCGxaLyIDtONR+gTWRFSVZIta7X0rkedvQEuSlqCvIocO2QhkzF7MTVjnCVZAYdXabfiHHbZLTWOR+tqSCrSDVLiRH6SCjWDSwrN+kBO47FqXX6oX8/dddq0hNlhkduTxXNIjJtsVjVV4sfMpSWp8NlcyK5RuMgHRBkbUdYZ6SzUUdEZk9BNoM1Vh3pDOBotTmxTJDXUduHvkPEwOqEvygtCEnWsqOEvstcBtasDHFW4JHjyHxlIqpIu1GQ7Vks9kze8MqNlh7HhT2CbESV4RrKtnkGJMIM5bDgjTYWixWVWtcRDDxHrVWWLBZLgtqKdQ19d7F+WhjNHdVJe7aeBWub6AlyU9QV5PrN1SZ0k160joLsjyCLFtE7bddVu7lXHshhmgezGSPfYkMjixn36zTpjbUqYTOJ5CgTqycz6AVt102r7u3265qTCJXKcGGTpYGv8pltEmQ1kGONHGQALyQUafubQQN9b62nIBsvnz2vr2kANIkZq8DV3ugkskfcvTJeazMhhFADTEqLCnJeMBTZ2gR5Ji0qyGkzr6/EUf0DFpXtPW91KwOYEdiGINto0jsxsW6lSXpqvU2EPc/2fMlisWpTai2f2UozXAkYi8WKY7n9msgXtG9JMWvzsFeQXyPwR8poXuRq92WxSc/87JV8mX6oPMi2LBbmSCgYq2PLlf2ri7HONsdyG3/eOtaPkRlgYqku6Y9I8nK9awVc9u0qyAmD1U4lDIIRAxnbq0lKRDZnvsZIZwD8ESGJ9bHccp0FXb+GwqJtwAzWWIsg63zmRDf42UBQxuTrbCbQE/7KRFm4LCBKS/U+X0O1CgOXeekjLXp9h6zv9QXU9bWlbKcFu+7qE+tMXYe5fQV5INe3WNhsapwnxUIVXfHeqgQ1SxaLKCsIXAdXsHJdoe+SFZKsKJdmPLRZk/k9C4LcK8ivXtTyAsPAJc4sLOwnm/RWUpDDZQW5dYvF4uZWAznWSBvI4uWdqoW6ZuUaFotgkaEL9hoaDbFaN7ps38/s+X3ziFisnusLgD/CL2OS3JJfO08QSOI1JtYBiCBkiM0kEnVvSW8NguwNKBFq2IIllFrlGaxBkH1tscgjO016aV4ykAnlip5ag0pxtnS9Iu1Bxl+9LhOpZstHXtUEa5Er0L5ai3Ut8oZXz7I+zPUJmcXhF4O1FOSTBLnduqSUzDM9wGtFpRaU0BVlRXXa2zbiTE33q5Jq1siyVnW1f28tWSzyXkF+9cO8uJqMpkVJXrRMkvXuL8lqRyYX1qUtFrZi3rLFArWeghxWE/5sKsgz3Siy8qhpLI/AziKkJgure5DVvbXvZlZJX7xOWoSuyyst+rWzBsNLABGMCYXF5kGjIHtrKB5CkIqBGtdrCWU6J5Y+w8Bf+XsCTZAzSykWUVowJKNcx6+NmvAHWCN9lVq7xkM59O2mWMRZPW94dYsFQCbsWiwmawzkALW2LQiyhSY9/czwZQKOB+7F93xF+iwpyGmhJtU2UZBjM7WuSKBsd92KjXC1hlJr1tvY0oS/uOIwTq8gvyZQG+tcNcTlbRPkpgryvAMP8lA9DNckyGFg0Y4CTKVaOIerjpqmPuHPThJJocnCSjF9UN1bu15m1WIRy2BtBdmVub3mQWOTWWNiHagc4BEWJ/zpe0sE65G+zBniFRan1jXwaxs7RmlprPM8ywlFglxDqYUaQbY0TS9JMzUdbh2Lha8i1WxZLJYn1q1W18BzEEIPRLLVpJcWTNbIGwZFkO+l9hTkKvGjWD0SbzECWzc1tpzMME9qecNrKMiVxaImsrWJqjdoDa/vEl+wkGIRLXmQ9f2x5inTNtAT5Kao3dxVpJoNO4M/qn7uOk16hri2rtbWdn9xVq5BkEcVcbfW0AjMtIqxTopFNeHPCumLq+audS0Wu1YV5DnzNdMi6p5tm69hJAPCVTY4Gk4wUjnIlhXkdQly7gzxSnsEWepTgHU2E8aOUVgcvTskhXXUdtQIbMCaWpun6x/rmhHYwiIRXVgsViMLQghC31XJDBa90etMrANFfI4zR6m7lmLeAtdRUYBrDFUBmJV2Uj9MA/XCYrHGaHWbBDktlr2+K1jDliwWQfspFsvJGr3F4tWPSkFe+H1bPeKVctGkZ2LeViENmoi6Qo0AtaUgF+6QtFin8Ux5o+1ZLObghUS58sauk64RVAqyHdJnGpbWmaQHKsXCnm0gYra2gqwWtCGW6tL3VrymxQJ/pCb8WfYgizWPBAt3qIZAWILI1fjrJgTZmq9Wx6mt/fCrncjZQJGuf6w71JnDIo+sjOZebtJbT9lOLOczT0Sy0uhkA7Wu50jfzlAOdVrprKfU6vV2bmmwylxn1Fd2hhU3OVVTv6V7fqEgm9PeNRRkS+kaS9nMfczbawDVzT2zY2coUpAl+GEtB3nV4RdqlGzldWoTmiwkVZzaqhm6xhvt2VFq87jaTPiuwHdXrysobSrIc3Iz0nmV6X5QKcg7jiXSV5aQx8zKZgpyKJIqSqhV1CwW69WlcpBtbiYA3BUmZdWReyFBmdhpaEQR5JjB6jnWwDBUf0Np0eu77kAOYLGe2hrNna5OFgxC3yWWA4Sl0dxxg5HOoLOQhb185kVD42itYS+lpLLStY24TvrWtFjMLA0wqYaXuKUaRLKOB9migpxk5dpK7YMKsp0Ui6HXK8ivDdQVZK3stkqwzINi3Ul6J5Tt1glWviAxsN4UNmOxsNfQGK7niwYIxvi6kcqWbSBrMLEOYOJY8tXmpqExWC9vWJOe0FZihF6U52umWBCMVIqFJQ+yIZPOYE3bgBsSktppaATcPCIRAY6zYo41EA4DEulbTUAYrjmQA1hKBbKByke8RhKJsljYG8oRZcXaTXqLumzmM5eaIK+3mQA1tMfatVrT67uwWNhp0jPrzWLq4JoeZLPhtqIgO2sptUun4BZOAZYHhfRNeq9+VLu/efVGbJU01HZZUVbgOSuqorW6lNfJQuMgEJlmuAYWC7DRPBhVavu6jWdmgpct60eqJzmtm4M8Epml+EClhk1Ln3CdHGQTV0ds1YMcN8hBHpASJe2PkgXIY0XcveF6CrL0Q0IRW8tndoqkurdWxcBziAis5TPHWcmQFGdNv7aopm3aUZDFGpFXBktjnS3U1STmDbSdQQ6sKchxtr5NxqzrpWvHG73kq13xWrmOIPCc2gjslm0Duil/uMb4a2DRqG6xSW+ZiK6hIKelIu5lBkXWXk0nB4UId6Ukkm2jJ8hNcSLmDWwR5JHa0a9JrkyjXvuNgwufKKxJ+uoDTKw0NIbrZTMDBCOcPEKIxbSmtutK17WjVBP+bDXDqdfwqPAbWSyGIrV2rUANQXDXUEXNe7HymbaMXEeieYM1CbKnFGRbyrZbLMaFrwohBDEDRG7JYpHEBKJYW0F2LKlpFRoc6w61xWLp+1tEnJWEa4xOrtc1l4GVUwAppVIg5ZqJH3rNLSwqyOtaLEA9n44txc+Z9/VIrJcZPfT13ITas7rtuob+ennD5jk+T2tjz1t8Lyb5iZg3P1zZvrNN9AS5KeoxbyZzuM0HYc1gH+cFg3WUWv39o8DCUA69+4tyVc+6CvLijWiBuOvEj/UU5DFCWz+sKH15XPm1V67L9cHxGQlLFgu9IB/nXqMmvdBaioW659cdMmHei7Yaz/JkTikFg8G6jWehvWsFeEW8NkEG1T/gWBqBnUXqNVhXbXf110tLCnI1sGVN0rewWNjx1U4cM7FuzRHYZWClpqyQFKVk0CAzGiB37HmQFwryOpsJRzVue+3XVVkfjYK84rpV2QzNe7flupK8WNuDXOUgGw8ytLoBi9ICR0DgOpUd8gsBPUFuitpNZFdBDonTYvXYq8CyB9lEz+kd4VoKcpEy9lTDki2LRaU0rAo/hHSmji0tkb6qoXFNZduQK9l2B71ekI/XVpAViVGZw/aa9Nb2punF1lZebZHM1PCSwYo51hpCx8/Zslj4ZawIyZqwOcAk1wTXXVNBdrU6X1gaYCIaTO9aslhYsg3suNnax80VQW75GBwW63JQrp43DKpJD8wIbDs5yAsP8ppZ1qYhzhJBHrL6dD+gepYnujeldQ/yyZi3VTzIS5P02j/NifQGRwix9iZnm+gJclN4ti0WC4N9tI6vtqZsD22oojrOZmG6XzUtQl2vsZ7QZKUur4EHOVhYP1pP/CgyKHNi49deNcUCwB9VA0wSGwNoYO0hE1XMm61INZM33DQizJKCXKZzlayxRloEqFi4IamdATRAIJMqY3sdpGKAa2mAifFr++F6CrI/GFFKUX1/m8iKkkA2i1OLpEWCnBWqwWvNDWEYuDVfbbsbHUP6AhkvxJYVawJ1b9mapBdWFov17ChVpJqlFIuBXM8mUzXEWbi3KovMmjFvZm1THuT2E2XiuvVxTZvMNtET5KZwPZURmc3tDAo50aS3Vt4wKGXblsVi3ei5Wl0jfRz10HiQdebjyPfs2D5QRNR1BL67jq92QZBt+cgjGaxH+kzMm61ItXROicBpSJBtNZ7JdE4k19xMoFIvQhKixA5B9suEosE0qswdVo2pbSPXE/r8Nf3a4cBjzsCKghxnxdqNVKAaGmOLKRZxVjBy1kuLAD2Uo7Bj/ahGOpdxI4tF6tghyNVQqjXVx6WhHBbSIqBOkFf3IANWElLSoqSUJ9IiVkhu8VyHwHVODDBpV0EeGIEoX+/e2iZ6grwJTvhqWyUNNQU5ztbxINctFo4dclWLnltrkh4w1pE41qwf63qQdebj0IbFQi9Qcz3MQazTlBCMKtXLyrVCpUU0UZDHwlLjWTYnFQOGq47kPlGXVYK85sQ6AG8wwRMlcWpBrZWSIYlKDVgTasJf0n5NQKkbJddt0gt9FV1WWiDITePUHEcsRmBbOJ2Is4LxmnFqoBIjjgs7yQxmrfHWGOlsagKsTfhTJ4OiUZNelTncutpeIgT46yrIFgeYmNSjajPhDcFZjeYNfUdfq/YTZZYV5PVsMttET5A3gU5m8F0HzxEWY97WnFgHWBvrbJTadcZf1+oyCnLrx8766G2t8ddQZT6OfLf9ZAa98KmRzmu+1fwxQWkpn1lHXkVrT6xTr6G1EdhZRCLWzECGarF1LMVekUXrDy8BXJ2bnM6n7dekX0O5Rq5v9a2OvQl/ssFADtB+X2mHIMdp2WggB9SuryWLxcgM5FgDoe9yaCuZYYkgrx/zljCwM0kvK5h4BSDXVrYjk+1rwYM89FxEtl6EYGXJLNofzf3ASOc1Tpiq+DkLmeRLwlU2X6uubaInyJug9qYLfbfdxqWKII9Vk16TmLfAxqCQeElBXr0utSs1DQ12LRZr3NbBGIqEsW/DF63+1rUn1gEEo4rE2LNYrElGhQB/xNjWhL8sWl/VhurB5BSxnal1eUTMmkNVWCQ52PDVmvVBNlBizIQ/G1gQ5PXqGgaqIc5GikWcF4s4tTU3FKK2nraNKNV1rbuZCFxmluLnTB+Gu6aCXDV5MVDxYmV7z0Ljq9111otTA3VfVaTPQpza8ujkNQlyRdzbq2uRN2zSItZrtFxq0mtxo6OEK/1c7pv0XiOo3dytk9Ham24tX+0JBTnNS4o2SYPe/UX1o5w16gql9iC3ea2kVIuyVrbXHRQCsO9ZUEX1vaEGcqyvipoJf1Z85ECM34iMTty0/YZGgGyuh4SsuSxVE/6S9hsaASeP1t9MAIFuVDO+3FahX8O1GxqBwg0ZSDsK8rpkwcBYLGylRQzJKNzBysfNFSo1zYY3umTI+k16Q98lMsfzLW8o1BoocfL1muEq0md8tS2O5k7yEikXDd5rjws3mcMWGhqHnrNWnBos0oxseKOjkwryug2N9Zi3Fu/5pXSpvknvNYLazV15ndpCZbAf6jn0K75U3hBQUSrm2Kv1ujRpB9XIshL0G2KgvYCtqrW14+a1GhqhWkB2vNyaUjsr14xTA/BHuLZGYNeaB5vUNRb2LBaRbKC2V5MH7WQOO3m0vh2FRaNaZiO6rMHgCwPphdX7sHU0rKtKjLBkZVB+7fWvlR8MKHBaJ1egCdaaecNQ20yAFYvFgAyBXIvEVE1eFpRt8/yaNFCQl2LeLGwmhksK8ooxb6ZnyUzTs3Ctho0i8ZxF4ge0XtfCYtEryK8N1G7usO2pddlcHQc6znrZvvoY3CjIYCF+Tlsshr6Ds+rEM/2G8MsYR9hJ/Mh1w9JaecN6MdhxM2tK7XHRQEEOFiOwrdhRgIRmyrbNCX+moXG9mnT8nKWhHE4eq0i8Nesy0+Fs+GoL/bB3Gigx0g8ZkrZ6DF7BNEquaWUwQzmEpSlsISmywUM5DDzdeGanroFMwF/PjxkGjrUBJkptX3/8tarLZWah8cy8p8cNpg4ujXW2oCCHvqsEGuGoVKtVanrAYmFLQV7zFCCo+bWhfYJcNemtZ9/ZJnqCvAlqN3frKQi1Xdba2b5a2a7iZNomo36DvGGTNKBTP1pVkPVrkK47sa5W145jw2JRG+m8tpVhjGOUXgt15e4QidNArQ0JLaZYNCPIxmJhpy63iIhlsPppSVWXHoFtwWKRRpogrzvdj1rjmYXUDydfr2HJIPRdNQLbQj5zkimvr2zQGDT0XWIxaF19BPW+DmTSoEnPs5bPHDdM/FB16QEmLde1GOm8fqOlsQ1ICyOwl6LnvNVHJy8P5WjX+rGULpXHa22+KpHP9RXhb9MbrRsagbWJ+zbRE+RNEIwqI3voOy2PmlbHI3lRkhVy/WSGLFp+I7ZWV1zFqa1dEyhlO/CIshYTI/QbOdWTiZp4kEdORpyV7U6tq0Y6+2sPmcAPNVmQVpTtwlyrtYn7iJDUSg6yzCKmsoHtw/UphUco7OQze2VM6gxWPy0xCNpXYgzSWCVjuGvmDcOi8cwGcXcajHQGTUQJFgS7RRgFuYlf2xB3WxaLQK6fCavUdnsWi2p0cgMFeWpRQW5Sl3kWFBZGTVd2vgZKLWBF2TZBAYu61mhoNDbR6hS63ebBMHD18Kz1fffbQk+QN8FJi0XrVoaQeN2RzlVdNYtF22qtnqTXRKlVxN2p8hrbqclYBtTivF62ryKKY0ctvq02eWmycJB7jZrhhCwJsOGNjsmMHWVd4l4bgd06Uq0gr3utgNILlYJsoS6/iMmdBrFEtU1h20gj9TPXzRsGEIF6LyZR+/FzbhErz+4ao5NBkz4ZVL77NhGlpfb6rn+twsAllkHrr2FZSuKsxC+bKMiuRYtF2VhBHvou06L9CX9VYlITi4Xu3cnEsPXR3JVI1GD8Nei/q2WLxQMxb00i8UB9X4snTEtqO6xtK9oWeoK8Ceoxb62nWCznDa/nq10eYNJaXbXd3/p5w8ujuW14kGNtsWiibJvjOxuNlgeZ19g2oHy1bY+anpM1VpBDhsRWiKjM5sRNmvQwBDlpfzNRZLgUFA0avBa2ovYJcq59zf5wfdJnSLUdghype2udoTiojVrEALdov3kw0pP0mmwmQl/Fz7VNRM1GfN2JdaYmWxP+oqxgt0FahKrLqRFkC8MvZAMF2YzAdiw0D+ZFLU5t9Wu1NDehbQW5atJz1ifudQ7ToiWlKCVpoWPeNmgu3gZ6grwJajf3sHXStzyxbm3bgM5BhhYJcu3mXitZA5Si5PiVsm0jEs88NJoo26GwMOFP13WYe428voAdVTSLyIS6VpUvbOW61IQ/Ox5kM5Bj/WVJ+iGhSNrPstbe0yYjnW2OwF4Q5PUtFo62ZdggyF6ZkBsyss73uQ6ZCBRhbNPmhPHVpogGBHnou2rimYUGL48cRxbrE9HAQeJQuMPWvdFxVrDnrZ8WoepyOSzaJ+6VSNRA2TbrrrHftUqQTaRotp7XF2pzEywpyMMm1o86h2kxfm5Z1W6Wk74t9AR5E/gjKBIoC0aBhZi3WpzaWqThhMWiNW/00nS/NbKZq7o0cW+dIOu0B924slZdniGiavFt3fohXKZZg2Y4nYCw79tI11AjnQfeGikkBn5ohyBLiciajXQG5au14o3W99YmCrJjgSAXevhI0IAgmwl/WdR+45lfNrSjoFJoBBLydlVk03jWSEEOdOOZDf9qw7QIs5bkTvvpGlFasOvp/pAG48KPzIS/FodMVJGiJrt7TV8t6Al/0Lo3uhoU0mAwziJ+rv2Gxoq4rzlJL8lLNWzJDzGDrjauyRDkwF3kY/cK8msA9cYzG6SvqYKspwaN2laQaxFOa6dYwIK4t76ZWIx0hmYKsok2atv6If0RabHGqPATde1byWdWI52bWBnUCGxlsWi1obHIELJoNJBD1RXa8Ubre6vJSGez+XItNJ4V+qHqh5O1v9ezlM8spcSXSRW3uC4K830tbyiiVI10btqkN5ODxYTAtmoyGciw9tjdUaBIaOZaIMhLFov1iftR3r7FwrynA9nEg6wJsmifIC/5apvYZCxYLOK8wHMEviPWJu6VoJa3O8DkAVUbegX5NYGTvto2SYM+HlnaEa5cl6Uc5BMKciPbgEUPsiHITbzRQ2Fhwl82r7JX1xp/Xatrz8utWCziBrm+pi6/iCml8pW1V1NteEmDJj0nGDO0ET9nRjo3IciOQyoC3LJ9BblM1c8MGqRY+JZGYGeFZCgTlRjQAKXb/jE41JIZGhLkSAZIC3nDjdMi9Ps2c4ZWlO1JYw+yy4FRkC006fnl+urj0gjsFusy46+bNOlBzc5gLBYt8YYo1WJMngDyoUjXWCbIvQf5tYOagjwMXKRsMQXBEOT6ZJyV61LHNsP6Dd9WTaCU7XVj3vT3WVHbtUI31w0i66VYqDdqoBffpOVIPJO92nQ63I6VEdhqpHOTtAj8EIcCn4I4bT+JJCJY3xcNiMGIkRUFWRPkhgt65oS4FrJ9ZTonkR7hcLXhBHUYgtx2zJuxDTSZWAeq0RKw4PctG02sA30UzgDSdmtK8uZ5wyaPOxXtE+Q4K9hxmse83c8MQW7fNlAlfqzRAFqJRC3HzyX1dKl8fQV5yWLRoq0oygoGDZVa84yaG+Le0snXcvRcs0FC20JPkDfBCQUZWkxBONGktxZpMDnIbce8nfQgN7RYDC1ZLKalJsjr1KUJrBm927aCbMhC0ya9XTdrN18bII8bjU5WdZmhHC2TUaMgy2bE3dHxczb82kCjBi9QPtFK+WoRMouIG/q1A23LaJsgLwZyrN+kBzWVvm2CnObKQtUk5s1SioWKU2tGRB1HMPQdNRjJgrI9qQjy+gryUSZAuK2+hmad8Yr1Ez+qYVktK8gLVVQnM6xpkwl958TUuvbsDGHQLC1iicN47W2+Hpjut2Zd20RPkDfBCQ8ytGxn8MOqaWxtVTSb4ztiESfTSk2LJok4KxtFhNm0WBw3Icg6FN0v7TTpmfSDpjFvu66NFIs5czmoMkLXQmCLIC8U5KZNeiOLFosm/lVQjWeBBYJsEj+aXKuBJsilBV/tgBTpNfQX+nYIcp42P9Y1kWpOEbc6mjvSm4lN6kpE+wNMoqzQmfBibdI39F2SXCItjE8eeI5Kg2mgasPCfmeN9DWwWFQeZGiVuC8ptQ08yG3Hz1V9VA2J+zbRE+RNYFSldL7s39kURQ6FUjyW3oirwg9BFlBk7doZqoalgR4dua6vdtli0apf2xsSZernrT0S2BtWBLlt0mc6+psqyBMrI7Aj5qW/mYIsWk6yqKL6NmjSE3Y2EwAiWN/rC6rxbCATsjb92oDI50QyUHmna2IwUgTZRuNZSDOvL1AjCy0P5UjXP242CANnMda5xeZBs5loXJevrR8WCPJIpGtbGaAm4rTY4AU6Tq1Ki1hf1QZqI7DbuV5V9FzTJr2g5kFusy5DkKuJluulWAA1b3R7NQEMvGbEfZvoCfImqN3cwzYV5Hyxy2rcpAft2xlOjHReu5kqWIzALiXtNXlVanvRMLpshKdVvrZtA6ajv6mCPHaydoloWUIeMyv9xkQULOQzVxaLoFEOshpgYs+DbKLR1oWZ8Ne29UNkMQkBgbv+tRoOhuTSab3xLM5KQpFUo6zXhhEcWk79kBsc6w6NxQJajeMy2cxN66rGTbedg5w23+SY9aT02k3XUGJM87QIoPUR2NXwEo9KzFoHVdRpy5vCKDUe5PWV2iUO47f3Gi4U5L5J77WF2s3dqgf5hNcXYLBWDvKCuLdqZ6ipfNCQ9NU2E601eWUReA2zmQH8sCLIrTbp5XFtYl2zFIuxaJlc6c3XrAwapUUsCHLLft/KYtEsxQJ/zJCUOGlvlCws1EenoYJcemqASdvE3SliEjFArKnyAYSBp8mVhWQG0mqU9bpwLSnI1d/ZoDFoeWpd2wTZWCzWj8Uzo7ntJH40HMtdEeSWFWRj52tgZTCniccmfq6le968n8dO88QPuxaL9U9NHhiBrWc8bIrlbOY+5u21g3qTXnU80QLpq91ESVYgxJq2gZqCPGpzBHbNJwpNCPLyAJO2/dpR2qBxEMAfVlm1bdsGMp2/OVg3mUE/zEdt2wb0azgtm3l98RVRtGWxmG9gsQDIWyZ9hc4K9hoM5ADVeBaStpv4gRrpnDYcyOG7gpgAkbefgDAkaUyQq0EeLZO+TVSrUeAtLBYtT4drGvMGunnQEkEeNlSQzca2aDmfeTlObb26TEPjtGw3fs6IA6OGSSSh76q0CLPxblHZDhsqyEtzE8z3tXCa80DMm3DVZN0vAPQEeRPYatIzN3cwqjxFaylFNSVGHeW09HDON8gbNnVlUaWmtkuQF9dqbfgjnDzCc4QKSW8LWUTqNJjuB+A44A3bbzzTC/Fx4TW2MoANi4W6tzIxwG9gGzDvxbLlZIZM/7xg2LzxzIb1wy1ilWLQAEIIYgatj8BOkoRAFI3tKK7JdG6bIOfNCXJYt1hk7dkZlgaFNLR+zGS7KRZlKYmzUk2s28Bikbvt+VfBqKJOtc43qWueC3Dbm4hYEeSmiR9auDIxoK16kIOGCnJd5GsxUcbwj7C+yWlw8rUN9AR5E9S9vq0S5MXN3SxO7aTFIt+8Jv3zQBAVqp7GOchaDW/V+qE9yM0az0LIY32t2k2xSJraUXRdQ5G0nKyhFIGjoqkH2W6KhWx69GYpAaFIZiTSZxisnzcMKh7ORvOgVySNRzoDpGKA07LXN9WbCbehHcUQ67bTNaq/s8G9NQyc1iPCQCl9E6fZxDpQ68m09KHMoGjHVmSyfQdyM4tF7gxb9UZHGzTpmbraHn4RVQpyM4I89NXchOoUqMV0jSp6DtZKIln2ILdnd1o06TmNX8NtoSfIm+AUi0UrmbV1D3JaNk5AMGOd21Zq41ylRTSKeQNGjiLsrVssmnqQtWdu4LstK8hzEhqq7QD+iKFMSIuSvLWGRrXgNSfIi8mDrXqQ9QO10cQ6qOpqu/GsSOYqM7rJfQWg85nbjp/zy3gxmrkBEjHALdrdTGTxZnYUXxPktvOZnWIzBTmuGrza21DEWcGOm4HjNTpuDgOXaZXM0K6vNigbKsj6ZDBz2k3XqESiBhYLqA/laC9+zryfB9UpQLNpiHHb+cxpzY6yZl2LuQl5jUNsfs8nmrQ7jlCWjZ4gv0bg+uD49iwW/og4L9Y/Cj85AtuCUgs0i3lDNZ5B20NVNvEgL6wfrQ3lKDIocyIapljouswxbNzahEbtI5cNSZ9WB0dtkz5dlxM0JH1GtWzZNlCmc9U4uO69rmFrgIkv4yohpQkyZ9j6hL9cE1uvwfhrgMFgQCbdVn3kRSnxiw0UZBOnBq3aGaK0UA1eDU9MRoFrrfHMl8kiUWQNGBEgdWx5kNdv0oMTDXFtEVG9Hg9p2KRXjcBuOV0jP5mDvHpdvitwzdyElhXkSiBq+BpuC1YJshDi9wghPiWEeEYI8V+f8TVfJ4T4kBDiY0KIX7BZjxWcnFrXqsUiXGRArluT/jlD323viN54fU1XamMFWRHk1giW3pVGWQO1HfRrGDP07DU0rp3NrOsKpM5nbjmJJJJNm/S0gkyqmkzaQjYnFQEDv2Hzhq7LaVlBlqnKG250MoGyDQSiIE7aJaNBmWykIGfOUE0maxGlbmj0GyrIYaASI9pUkOOsYFg1w61/vXzXUYootGuxyPVAjoZq2sBzq8FIbW0KFyOd440sFm1P+IuN8JFuYLHICtVg3KJSCzUFec2TLxsjsLOiJCtkY4IshFjYDFu0rC0JVw1PAbYFawRZCOEC3wf8XuBtwLcIId524mv2gf8e+EYp5ZcCf8hWPdYQqGObQZu+2k1HOte6wcPAYd6mB9kfVjaEpt5ok//ZuvWjcczbsLKjtJ0ZHRM0y2aGJYLcfl2DZpsJ7WmbuC1bLLKIVDQbMw1U91bbvlqZzZsPL2Hhx02jFom7lAxIVJxWQ+Ru+yOwFwpys7qGviHI7flXl+PUmilX0kL8XJQW6iRtzWl1BmHgcmQU5JaTGZqMdDY1ASSifQV57Evlt2407KXuQbZgR4FGHmSAednea7icFjEHdwDOeuvWIp/ZZJK30aR3kiD3CjLAVwDPSCk/J6VMgR8DvunE1/xR4B9LKZ8HkFLesliPHfghpPMqTqadHOTlJr1GzXBQKdvtKsiL4SVNvdFDWh7KsWSxaJjMoPOZ2546OCubq4/4YUVibCjbjUifEOCF7LQ94S+LiMWwGWmH6t5y83l7Exp1XRFB47qMmpq1SPooUhxkc782UDiL6ZFtwUzmazooJPRVtm+Ztnw8v8FADgDRYke/QZQV6iRtg2s1bZFcmZoA3AYjnU1NoH212Rxaeh9GWcGOq0WeBq/hwNNJTi0S5DgrlCWhoX2n6lnKy9a80eb1G5qBHI3ytR3lQW4xXSPOSjW8BDBTb79QYJMgPwG8UPv3Df2xOt4CXBJC/LwQ4oNCiD9+2g8SQvxpIcQHhBAfuH37tqVyG8ILq6zA1sY61xTkuIltwCwi6UwR5Lylsc7aP7S0U21QV+WrtdGk19RikUcMPafdzQSaIDcmfaMFQW7dYtFQQQbwQyZO1rrFYhOl1jygApmSFe0RZJFFG1ksTMNam6po9TDdREH2QgLZssVig5HOsLBYtNlouTSxruH1EtWJnIW6GpL2oe+0ns+s1hipmjcbRs+BsZVJyDffgEkpdeLHZlMHq+EXraZFNJ8Mt2iIKyuBZlMk9Ti1DTY5cVYuiWyboorpMz+vt1gAcNqZ8sknlwf8FuD3A+8B/p9CiLc88E1S/oCU8sullF9+7dq19ivdBLVdaRX+vSlqCnLchPR5iyPBgY6TSdpo8qoRUWjiQVZvuqFs0YMspd6VqroaNZ7pHe2ul7duZZhLfyMianyiram1ZiAKmyjbI8ZO2xaLefMx01AtuqFIWk0icfKIaAPi7g8nABRxmwR583GtpReqOK8WITesKzQNcW0qyGlJKFIKd6CyxRvA8weUOK0qyHFWaoLcXEGOaV9B9ikQsmj0Gg48ByGopX5sTkbNc2vibhKJ5ywsFi01NMZtEeSKuLdjZah+dkMiagS1Vj3Idetjb7GocAN4qvbvJ4GXTvmafymlnEkp7wC/CPwmizW1j9rub9iWhzWLqvifRskMeshEvXmwlbryWJN2M4e+WbqGr5WrVtRarVKUXkialxtl++54LdoGqoEcmxFkt22CbBTkDZIZ8ENCkbWczzzfiIjWmwdbSyIBnHxOvIHFwiQ6tDrhT683TSfWgYrTG5C0dgwOSm0HNlBF9VjnFpNI4lwN5Cjd5tdqEHgkov3osiHJRteq7XSNTf3apslrXiUztNPgBTARGyjIdV9tSz0Ki4l1i4b6tWrSkXhzE6nWhsWiap5vPlRlUGVGt60g9016J/F+4M1CiKeFEAHwzcA/PfE1PwF8rRDCE0KMgN8GfMJiTe2jdmwz9FokyPoGrYK/165LD7+oj4/cuC7lH4qygsB18NadeKb/JjePCTyn1cQP02m+STLDjtuigqwX4mnhN/NFA/ijKqu2NdKnF7wEfwMFWU34a7tJb76BlcGcmrQ94c8tYiK5CXFXpxNtDr/I4ilQO/pvAOmFeJStDZkAFqOrmyrIgatsA22PdCZdTCxrUpfvaILcbpNesIHFIgzcWkRYexaLhV+7ubI9L1skyA9MrFs/IWWRg9xik156Ik5tzfvLbLiTrD2LReVB9jYbqqLsKO0NMImyouZB/sJSkD1bP1hKmQsh/izw04AL/JCU8mNCiD+jP//9UspPCCH+JfAbQAn8HSnlR23VZAV+iAnTbm0oR+3mjpvaBszUukpBbtFikRYMNhhTTDYj9Pfa20ywmEjULMVCK8hORpS2tGesK8hhc1XUMVaNFj3IKh5MbOT3DUX7k/TmcoMmPW+ARLQ+edAtYiKdRNII5mHQIkFO4zk+KmO5MYLFexGv2ZTAB5A16+g3CLWC7OT326kHfbwrkkUSRcO6Etol7nFWMHCbxamBFmNkuwqyuVZA87r8dgeYVLaBDRotQ98lzUtKb7GetlGXmlinc33XHJ1cPZdzrda2MHmw6g0yTXoNNoWh7/JyVixsmi0o7vFSzNsX1iQ9awQZQEr5U8BPnfjY95/4918D/prNOqyitvtTHuQWItU0ES1LSdLUNqAtFkZ9bid+Ti0GSbxBMxxAZsY6t0iQhXpYNMtBVgvJ2MmI84Y5vGfUddh0Yh2AP0KUKS5Fe77aLKpGFG9i/QiZtjwoZM6s3G1ekxAUXkiYt6sge0VM5gybxfRB9TCQbRLkaMoYcDcgyCZpIkvm+OGlVupaTKxrTq4iApyiPW901Qy3QUNjpda23KQXiKRR0sBSTdCabSDKCkaVxaK5sj2r8pk3r8usMSPRXNmuRmC7Q4I8hrJs7Ec3qDzIDSfDVQ2NxhudHG9Uj6kJWFg/Jo+u/TNUQ2NZs2m2s8kJfVcPz8q+oAhyP0lvU9SObVRMWBtKrU6LaJo3DJXxf2m++sZ1LRTkZkqthRHY+tqbkc6bWCzGTkaalxRlS4kfwGHuNR9TXPfVtpiuYSawbdKkN6DdZjiZRUzLDawMgHTDdsc6lyW+TKoNRSOYe75FX2010nnQnCA75oQqmrZSEyjrVIkDbjNF2sS8tTkC29gGNrGjDD1t/WiJiEopVUOcTDbaTMRtT2FLN1eQQ9/luEUFuSJ9ojlxN+tcNfClDVXUNJ5lUaPN19Jz2UqTXlPiXrM+eu3kWaskrlqTa0+QX0Oo3dxh4JK0QfrSRa4vNFVFwxMWiw3rKgsoVNd1lBXK57QuzJFPHreXOWwGX4hNPMhmBLZahJM2iJ+u6yj3m10rWCQz0KLfN5uTtaAgD2S7zXAq5m2DSDzUQIehyFr0kavXMN+gwat+atIWKoLccGIdLPzLaZsEuVDDXtY9bjYYeA4JQasjsGNtG2iazQzqyHoug9YsFmlRUko9AnuDmLccj1J4raZY7HvN84ZB5zPn+mC6RdJXJa40IX1ebcJfi3Vt4vV1HbHow2mtSU83z1cpFs3GhVfregvE3WwGQ6O2Q0+QX1MwN7eUDFtrPNOT4fJarmGjuhYK8sakodr9DdVI5ybqox4yoYh7S0NVNIkx0UKNVFFN3Fsdga0XvIPMrTqW14Ze4EaiRVU0ixd2lKa+Wi8kkC17kFOVYtFYbUcTZJLWo/qKTYLtzQjsFhXkamLdBgTZ1epz1uKEP79MyI1K1wCOI0idIV6LA0wiHafmbKC2h74hyG0ptSU+BQ7N4tRMTYDqJ2iRIO9uSJAHvsNhYeLn2ktmWBDkBqQvOEmQ21C2y4WCvMFrmGSlVmrbUbXNz92oSc8IRC00D5qYPuWL3iwnfRvoCfKm8ENAQpG23qRXKcibNOm1lWJREWSTzbxBXm0WLcZ/bgrTxMYmHmSdz4zq6G/nNYxBuBxnmzTDqQVu328zn3lO6gyapZDU6gpk3B5BLnJEmRHLoDlpB/CG7aZY6AV9k4gwc/xqgyAHGxHk9if8uWVc2XeaIneHeDKDooVeDrT/kWSjhsbQd5nJYJHzvCHifPPx12Zdz912fKKgFMjdDfKGQVssWlSQjUi0iYJs1t9EtDcdbjEoZL6BTcZZRKq1OknPaUzch75LVkiyop10jWXS3lssXnuojlDn7Tae+eGiK7UJadDpGouJPZsS5EWEU6PhJVVd6timvamDZjLc5h7kUDeCtJX4IfUpQHMrg7q39ry81VHTCYPmAzkAMwI7zsr2JjSiNjmNfdEo20BIi8q2XtDLTRZ0V2mFTou2gVJ3vG9CkL2B+puyqD2CrBTkzQhyWflEWyKjWUEoUsQGr+HQd5SC3FKjZZQWDDYcf21sA5nTnoIcZwU7FUFu3qR3ULRIkPVzK9jEYqHXukS06I1OTYpFc5vMIp+5nZi3OCtwBASO2EhBNj9LRcVuVldF2v1eQX5tojazfOi7JHlJuWmTVxaBP24+sQ4eaNKLN52kV9v9RWmxAekbVnW16UGebWKxMM1w1QCT9k4BpNzM6wuw67U4lKMiyM2JqBqBnQCynQmN2pu2qQfZCUaEIm19LPcmCQgIQeYMq4mIbaBM1D2/EUHW32vU6I1rKiUDmVBscq1g8f0tebYNQd5EtRr6LrH0WxuBHZmaYHMFucUBJlFWbDSxDhTBOkjbVJDVe9krY3B8cNdPGapEIhOL10aTXl7LQd5k2Itp0isS1eezAcxzWZQZIJttJuonzi0Q92p4Sa8gv0ZRmzhThX9vTEbnSwpyM1VUHb2Z3fPGDVVmJ+mFi8WhCYzFot4MsAkMQda+t00U5EGlILdTV2mGVzS9VoEiMbtui41nphluA6W2ul5krfq1N5lYB4ogD0naIe1Q3VtyQ8Ujc4bqAd8SZDYnlS7hsLlaG5gR2C1ZLIxtoNzQYlEYO0uLAx2GGwzkAB191WIO8tLEuob+dpPLnTotEuS0YOJsqGz7LgdtNunp9cUvN8iMNgS5pdSPrCjJClmzWDRX25eGcmxI3BekvblSW9lRsrLqF9oEywrygkN8oaAnyJuiHl1mMofb8Pu2kmLRYszbkoLcsEkPlrzRbSrIJpy+WWa0Jnz6GK8t60fpbZ4WAbDjtjkCO2K+oVK7SNdoyc6gX8NIbqZsi2BEKFoi7VA9HDaJCAPInaF6wLcEmUXEDJTXsCH8ofqbyrQ9chWKtLrnG8NrL2kAIEpzRUY32OSEOp9ZtGT7iEw2MzSuy4x1bnMEdpQVjJzNLRbzTKqov5aa4UDlkW9C2mFhw2vdV7uBTSY2CnILdUVpuUxEN7CjLBTkDUl7ZpI1+pi31yZqN3crDXFSVsb/pd1Xk7ryCF+A74oWCPJiVxo3jXmDJQW5VYtFqVSLRqTB9cDxCXT3fFs+8rLKG96goRFFkNtUkDcloq3Hzxkf+YbEXXhDKx5kZ8MFvXCH+GXSjl8bIIs2tqMMQqUgly1M8AJl4RqSIDdUh6Sn19OWyGiRbv5QHvoqB1mUeSujuU303OZ1tTsCO84KxiJV5NZpdm+FuslLtjg+OfAcxCZpEfq5PJcmXWNTgnwimWEDm0xFRGHj13Epmxk2UpAXzYN9k16PTVDd3C1FquXK27lksdhkKIfOHG4v5k036TUlfZ4y/qua2vBrz8EdEOWoBoXGyQwjFdxPC35tgHzR0b9RQyMwdlpMZshj5jLYsElP1dXauOms5kHeyPqhPMhtx7xtqiAXnoqfS4t2rB8ii4jkZnaUYajsO20qyMrKsGEDTm09bQMybU4WDIyCDLQUXVaqa9VCXW1aP6KsUBPrNhzLDaiNUkuDQhaxZc190QCzop3XcKl5Po8b22Sqpv6W7vml8dfQeNS0+VnGprlRTWmNw3wBNulZHTX9moC/3KQHGyqQS0rtJjnIRolpiyArEpO5Q/JSbu5BDhZ+7Y1IUX26n+8iGg4pwA8rn2g73ug5uaNUusGGFotxW7aBsoQ8Zha0ZbFoS0FeZFlvmq4xbFVBVu9Fd4MMXYDSHRKKOXFaMmh68lKDyCNiMcBvuhkEhoMhqXRbVR+vipR8U3UoaNeDXG5AFgyGhoiCuleHexvVtORB3kRBDlyV/96W9SMtGA42G8ttrHelF+K0lMxQHc9vMFQFFo3cbRBRgNAXetT0BtMQjdd3g7qyLOPGjRt869t8wOcTtwt4z49Dfh0+8Ym1ftY4L/nBb3yMwfRlPvH4H4arv2/tn1HH5azgB7/xMTh4kU94X6rqunEPxEHjn7kJhsMhTz75JL6/WrNnT5A3RT3mLWhBQa57faebNOnVvdEtxM/VGqlgE1/tIuYNtB9vI4KsM6M3/Tn+UE22gnZGKGcR+eAq0I6CnKRtqNqmodFrqUkvraY3bYTKYrHZqGn8EQE5aZpuXhNQpnMcFpnBTSH9IUPuE2UFe6zfhX8SbhExN0MPGmIYOMQEyDbTIkiYbqi2VxPvWqqrFQU5cFvzr8JJD/IGZNRzifL2JvxFWQsNjfr9W7phK2kR0ZKCvFkk3nHLCvJ4Y7+2s4hTg8av440bN9jZ2eGx0VVcR/DGXQl3JVx5Mwwma/2sKC0Qt455/ZURe9kdmL4Cj31J4+mY92Yp3v05X/LoDkF0G459eOytILo3L0gpuXv3Ljdu3ODpp59e6Xt6i8WmqN3crXiQa/6haopQoxzkmje6Db9vTeWDDRvPaiOwW2tozDaIngPwR7itepDVQA7YgCC7Pjhee9Fl+jU8Ljc7njeKRyhamlpXi3lrwxtdtBRdVrQwsU79gFGrA0ycYjENsSkC1yFm0Grj2ZB0Y7+2E7RrsajntzfF0HeI6gryhoizguGGMW+gG+JaHIEdZwVDuXlDI0DhtuONjlsYyOE4goHnMC302rLh5susxaMNX8OhV4t5g8bXK45jrly5ggQcIUBq0aIBqXX0t5SSGoltboM0fReiXhcNT3k3hBCCK1euEMerv/49Qd4UJwaFQFsWC+X1HXgOjtPghqrymVXU28Y5upWCvCHp89VYzSpvceP4ubhqHNzUNuAaotbSoJBUbJhiAeCPGLWWFqFew2nhtWaxaLOumKDZZvBEXWXajvqYJzMKKRgEmyUzSD9UzYMtpWt4RbzRSGdQD4uYQWsT/qIkZSDyjUY6A7jBZmThJKoNwIaq6MKD3E502bAFi0WbI7BNdNmAdGEbbFKT7k3JWxqBHWW1ZIZNs6xz2Wp0WSg2T/yIsgJZs2k2hRACKeUJgrz+WupoUl2WcvH9svnzsNQEWdWlf2ZTG2QLWNeC2RPkTXFak94mTV4PNMNt5l9tbSiHGelc6rzhTWLe8ojQUzfq5t7oxVjujWwDXojIIwLPaS1dIxUbRM8ZaF9tm17fo9zfmLRD+zFv0hs195BDdc+3NdAhT2bK9hFs5kQTwYihaC+qzytiNUFtQ6SiPYKcabXdDTZT243fu62xztXf10YzHLSjiuY6LQI2Jn3TIoAW0jXM+hLI5p5aUxOoaMN2J9ZFVS58E7Q5tc4IKKMNX8Oh7yIli9OgDS0ppdQK8AYE2Sy/sq4gr0CQXdflne98J29/+9t573vfy8HBQVUT1OragrViE3xhVfswwhjs87idoRy1Jr1oE1X0hDd6Y4KVR6qmvJZr2Kgu3Xjm5MDDZLHQudGe0xoZjfXCt0lerSHI7UxoVPfWUeG3oiAP20qMMGkRGyhXQGtxSQZlMiciaJ75reH4o/Y2OYBfxhuPdAZIRdDaCOxcj6z2hhsqyIN2J/y1oSAP2/Ygp6Ua6ex4jSbDVXX5DrOWosvMOhyUSSse5LZGYC8Nv9hw2EuUlS0RZJ1iseEpQDWUg8Vp7yYopVSnzW0oyHI9BTkMQz70oQ/x0Y9+lMuXL/N93/d91c8RQiwsFj1Bfo1BZ+i25qutN+mZ46UmqMhCrBSQNoioN1wsDhsS95HTkt83m4OnrtXGpE/7yDe+VkUGZUayqR0FwB9VA0w2bh7U3ruZ3DxODWjPNtBS3nBbgfsGZTonlgMV57QBnEB7kFuyWPgypdhwYh1A6gxxWyLImZ7I523Y0OhrBbmNCX9SysWI702b4VpUkKOsUA1eG8Zdhb7LtGgp21c32/qbEmS9rqgJfy006aW1bN9NLRaVgtzSdLgNCfKDE/42ew1LqRXgFhTkJQ/ymvntX/VVX8WLL74IwL/7wPv5D7/pd/Oud72Lr37PH+RTn/08AO973/v4A3/gD/De976Xp59+mu/93u/lu77ru3jXu97FV37lV3Lv3j0A/tbf+lu87W1v4x3veAff/M3fDMBsNuNP/sk/yW/9rb+Vd73rXfzET/wEAF/7tV/Lhz70oaqOr/mar+E3fuM31r4GdfQpFm3AJDO00qRXU5DTo42JqPIgt2SxqA0vaUz6tDfa+LfaUpDjtCDc3YA06IWzTTtKtGlDo65rEGuCnJWMgk3q0mkRGw8K0d5q0pb82nMSMWSwoVJrHlQib0d9lOlMDS/ZsC53EOKLgjhph4wGMt58Yh2QOwO8YtpCRYuGRn/DhsYw8IhkQJFsvslJ8rLWDNecXPmuIDPH4C016U2czdIiQJHR44ogt0P6vDLeKObNPBdSWmrSywuGrrNRkx6g+3DaslhogiwNQW46KERPrWshY1tKiZSS7/nXn+G5V+5DkULwa41+1izN8R2HwJGQR7ztqU/x3/6Bd670vUVR8DM/8zP8qT/1pwB445vewt//X/8FX/bUZf71P/5h/sJf/h7+0U/+PgA++tGP8uu//uvEccyb3vQm/spf+Sv8+q//Ot/xHd/BD//wD/Pt3/7tfOd3fifPPvssg8Ggsm38pb/0l/j6r/96fuiHfoiDgwO+4iu+gne/+91827d9G+973/v4nu/5Hj796U+TJAnveMc7Gl0Dg15BbgOGXHntxrwleVGNr25Uk/55Q9/dPI5LH3HF9eDvRnVpBRlD+lpQRTVx3zRDl7xFtR0VW+Y5YqO8WjXARBGrtoh7woZ5w/oBOnFa8tXmKpVhI6UdqntLtBAvBUAWbR49x8JXm8UtTK2TkoFMVIzWhmhzBLZRfP0Nm/TCwCEiaGXCXzW8BDYiV0IINRkOWktmGLdAkIe+y1GuNa6WLBabjHSGBUGOWxqBHaUlE1+vMZs2WprpcBv67is7itxs82Wu1bza5DR/Lxr3XRvtb8L8lDV+WBRFvPOd7+TKlSvcu3eP3/W7fhcAh0dHfMef/hO8/e1v5zv+H3+Jj33qmep7fsfv+B3s7Oxw7do19vb2eO973wvAl33Zl/Hcc88B8I53vIM/9sf+GD/yIz+C56l7/V/9q3/Fd37nd/LOd76Tr/u6ryOOY55//nn+0B/6Q/zkT/4kWZbxQz/0Q3zrt37rxteiV5DbgN6VOo7YvMnrRMzbpkTUxLy1Qvq01xfYbNQ0VMpOKxaLVnKQ1SnAINRetU1rAuZyw4EcAH5IUKrjps2vlSHuG9blOOANmZByryUPciJauFZaVXVbJsiTDevyKl9tCwS5yHApKTcc6QwqacDPks1rQtlRgI1TLIaeS0zAKG3HytDGQA7Qk+EK2stBFptbLIa+y2Hhg7t5XWZtccrNYt6MXz9Bp2tIuVFqQZwV7FR5w5s1Wh7FGYzba9KrNpcN34tVU39RbpyuYeLU/sv3fDFXi9swvwePNVNPP/nyEeOBx1MTCXc+DZcvzgw2HuTDw0O+4Ru+ge/7vu/jz/25P8df//+z9+fRsmz5XR/42TFlRuaZ7vTeu/WGqlezSjWopCqVQLYwyy0k2W2EgHZb3VgIEDSyBQZ3t6GN5KatpgdML3czuBlsmmYtehUsgwYG29gMlrAQqEBTlaQqlUr1Xr3xjmfIIebdf+y9IyPPPUNmxN6R9UrxW0tLdc8599zfi4zY8d3f/f19v/+X/5Rv+Ff+Vf7Pf+xv88V/8Q/4177jd9Z/ZzRaOfF4nlf/2fM8ikLNKP3dv/t3+bEf+zF+9Ed/lB/8wR/kM5/5DFJK/ubf/Ju8733ve6KPb/7mb+ZHfuRH+Bt/42/wqU99qtV/f7MGBtlGNTLL49C3NKSnB89aA9GV8L82JO9SWmJRp/t1dNcwx1M2JRbdh/QWxKHXPUlP3wvzKmqfotfoy+gorTh+oCQWNoD7nmcp4S9fkDDqLGUwL9CgSii7DjSyinTu2leoY50LGwyyBV9fU6U/JpJ2ALJsbOy7lBqIG1mJwF4L5Oi6obAYgb3MSuKOkc6g3jWpOZ7vyIqqtUXiF8tuNm+1rnYESCi63V9JXrLv23H8qBlkC0Ehceh3HgCtAXLWXfqxbqfWbRhOCLH1kJ6pw8ND/vSf/tP8qT/1p8jznLPTE565+ywAf+WTf2urPqqq4ktf+hK/8Tf+Rv7kn/yTHB8fM5vN+JZv+Rb+zJ/5M/Wm4Kd/+qfrv/M93/M9/ME/+Af5+Mc/zs2bN7f69y6qASDbqHC8BpCtMMjBWAHkti/nRnzlOPApKkledrSfC8crBrmjNnqkX1ydrpWU6wxy1/CLqmAvkN2H4YqVJV7cxcECIJyuIrCtST+6OzMQxEy9zFLqYELCqHsMs/FntuSu4RV2JBahTrOy4sxQdB86M1UFsT2AnHUDC6aUpZqd8IskV0C09Ebq1KNDRdGIEjvR3ElRKWa7I2iPQ4+ltKONXuYlISVClp0+w9D3CDzRcP1of73ysqKoZMMSr5v9XGLJxWLZtJ7r0NfaUH+DZGtTT9qptWftPbG9zVuzPvrRj/KRj3yET37yk3zPv/+H+H/8if8j3/iN30hZbrcml2XJ7/gdv4MPfehDfPSjH+UP/+E/zNHRET/wAz9Anud8+MMf5oMf/CA/8AM/UP+dr/u6r+Pg4IDf9bt+11b/1mU1SCxsVJNBjvxug0v5XC2cnkfaxZlBH4OTL4jj1YPYWg+bL2F6uwYenYJCUMdTQnS0xCtSQFL6Y4pKWrEu2w8KXsq62qmpe2FWdbRT030Zp4HubLulSGfd1ySxyCDL0AKDbAJMlD/zdNRtefPKpdpMdLxWng6/KC3IBmS2QADCEkCuJ/G7VmO4uEuNQ+0YYSuFjZQqiOl4ZxFHPqkYMbEg30my7pHOYK6VnfjkZdaUo3R311gYgNzhepl3zZ7fLZADGrHOgZ0hvdp6rkNfa0P94bjTKYC0yCB7TzDI178PZ7P1Yd+//bf/NgC/fO+Mf/jPfpYXb0/hjU/zg//JfwzAd3/3d69phI3m+Pz3/sk/+SdP/FtxHPMX/sJfuLCP1157jaqq+E2/6Tdd2/MmNTDINqphHTOyoUHWD1xnVlQPnq0d5bTuSw/p5SWeUJPd7XrSg1Q2IrD1gmJCE7ppkNU1P/BzC3ZqJtK5YyCH7suEHXR2jNAvqxQbfU2YCFtJekut1+7Kthv7OTuWan6ZkFiSowBICwxypmUaIuoGYgAIxgSUnUMmgLWTry4Vhz6JDDuHJoAa8BqTIS04fowDBZBt2byNZDc7NdDevpYisJd5WZ/qdf0Mx5HPwoI/s1lbugZyQDPW2Y7N2zjyV0N1La/XWvJuZ4mF+v/CQiCHEMbmzaSGtH/vyGoVX+3aB/mv/tW/yic+8Qn+xJ/4E3gdT4xMbU2xCCG+G3gK+Bkp5d+30sVbvRo3d2cf3UZiUH2U07qvSW1dBh0BVqGmm5eZ1l+1PcJpaPni8NCKHMUkEXXWIANTv2CZdQREJpCja2IdQDjRAFlaYZALPwaEFdBnS8pAvmRuA4gGIySCkchILUg//DJh2TX+GlYA2QK4ypYzRjQimTuUbDyLXQIrwE4gB5hY5xHC2jBcpgbsOtY40ml6lvoa0W0YDjSDbEHKACs5CmCFQZ5X3X2jUzPvYqGvVaxz3PneSsxsUL5Q4LglGBuZYLGi6qyNtqlB9oSgqKrWEovzfXlNoO0QIH/Xd30X3/Vd32X1d7bp9g7wJvAuq528levckF4n9koztVJKOwyyZmrBgj9zYMktAmpmu5P9nAHIhkG2IbHwclJLWt+zyo6LhUAyIreiQS49C+Elui+VDmfBB7lYsrDBtgtB5Y81g9yxLykJdaSz53U0T6oBcndwlSXqKNPvGMgBIAL1LFYWpB9erY3uCvo8EiK80pIGme5MLSi9b2JR+qEinbtLLOohvY6hHOsSi+6bnFllkUHGzpCelGowlSKBqv36kOSVlfCSuHmya4lBthHp7AnRSYN8vi/FaktAOgXILqpNt+8APgi8024rb+EK4/q438qQXhiTmkjnLmA0MOlw2pDcQl/LvOw2TBU03TW6su3qZZXol4QN4D71LMgGDIOcB91OABp9qVCO7gC50AlsneKvoQbINiQWMl8yr7prfUHpamMbfZU5HmV9vTqVeYlacGbIlure8jtGOgMIbcmWLbu7a/jlkgoBwej6H76ixpFPIu1EYC9zrfW1wLbHRu9raXgwlN0ZZMO2A1ZkAza0vqA+w5mFABNDNI0taKPN2mLkeF0kPLXnvnZ26trT0oI22miQVaRzNyDqiRUjjfC6SSwMg1yn+9lwau6vNrqKQoixEOI/FEL8LeCrgHvA/8tpZ2+latzcdaRl29KJQZ2H4aDWW60kFi37qiotsZiowUELWl/DbNuQWNQAuZOLhVo4p15uwfFDLb4nhW9Nv2ol1jlf1C8IG9rokbQUn5wvrCTWAVTBmNiGNlq/2EvPBkA2ASbdwVVRRzp3B30m2ju1YD/nlSrspesL0MQ6BxYAspINpFYGGsdm8KwjQM7LirysCEsLGuTQJ8enEr4VDfJBoLxnu/flcWoh/KJOrLPAbMfnAXIXZlvLDCm6Mcih7xH6oqGN/jKxefOENYBcyQarbX7fW6g27favAl8N/BngB4H3AP+5q6becmWE/1Ku7GTa1vlADgsSi3FXiUVDX9hZ9uH54I+057AFOQqoo0+6XqsVgwxd0xBVX4/zwJq3r9L7dg0wWZJZk1hMiGRqSYOckHQNL2n0paQfdmQypQX96ioCuzvoK+rEuu4SC+OukS67x00HZULhdWOPQQ3/pmJUO7d0KSUbyPAsXKsVQO6u9Q0p8Sg7+Q2rnjxAKNmABV3tod89kAPU2mIjAnuVWNedQTanqKnozrgnhfbcz5edrfpqQs26zVtXBln/QXgbuVhc3JNEcp5B/soEyO+TUv4eKeU/0v/3+4D3umzsLVVhrG6AMlNRqZ2lDJMaOHZjkCdrGuTWLhb5Sl9Y7567VBhDnqhQgE7XStufWZFY6AATG/7M+RKEz6wQ1rx9D2zEOucLMmEh/lr3ZQUgVxWiWJIw6i5H0X3ZkaOoF6iNSGfzYvcsMMhlon5HFO91/l02I7DDKlmxcx1KCEHhjQirtPWL2VSSKxcL34YGOfJZVKEFIFpZs1MzhIACyN1t3vYNg9zViSTyOS30utfhehlCYCS7M8gmcCsTRrPdoS8TSqXnhbrUCiB3+wxtD+lJKZVsY0MG+df/+l//xNeklPzAH/73+Ds/8kOtAPIf/+N/nD/1p/7Uxj/vojbt9qeFEN9g/iCE+ATwP7lp6S1YdayzJVY0jOvFwQaD3HlIr/Z7HJMUZT19260vnVpngaldVBZY0TpkQrEoaedTgMlqmKNLGYAc2hjSS0gZW2JqY6IqUZPhXYCMZlWX0o4GmTC2Y/OmX6DSArjCDynx8S0MnpWZArNR3J0VNRHYtgByaUOvjYrAFhZS2IyLhQ1LvDj0mcuosxNJYnTRYMXmDVDMvQ2JhS0NcuhzXHRnkJOaQe5mpwarWZ7Egma7PkXtOKQHjaF+bcnatuQTNm/tpU7mr1ZmUG8DgPwTP/ETT3ztCes5+IplkD8B/IQQ4otCiC8C/xT4DUKInxdC/Jyz7t4qVetqE+XjWXQADeckFp0HzxoSi9ZH9I3EIHsMsj0N8lxa0CDXWl8LoRz5AhnG5GXH8BKoN19HgR0Xi0SMuqfoAQQxYZVQSUnWRa+tXwq2JBZeOCEW9iQWNhwQAHJvVCcidqlK9xWNbQBkdW91TfiTUhJWqbYQ7F410LZiXWbHxWIceiRytEoMbFlL0xNYkTKAdvHpeDqxzCumnj2JxUmuHWQtuFiElR6G6wD66lNUA5A7BZgYF4uFnUHLWmKx6CRn8IRQG0vozCCDHvxryiOuqL29vfrvfN/3fR8f+MAH+M3/1v+cRw/vI1CDg//i536B3/DN/yZf93Vfx7d8y7fw+uuvA/CX/tJf4uMf/zgf+chH+G2/7bexWFhIHLVUm/ogf6vTLt7qVQPkBSNtJ5MWVTtG7NyQ3riLB2vN1NpikFVQiBVdbb4kHtnRIM+1pVAnZ4bzEotOfS1r5rG7i4W2n/Nz5hZkAyl3rEkZAGU/l1XtpSSNdD8bDLI3migGubNeW/UlAwuBHKjhoMCCBlmmCwrpMR5Z0PtqFrrsCJDzUjImo7LEIFf+GHI6h4UYDbIdmzfjYmEjsc4Og1w7MwgLGuSsZM+zwyDHoc9x7iv6rZPEQgPk0o5nNKwGutt+jsZ+dRx4SuJnwfGjjsCGOm9g26qH4f7bPwov/6Sa8/GjVj0dVhXjvMKLfCgTuPUe+K0XJ9edrx/6oR/is5/9LD//8z/PS6+8xtd8+IOI3/N7yLOUP/D9f5If+ZEf4c6z7+Cv//W/zh/7Y3+Mv/yX/zK/9bf+Vn7v7/29AHz/938//9V/9V/xB/7AH2jVu+3aCCBLKV9y3chbutacGdRLJ8nLlgB5WQdyQFcGWS2cBji2ZtUabNrSmKR3KW2LN96zxCDrgZBuLhbqM4ykhSG9YlmDBVsM8oGf88CCbMBKzHSjrzEZSVFySMugCf0ZLqUdFwsvmtixn9N9iZEdVrTwx4RZd4Bcf4ZRtxhtWLHQZdpNYmFY0SrY79wTKKs+wILet9A+yN03OePQ55iRGrQ0zFqrnpoSi259+Z4g8j2d8Ned2Z7aAsiRzywHOYk6ObeYZzioEmts+0J2Sx5cs1+1ILEYm+Td5j3fBiBXcmXxBt0kFk98ZXNW+8d+7Mf4zu/8Tnzf55m7d/n4r/8mhIDPfvazfPqzv8I3/xu/GYRHWZbcvXsXgE9/+tN8//d/P8fHx8xmM77lW76lde+2q/sqO1RDg7wkjg4A9XAfbft7ygLKTDHIhaUhvWJJ5KndZWtWtFhJLJL8tDuQCca1xKIbEFWA46xSt3EnBjIYAaKemO4K3A1AtmGnBrDn5SpxqUvlC5ahLbcIS/ZzDas+G32JMGZiI+FPM0yeBXAFSjYQyoyqkt2CR4oFCRFTC5sJo2PuGhSiAjnsJNYBq9/Tka0tUnsymThSqXVC6mjuoB07ty6xsCP9sBGBvcxLJn6mjuZbMo+rnnylPw26MdtGEuh1tFOD1Xt0XicPtutrzX7VwpBeHPk8mmdrJFubklJLI37TD8K9X4Sjt8PkZqvfNV/mvPRwznue2iOevwJbrg8mZddksXiArCq++r3v5J/+s3/+hJb8u7/7u/nhH/5hPvKRj/BX/spf4R//43/cqm8X9dZSTH+5VkNiUWud2hzxNu3UjEm6BV2tKNJu/szmoQ3G2iTdhsRCXau87OA5nC/Aj1gUgtDv6MwgBIQTRnogpKtVX2ENIK/s51q7kDT6shXI0bSfs+VlbauvsRWArPryLAx4gXLDiEnrjW/ryhM10Nj1FIcVgywtAOSxpcQ6YG2mo0uV5r/LRtR04FsZ8FpjkG30ZdL0ujLImY6a7qj1hRUYlUHc/VqFnoqG7ixHUe+GRdVteHDNftXqkN6KZGtTSoNMg0HuZvOmfidb+yB/0zd9E5/85Ccpy5LXXn+Nn/qnP44Qgve9553cf/SYf/qT/xyAPM/5zGc+A8DZ2Rl3794lz3P+2l/7a637dlEDg2yjGrs/8yC2YtUaUoYktwGQV7HOnQbiGp6wWVHZG9Izk8V52Q7cNuQodsDVmKBK655aV76g8NXQQudrpQHaXteEv6qEMmVuzS1CS0i6yhmMBlnasnkbM7biYqET6ywEcoBO+BNzllnJpIM8wiuWpGLUPf4aiMcxpRSdI7CXecmhyCksse1YYpBlY3aia8WRX9tJki8hPmr1e9Zt3uz0lVgAyIl2/Ohq8Qard1YVxHgdNcgrprajBlm/a+YdI7Br6WPg6aCQ7tKPpCjXSLY2VUkjsejuFmGG9KotbN5Mfcd3fAf/8B/+Qz70oQ/x4rvezcc+8Y0IIYjCgP/6L/xn/MH/+I9xcnJKURT8oT/0h/jqr/5qfvAHf5BPfOITvP3tb+dDH/oQZ2dnrXu3XQNAtlE1EO0YylEv6BOWSxsa5NVDN+4EkFVfmTCBHBbik/Nk7Vrtj1toWPMFBPFqIe1a4YSwMgxyN1a0GN8GOn5+UL+wJl5HFwstR5lXdiUWnT2Hjc2bxaAQNTiYdfo1VbbAA7xRd79hUGzamEedtdFeuayfw641jgKWjLoD5KzkGVJmlhhkEdnRIDf927vWOPRZyu4M8jK3N6QHmoEs7WiQbem1TShH1TE+uXZMypcwPuzWk15bZmW3IT1zsjjx7aQOjkKfZVatQmNaM8jnE+vab6DXGeTNXCxms5n+ZwV/9s/+WQAezzO+9HjB+57eh+Q+X/PB9/Fj/+P/+AR4/97v/V6+93u/94nf+cf/+B9v/d9gqwaJhY0KVjf3SmLRlUHWwwCdXCya2mi/vbevCeQwdmqdXSzG63KUrIP9nEn3s2FdFsZ1xG1XVnQV6dzxEdPSjwl2pAyzMrR0rfSQXlc5Q52GaGdIz7ywqo4DcWZwLRxbYkXDMbGFABO/SOwBZO3MIKyEX9jxG4aGrKVrsIpNBjk8xyC3LCVlsGPzBjrhryODXDszWJLJmHW96BhgUsv5LEgZQt/D9wSzygSYtFsfzBo8MZ9hR5lMPYcTdrvnpbSXWCfWbN48QLayn6vDS7wmyO5+8tVnDQDZRjWDQvRLvp3EosEg5yWhLwi66GrXGOQOCX+1FZd6QdjRIK8kFp2kH7a8mQGCMX5lY0gvabDtlsIvunr76s/wrAqs9QRmSK9jqArKn9SGrtY8izLr5sxQpAsSGRJHLd05zlcYd79WgF8myvfWQvmeIKWb0wBAkmaMRI4X2WGQa4DcmUG2N6Q3Dr2GBrmbM4OtoBDT16LqZj+XFhVSagefjvHXqicTYDLupCNP8qqRWGcn7GWZo0BtawZZrcFTYSvsRb2XZUfnlicZZIsSC9hKZtHsCTQkNr+ro7697xoAso1a0yBrVrTNME7TTs2GrvYcs91al1lbcWm/YSsa5IXScdEVIMd2BgcBwkkdB9x1SM8AZFuyASVl6A5Ez8rQktZXD+lZYrYLf2xFV1szyB3BVZnO7VniASKcMBbd48KDKlHAw1KlYoTX0W8402y7P+oeXgLKyxrorEH2Gu47Xcu4WADdwKjR+oI1tnYhQ6hy5YLUogzoG0lLEosaIHdz1zBDejYYZGAlMwzbSz+SmkG2Y9UXhz5lJck7huPY1SCb30kngCzPM8hvsRQ9GACynVrzQe7CIDft1Gwk1q1eNJ01yMGYRK+/Vob0kMS+6qcTcA9tapBjhB607MrWppYZZOPt2z6hUS28p0VgjW0HLDDb2m/YkkWYeRa7Jp5V6YIlkZ3UQUBY8mdWiXV2JBYAmRjjdYzALhIDkO1ILILIyGS69VUDf0tANLEhsch1IIcXgt/9dCKOfGbaB77t8XydWCctSSz0M5N7XW3etHQu7z4MB9oSr06t63atbJ0CmPdD2vHeqqpqXcrwZcIgCwyD/OUBkLd9f+6+46+E8kO14K3FOneTWNhJrFvZJXW2eWvGX3dmtlVfxpi+fV+LWq9tTb9adPRnLnOo8vo41hZwH8lUMQ1lhwhzYGZtSE+9sEZ0HB40dmq2LMIM0C66sY9VvlDOGl1mABrlRTrhr6O7RiSTVRSzhcpFhF92Y5BzncQXWGKQwzoCu71MRkq5Av622EcLNm/LvGTfz61Z4o0Dn7OqG7gy92RYpVas5+oI7I4BJnUolQW/YdOXYpDba6Nr+1VLpwBPJvxtf73G4zHp7ETFTFvRIKv/L9cY5HYaZCHEitneMUCWUvLw4UPG483Xz8HFwladsy5r52LRTKxbWEisa2iju4C+YqX1hdWUcvu+1KIyoaPetzmkZ0tXqzc5neUoWBpoBAgnRIm2nytKojagrWGnZnMYrntQyIJChIQWtb5AJ3spUN7A1gYHAX88JRQladoNjEZVSulb2kygWL69jgDZMMjh2A5AHo3HZNKnSBcGNmxdWVmpoTOwAq5GgWeHQc4qpp6d+GtQ9mVnpR1vX5VYZ2czAZB2lFgs85JJKJV8xJZMpqvEQoc1jaSde6s+ce6Q8Pfss8/yP/wP/5IPzU84EQtITuD4s530vveOlyxGAY+CAub34dH2ATLHC0UI/OJprH5HVcLD1i1ZqfF4zHPPPbfxzw8A2VZpXa1hnFrpRc1gUThhmd/vfrx7TvrRCYgG45VWzRJwN1q8bhKLiUUf5NjOtWK14I1sMJBhTFQ9ACDJSg5aWeJp+zprgRz6FKBrUEiRkAlLPUF9b3UdPLMayw0EmhXNk27DgyNSa4l1oAByUJ10+h1GCmHL8UOFckSItIN+NausRTqDmuyvr3uHeyspSjXgZQkgx6HP4zJU59gddbVBaQcgm01lyqi2cWxTaV5xYMlODfR9ZSQWLT9DE9YUSTvyHXOtFrK9P3MlfP7Ejz3kj3zrHb63+CH4iT8D/8mDTn1953/69/n2j7yN/9MHT+Bv/dvwu/5bePtHtvod/+Hf+Bn+2ReO+Z/+6NfCX/nfK4D8u/+bTn31XYPEwlZpcBX4HqEvOjPISVYS2/Ab1r83jjqyotpZA2zYvKlFZSQ6MshFQ4PcldWGWps2Cv32A3F64V0QqRQoG1O74YRQdrSfq5ntkR0w6vngj9j3847DgwtSLLHasGKQLViELW2FqgBhZAEglzkBJZWFMAdThT+uvb/blrHEsyWxGEcqta5LBHbt6wvWwGjXtDNQAGtiEussVBz6nBaa52otG1DPr28LIDd1tfmi1fE8GDmKRcePyGeZV50YZLP+RpUdq77a6rQUiqFt8RnWJ7v1QKMtx49mwt/2fa3JRC0NWvZdA0C2VTo+GWh/RN8EyIWNIb2Vzdso9Orjoe37WtRAFGwN6cFYqsWvmzZ6Yk9iEYw1g9xhSE9/hosqtMY+EsaEpUn46/AZAom0pEEGCMdMvY7ODLlKhrPXk1rQvTJtP9CIYqATi8A9iBV47KKrtT7QCFT+aPWyb/s7NJAVFkHfUkadAHLSDOSwdL28xolc21oaFwtbEovQY167a3Tz9vUsAeQ6AIqR0p6W7UJ7krxkX8+p2AF9nmKAG+/qNj2FvqgTV7sHhTSSd8O4FeNuHLNWlnh2rPrUZkL/rjZ95dXKMWkAyL/Gq7Erba33zRf1dLMLm7esqCirFqChdotQ4MwWQDY6rlabCSkhXyCDsUUNsjp6GwddALJaeOeVTdlATKAHjrozyJEdth0gnLDndQ0KWdqTfUC9oMciI227IUQ5IFhL92PFrpZpB2Zbf4bSkt8wQOnHq+PiliUbG3sbNQ69zgl/y7xkLDJKbwSenfs9iEJyEXbW1cYWGeRx6JPIjkN6eYlHhVfasXnzPUEUeJ1s8Ux4ybQGyHaAex3r3OFaqcFB/fctBIUAK+lHFwa5dvywdK3WGOTtr9daPoElL+u+awDItiqc1LusOGoLkFfHI1ZAn+dpVnSx/iC27Ku2uLEEkIMyaS9HKTOQFYU/Rkrs2HHpvg6CsjMQnVllkCf4pfFn7hr2YkliARDGTLy845DekqVVVtv4M3cbHvSLpXKxsOiDDFB1YJBLy0wtqDjgiHYMX10N9x0bpSzVQuhg82YCOWzKUeLQ7+zMkOQVI2lRgxx1d9dIspKRxfASMP7M7YF7VqrwkqlnT0deZwF09EEeR37jnrejQe4yPLj2XrYWqqJJosYpdJu+6vVzYJB/jVewso4ZBy2HvBp2NvWD2LX0sY15ENsD5HENODoPnjViNVv7M+trXXh27dQADoIO1mWNSGebQNTrGoGt+0qx2deEicjaheI0+rIN2kEFmHTpyy/tMsirAJP27GOm9cuepUhnABnEjMjVAE3bqhlkO2B0HCoNcqeQiUxpkG0ONMahrwbPuoZfkK5O9zrWOOgegb10IEeJQ78h/di+r0TroutADgv3fP2u6ZSkV63CS8Cai0VS99XiWjWlj4W9Qctl1o1BXssnKOxoo/uuASDbqsburx4G2LYau6wkr+zJBhqWca2HB7U38zj0uieenZN+tAbtQCr0kbpFgLzvd2BF60jnyE5iHUA4xatyAop6irpNX4UfA8Iq6Bt3tXkrliwqi7IPfW+NRbe+giohYWTHhQTql0OXAJN0MQOwFukMrEBtB1Z0FchhTzawlBGigwNCUigpg1WAHPkkXb19s5KRTOyx7VFTYtHe5s32QGMc+cw7+DOb95StSGdQ91XadUjPyAbyBfgjNazcsSfoxiAb6aNikC2FqgQNSzxoDZDXGWR7pzl91QCQbVVDP1QPA2xb+njE6K/sRAJrb99ODPJqSM9WpLP5va3dNfQDW0c6W/IbBgWQ2w80qpf6aRFYd2YYd2FFi1XAhDWAHIyJRXcN8lyG3T2/TQlB4ceMu0RgVxVBlZJ7Izvx19AAol0YZAWQbUU6Ayvg3qEvYVmDbGQDXZxIllmlGGSLx7ojbT/XSWJRlESWEutAywYMg9xyQ7HMSmvBF6bGoc+sNO4aHVhRYcctArREpqyoAj0MV22/xtfSx9zyQGMH6cfKxUIDdwunE2MjEw3ab6Dra1UWShI5MMi/huvckF57pjYmLyVlJa2GX6wisFsAP31sYzWQA7p5Dutrbcz7bXr77nkdEs8akc7WQF9DNtDq8wPIlxSeBsjWgPuEsewWnyzzBfMqtNcTUAVjJbHoYh+IskCzVhYcEGxHOgMI3VeetAfIdWKdJdmAAX1dIrCNBtmmXjuOfOVv3mVILytVYp3NIb2uGuS8tOo3DIokmlXtme3aUtQis21OqXLzXLdyZigZ1Vpfe5Z4nYb0avtVj+YpdNe+krxSYSMdhgfjyF95Tg8a5F/DFU5q9rB1rPO5SGdrbG2+qNnorRlI7RZBELO0JvswYCFZ2clsW7XEwr4GeU9bl7WyCdN9nVhlkNXLdCw6gNF8Qa712jb1vqMuTC3oIT2LGmSUrjYm7WCJpz5Dm4l1Td192zIgNrTIIAut7UyX7YcH/TJRUicbnt8oF4tEjjpFYBsXC2FRjhKH2pmh5SanqiRpUSrfaYuOHxkBUnit+1rmJYehPbcIUJuJUwsM8gi7DDJALtqzovUpqiUgGvoC3xONCOwvlyG9BnEVtOsrKSplY2f5hKnPGgCyrTL57lJ2YEXVzZ3aCuSAhrdv4yhnm6r1hRYlFn4IXlC7a7SWo7BKrLMp/ZjoyelWNmG6r+M8sD7g1YkVzZcNgGxPVzuSHYCo7iuxOQyHBsii+ymATQeEVYBJe9BX6GS5MLYHkI2eOdfyjTbllwm51zYU+skyg2ddAHKqdbWexZeycmZob/OWFCUhylLNlh5TvSOEkk910NUeBoZBthlg0j4C27w/R9Ke9GOk1xgjy2vb18Si1lcIoW1Fq9pmdNtK1wCyLZs3b7V+6gCtbaqsJFlRrWQf5ve8xcopQBZCfKsQ4rNCiM8LIf7oFT/3cSFEKYT47S77cVphDLKEMl/pd7at8wyyjSN6fXOvDQNs25P+PWZIz0rpvuKom8TC6O9sMsjTLhHY+RKEzywX1hnkiUg72bxlYownIPJtfYbKQ7f14KCU2sXCog+y7mtMF7bdMMgWF3T9GfodGGRj82aTQfYj9buyDgxyWCW1fMdGeZ4g98aEZdI+hS1TzgyexWs1DvXgWWuLsIoYQzjY6cuse4U3bg3cVWKdBsi23DWaALmllAFQA41gxV2jTvirAXJLXW1kT2IBrN6BHW3eVtpoOwxyUuhT1HB714/kfE8wMMjNEkL4wJ8Dvg34APCdQogPXPJz/3fgv3PVSy/VHDzrkqRnM9IZVhrktkN6Db/HWlNko/RD15ptN5HOeoLbWtQ0KmQCWshRYPUZFpbkKFAvLIdB0Sku3CTWWYm/1n2FVQcgWuYIWbKUI3suFihdbdxF+qHveZsDXvghJT5+h1hnE+kcWWSQ/bG657MO/syBZYAMkHtjPBTh0KZMIIdNS7yxti5rG2CyZqdmcRgOtF6+ZZJekpfs+/YS60ABo+MOEdjmVCqSqYpg9gMrPUETILfR1VbqmluyUwMtyawT/toM6WkXi8DDWpJe5COlPkVtAdyTJoYZGOQL6+uBz0spvyClzIBPAt9+wc/9AeBvAvcc9uK+zg2eJUW1vYZV70oNCLLjYrHOIG8PkFcWTtaG9ADjz9w1lntR2R/SMy+xVn0VS2Q41n6Zdhnkw6Bo72KR241OVn3Fij2sKvKyzfCnGbS0GKqC0tWORVYfPW5dllKynvi13pigg2xAagZ5NNmz1VLNRpcdhvSiKtUWgvbKOK50si4T9vyGwQzptWeQl1lp1ZUBVuteLtoPDy7XALI9VvQkb1h8bduTXnvt6rX1O7CDb3Tt7avncmxUTRIFK5nmNrXMSyLfw5eFOsW2IbEIug0Prp2C1+vpYPPWrGeBLzX+/Ir+Wl1CiGeB7wD+/FW/SAjx+4QQnxJCfOr+/fvWG7VSDQZ5HHqUlSQvtwXI5yOdu++am0wttAB99e5vvJrgtVHarD2OWsY6675mlTrGs+YZDcrIn5ae0dkCaZhoyzZvyp+57eDZwm4gh+5LIIkoOnlZJ4zs3VcoXW0nBjlzw3gU3oigA4NcZQtKKRiP7L1ojCNG0ZJBLsqKSKZ29do0AXL7xLOYzErAhCnlrtEeiCYOGOR68MzrpkG2Gels+jruAJANERCWNj2jFdypkwe3lDsZ+1WbbhGqLxPrHIOslCXaFpU0ZR9gR2JRnzh3Y5DHUQMgRxbtKXsqlwD5onPc84jx/wn8ESnllW8yKeVflFJ+TEr5sTt37tjqz26Zh0WzorAlwDJuEeGEZa70YFYlFnVPWwKsxgSqtfCSc3110SDXANli1LSZnG4L3CvNLNiWWOz7HYb0soXdZDhY21B0SUO0GjUNeNFUB5i030zAyuHBVhX+mKBK2/+CPGHJiDiysHHWFY01g5y2HTyriEVGZZlBNs9Qa1Y0LZRFmMVNzjj01MxDvmyljU7WAjns9BX6Ak9AJqIODHJlNZADtByl8JBeu6FGQ+T4DhjkZcuEvzX7VUtDetAM5WiXWrcKL7HH1MZNDNNC+mHWXtWX3nwPGuS1egV4vvHn54DXzv3Mx4BPCiG+CPx24L8QQvwWhz25q3pBb6n3LVJAaolF4+bqWmEMxZKRL7bvCdZ2pXYlFpM1gLy9HEUDZD0IYmWgUS8sI6kZ5DYAK19S2Q7kaAaYdJANLGVkXWIB2l2j1bVSbGpCxMRiX14Ud4vA1veW1cQ6FCs6kmk7OQpAviCxPNAYablGlbUEV3oYTlpOyZKN9bRNFSax0CpA9knkCIHU6/V2ZaznVF927i0hVDJmKtozyEle1s491mQD5nluOXhmHIQCiwxyV4C8bqdmj0Guk3dbeqUvzzPIFpjaJwNMthzSKxoy0cHm7cL6KeA9QogXhRAR8O8AP9r8ASnli1LKd0gp3wH818C/J6X8YYc9uatwxXismX9vWo2be20q1VJfXpUyClrIGdYYZJsuFquEv3oYYKu+FuCFLErBKLAQfw21KXpUdZBY5MvaP3dsWWJh/JlbVb5gLi27RRimvK0/c+1EMrLObMddoqb1s+hZDOQAKGt/5nZ9iUJZ4lmLvwbGeuCvLUBWrGhSy4psVVeAXDkAyGupdW2DEyxHOoMCo2mHhD+ljc50dLKde8s8zzJonw7nCXXP25ajzFsGmKwPntnsSyfvNjDENrVsejODNZs387vbbHLM2jsZhvQuLillAXwfyp3iF4G/IaX8jBDi9wshfr+rf3dn1TgeaSWxaNzc9U7VojNDa0s1rdOSwVjvVC0d74br/sytgLthtW0PnmlrobaygcI6g7yyn2vVU5lDlTOvbEssOvoz64XTNiuqAky6se2wskCzVdLX/swdAHJKZM+FBBhpiUXVaRgug8Dyy8/IW1r2JTP7x7omAhtobxFmNMgW762x0Ua3tBBc5iUTMrvXSj/PVcuQCXNaKawCUQOQjT9zO9AXG7cIi8mRSVG2ZpDV4GCTqbUXqpK2HNJbZOfYdnhLMsj2xGwXlJTy7wF/79zXLhzIk1J+t8tenNcFDPJWDFbTb3hmn0FubT9nEuu8GCktywaa1yovOdrm72dziCYr/ZWtCidqMARaBpgsycOnAYvXyg/BC5l4WbtQDv0Z2gfIRoPcEvRpf1Rl82a3rzEZSdbOIqzKFniAb9FDF5Rt3JhH7eQogF/oxDqLNY6Czs4MT5OSW5ajiJZ6zLoa9pS2ahz6rY/n4byLheW+ujDIRvphU46in+fSjwla2bwZVnQB47t2etJr36xqF2Bi1ripXwLS2gBo7eRUp21uN8hb2686GNJryyCv+yAPDPJQ5+KTYVsGueE3bDtqGmpmO9lWyqCPXhPjN2xZYlE/iG2Au75WtllR4zTQjkGeq4lyLHkz131NmLRmatXidlaGTjTI47asaINBtvoZamanbCkbKNMFhfQYjUb2ekIB5C7uGn65JLMMkGvZQEsP3WVeMiazPtBI1O642ZS0yKaZikO/YRHWLoVtXLtYWJZ+yHZDeibxbOSIQW6b8LcmG7DUl5EmndUR2FsCUf3cTjyzybGzgR6HjaAQaAXc14GovVCVekivTKHafN1ay3LIl+CFiuh5i9UAkG1Vk6ltM6R3DiCHviC0kXjW6KuV57BxGjCJdTbT4do6fkAtsbAWf133FddetW11tcaIfmRjcNBU1EFXqz/Dsyq0fq0Apavt4GVtP0lPgY9ah7pllenculsEgNAa5LYAOSiXZJYDOUJfkDBSR9ktKklTRqKwmlgHrAI+WvYlXDHIHSUWExca5NBXgUktfX1BDyY7AMhFS4Cc5lVD62tnM+F5gnHokRSythndpswaZ9vxo7Z5a6m7XzbZdrByvZ4Y0tuyr1qOYtnxo+8aALKtatxERuC+1XF40y0iswj61gJM2g/prRLrLIEGbYreXoO8WDHIlo/nPa3laxtgkmmAbJutjUnbp/sBp4VDDXKHvkp/jG9jyPJcX7Itg5wt7LPamACTvPXwYFCltb7dWk9CkBLV9/y2leuIat8yg+x31CDX/z02mdrIr0/SWqXDNSUWFkNoRqGnBs/KbCuWD1YkwEjas1OD1elZ7o1baaOXZiDcYqQzaCeStoNnhkG2fAoQhz55KSn8dgl/yXmbNytDevq9XLRz11g7Bc/mb0n9MQwA2V41h+E6aZCVW4Q126tgndneHojOIYhZ5sqGzaoGuSqYBGoTsbWlmhnSs65BjhHFsp3jh/ayNgyybb3viKxT6uBJEViWfTRcLFpa4gHWE+u6AuQqm7OUkT0XEl0imjDu4GIROoh0BsjECK9sB5CzZAZAYJlBNvrvtrHOntFx2oyaDryVi8WWOlHQiXVersgBS24RoNaZroNnobQrsagT/rxRe722A/axnsNp4+1rZANmk2NNg6zuhXq+oIX0Y9IM5LAZFNLURm8B3JNcuZCMAruhKn3XAJBtlR+CFzwxeLZxNW5u65HOoLTRQQsXi4bWF+w7M0z0cdX2fc31tbIY6Qwrf+Y2jh9lBrKqj2FtA/eRTEmLiqpqEWEOzC0HcnQe0jOBHLaP31oOu5iqMp06aNFODRQr2kWDHFUphe3NBOrF7LWMwC50wEgwtguQw7H6DMsWCX9SSvzS/mDQuotFOw3ynp9bBwtx5DcGz9oNU4VVYnWjWif8tYzATopSPX86PMtmX6vBsy21vsaZwbJMpj5FbXk6scxLtZk3zi0WgLtZ+9a10dtJLOLQV447lj/DPmsAyDZLg6txVw2yVYlFIwK7DehrMLVgcfCsZh+V00Bb4J5Yl1isornbhqrUANlyXyNtP9fKMxplkO9CgzzuMDxY4RFGdofh0KEVouXxPNlSpQ5aZpD90YRQlCRJOzA6kkkdQmOzcm9U6+63rSJRL+VgvGezJUZRRCrDGoBvU2lRNYbhLLKiQVNi0YYVrZh6dt0iQAGsWdnNmUFFOtu1xANIac8g7wd6TbHY1yj0O8cnmyAp6wEmbH9vVZVcJdxaPJELfI/QF+cS/ja/txbN9/LAIA8FYFLr2gWFnGOQLYdMGOnH1sNUxk7NprNGo69YM8hb97UmsbAsG6gT/to5fiylGdKz62LROsCkAdytgr7AnAK0lA0UCZmIGFsehjMLumipq5X5gsR2eAnga1Y0T7ZnRZGSEekqgtliFd6odm7ZtirN8EaxXQbZxDpXLRjk9Uhne9fL8wRlhwCTZV4wFfYZ5HHoc1p2k1ioSGe7TC1AItoB5LSo2A+0TaPVvryGBrndZmJkOS7crMmLFpsvQ5bULhYW5Ttreu0t+0qaJF++tCp16rMGgGyztCl66Hv4nmhv82ZTV7tm8+Ztb/PWYGrBvsQilh1AX2RZjgIYf+Z2jh+rgcb6eMlaX7E6BqVlqAqKobB6rfwAvJB9v+XgmdZr22Zqzb3lt2RFhY7ltsq2A6HW1RYtQB9lhk+FdMDEFP6YsNw+Ohmg1Me6geXUQWOp1saqby2Qw/bRbmOmY9taZiUTYdctAjRALroxyH6Z1icvtnoCSNASC7mdLGyZlRx69k8BaulcGLfwG1bvzqhckVk2aqzdjpLKUzLNLTb2T9ipWXYiSdYY5O36qt81g8RiKKAGV2CGAbZxsTDHI2NHGuS2QSGLNYnFxFqSnnpgzG58a4CcrVwsrA5TNfyZ20osFpX943nCSXt/ZuM3LO2zooST9hHY+ZLUAVNr7i2vTJBbvphBMc/W2XZWg2xF0kL6oYGotJ1YBxR+TCjbAWSprfSEJU9YUyaUo00E9iIrGYsUiQd+ZLUv0TLtDBqpg5avVRz6nBkN8pagz6xxfmF3GM6cniVEICuV5rlNX0XJvm8YZMsymZbpcMu8JPK91cbbos0baDZ/y2juRVYAjcQ6i/dWHPnnbN42v15rp+CWnUj6rAEg26yGrqk2/960zC5LCLugz8Rh1rKBcjvQ0Ih0BvsMci0b2Aa4VyWU6rg5Kyr7DHKZMQlkO100MJOhA9DX8GduyWwvse/MQBgz6QCQrcdM655AaQXzcnuA7BWJAsiW+zIsa6sAEwfBF6Yqf0Qk2w80AvYHz0KfhFErJ5JlphjkMojB5ikOMB6FZKJdKMcyrxSzbZ1B9joNeIFUciSLfQkhdIBJS2Y7K5VeG6ze8+Mmg9xCgzxei3S2c73WsgC2lH6sJ9bZtVNTm4mWNm/nJRYDgzxU0zomjjyVY75pNY5HEpsSC89TILlYDQ9uNeSld391trqtIT19VOmViVrgW+i1jeWVC2/fg6BoHaoyq6LausdmX4a5SLf1HK4Bsgu2NmbqZaQtI7ATB0xtV3cNv3QjsTB9tQHIuZZlWE+sAyo/Xg0ebVl1wIjlvrrEJyc6kMOFXnsc+srnvE1fWckYu1pf0P7MLQa8QMkGIgoEckWmWOyrja62qiRpUTH17DPI9RxOGx9kE+lcu0XYYWvXZpa27MucUq8s8SwC5Hoz0c7mbTIwyEOtVZNB3tZSrbHLchGfTL5caZ1aMNvG1zCyke5netK/P96abVfXOPPcuEUAHPh5a63vWWE50hkgnOCXS0C28IxeUHkhJb4TOcOkQ9S00mtbXob0iz4m3W6Tqssv3TDIXfyZs6XyG7adWAcgg1i5PrSRo1hM72rWOPTUsGvbmGKRIp0AZE/5nLeNmracWKd6ap/wp+Kv7Q6dmVL+zNvb4hkCZyIcMMhmDqelxKIGosKefGeVvFutkWyb9lT/DuuWeF57m7c1DfLgYjEUqCGHmkFuI7FQN5GLdLhmBPb2wD1e9zW00tO6u8Z2oSpqB58KbTPmwNt3328hG9AL7mnpRmIBMKJNX0tKXw9FWgfuYyZtA0yKhKULOYoByG2Au5QEZcKSyK4LCdT3VieA7IBBrgf/WvhG104hDrx9l0StnEiMxMLFQGMc+u2ty/KSyAFAjrVeG9ga9CVrA432pR9tAkzMMzs1gRyWGeRlWwa5jnRe1nJIG2VOGxUY3S6ae81dyvmQ3hY2b+YUXIdnDRKLodZ2pVu7IOib2/gaWverbZvwly0gmroB7YDxjW7DIOeGQXYgsegCkE/K0NnxfNwmiS1f1BHFLhjksUhba5DnlQNdtOdR+mPGtOirzPEoycUYz2b8NbQadjHlKtIZWLkXtAB9wkGkM6w0yF7bYThSJy/l2LC1LSUWCiC7kKMYpnZbZ4aywdS6CDDZXmJR62odOJHUczjBWG0Iq81P42rPfQfhJUCrhL86nyD063e1rapt3vwQhL/1ZziO/NWmewDIQzV3pXHob2epph+6NV9Dy33V1jub6kXr3V/sACCvDw+2CVVJnCTWaQbZa2FdZiKd88AZg9wqiS1bkGu9touBuLFsFxQi84X9dD9dpR+ra7X1Z6iAaGlZjwk0APL2TG1eB3LYl1jU2ugW9nN+uSQnBM/uZ2hcLNpEYCfaLUI4YJDHkU8iw60BspSSRV4qq0YnA43th/QOQ+WE4KKvM+PP3MK6bOwAuI/0WlP425+arOKv7WpqrQzpRfb7qqWPQrQC7jVohwEgD8XaTTQOve3CL865RUwcSCzWjnI2qTIHqR7axIXfMHTSILtKrAOYeNn2sc6GQS4CZ4NnE5G00kbnLvTaAGHMqGWSntR+w1bvdfO7g7FO+Gvh+40aXLNe+t5qIxvIUyWxsJ1YByvZRpbMtv67QbEk8+xvJgwr2sbLepkpXa0LvfY48Fm0YJDzUkJVEMjcwZCeR0qIRGzd1yIrOaoBsn1m+6zUtqAtWFHbkc7QiMD2ttdsJ0UTINu1xBMCNS+xpT/zmruUiyE9M++yBXCXUjb02m5cbvqqASDbrMZN1Ar0aabW/H27fbVI+NNsGuF0pSmyVX6kBh205/DWchRWyUNWHSP0wmcmqJNtHCPyJSA4yd0Mw0HLWOd8QSY0g+xAVzuS7SUWie3wEl0yiInbJPzpe0s6ZJC9FgC51N7JoQMG2ThjpMvtGeSgSurTCZsVaxcLvwWDvMwrJqRO9Npx5LGotrd5U8NwbqQMo8AHBKU/bqVBPgjcMcinLSKwjUuP7UhnWBEEmdh+eHCZadmAZSAqhFgN9QfbMchrEgvLdmprJ7tbaLazsqKSjfAS8/ffgjUAZJsVxopxLfPth/SyOc1ADqu6zGAVfgFbaJAbN/ear6GNMsc2RaI9o7dg+rTNjgHIcWgxqtgwyPp4bzvgrkNVbGvIG33FpC1cLJakYkTkewS2XEhMBWMimbQa0hPa5s36tQIl/WglR1H3VuUgkKMZYLJtmcQ6FwDZ6JqzFgA5rBIKw8ZZrNAXpIwIq3QrnSiskvQ8y+l+oJ0ZWkgs1obhLAN3s64rgLwtg1xw6GuAbNn1I458Too2DLL6vEdVokiUwN79ZcgUQxhsp6utnGh94VzCX5shvcizzmyv2a9u4fqRZOfir83ffwvWAJBtViOGdGz8FjctHZ1sPdIZntQgb8qKNsIJ6gEFmxWMa4lFGx9kA5DtylE0QNbHe1vpyHW6X5JXziQW+0G74cGUkX1vZt1XWKXbR5hXJaJMWUoHqYMAUdx6oBFAuhiG85XVnt+GQdb64PFk33ZX+BpIGp3zNhVW6UrPabGEELXPeZt0OKVBdgOQZ1WEbOGhOxb2GVHTE2hf+C2v1SIr2Qvs+w2bvk5yA5C3S2EDGMnEqluE6QlW8ytbp8M50CCbvpbZ9jZvSV7ie4KIEiq78p049CkqSV5WWwH3Ra42XAODPNR6nbMu2+p4PlO7v0XmAiBP2rlYmMUjmtj3Zj7X19ZMLTArXQBkLWVoxSAvkWFMVlpO94P63mrrz+wkkEP3FVYJWVFSbqXXVgunK4mFCCftbN4cMx65N64jw7cpmS2opCCO7fdlAHKx5ZCelJKRXKrEOgdVBu3cNZZZSSzcuFiMjKVaGw9dRxKLWlfbVmLhIJADlAb5cc0gb37Pm/jksLKfwFaTRLXEYsvBMwcSC9WXp/DC1kEh2n7Vgd3i+vDg5sB9XfZhMISD4eIeagDINqsxeDYOffJS776uKymV3rcZ6WwrsQ5qbfTKxWJD0NCIkbXuYtHoa3vPaB3IoS2E7MpRtFZX69+2ddcw4QSuNMgHftEKIC8dAVHCGI+KkLKVE8nCRSAHavCslYuFvueFowW98MfKyWDLktlCfYYji3IiXUa2UaTbAdGsrBiTuRloBAqvnS3eMiuU3teRD3Ibm7dlXjLBjeWVWdfzFgl/i6xk39PMtgPZwEneCIvYsMwzG1aJk4RGgFRu565hBs9WfsN2r1V94hzGigku843+3lpP4AQgr5IHN3sO172ZhyG9oUydY5BhQ4BVpCArxdRmjZvLZl9NDfLGQ3orNm2ZOWJFc6NB3h5cnRVqkZs4cNcYaYnFtsDdsGnWvX07+jMvHGp9QWujt9Xco5xIrF8rFEBu5a6ROwbI3pigSpHbptblS5aMnDh+RNrtYVubtySriMmcRDoDVC39mfMswadywiCbWGdRLLfz0M2U7ANwMKRndLXbJ/wts5KpZ99vGPRmovSRXrBVX+YUNSjsA1HzDltsmTy4Zr+az91ILFqk1iniynNy8rXCMNtJLNat59z4pPdVA0C2WTWDnNQv/Y1AQ31zTx1pkCdQLBn7Ssu1sfXV2pBe4QggKw1yVlSbH9HnC/BC5qWwP3imTdFHUrE920o/SmeBHAYgtwF9S3daX93X1u4ahkGWrhjkmIlIt7d508DddzDgBegAk6x+4W5aIl+wlKM6Lt5mhbEByG2cGVIniXXACnhvCfqkAfqugkKkBldb6H0XmbtIZ88TjENPA+TtmW0XiXXQWANbDp751dLZQOOiTh7cVjbgOZFYrA3pbdFXbb+areSQNnuCpsRiQwb5wiG9gUEeqmY8FvXikG7ygj6n9QU33r6BzAh9sTWDLLX0w43EYlnLSTa3n9Oe0VlhvyftrhFWLRlk38Rfu4kpnnr5do4fVQWFSqxzI7HQCX/bWqplbiUWIpy0C1XR97zvwEMXoArGrYYHRbEkESP76X5AFCtv5SrbjkFe6mE4Z+xQsB1YMFU5fCmPQ48l24ErcKtBVn35SlfbQmIxFamSltkOe9Frc9XCuswTqBRF23KU4DxA3k42oACy/ejkOnnX/N4NpR+1/aoDpraeWdrSXeMJb2YYAPJQNBjk5XahHFlTyuDIxaLua4uBOL14ZN6YSrpIYTs3PLgNcA9jFlnp5MjZDJ7B9hpkZ5HOwQgQTMWWTK1eaGdV6EyDDDrhbxv7OX1vLeXYGbM9bjGkJzOTWGffLQKMP/P2fXnFcuXdarnGmkGWbWKKSRCRm5efbMx0bPX3HKZ3rcc6b+mA4CD4wpSJ5m410IibTY5Zbyp/OwZZresBQs/l2KyxJmO2jcA2z6vxx3ehjU6Lqp6B2YbZdqX1HYUN4mqbIb3z6X4wSCyGogFEVwzyRmDUBHJE03WBu6O+0i1t3lLpINLZ9FWs7Oc2Bu6ZssRbuHDW0H3VDPKWEgsTmmC9L81sT71tpQwGIEdOtL7NAJM2OvKFM3eNiZIyZJsNu5gqkjmZ9BmN3IBRGcaMSbceHgzKJalwEF4CjKOQVAYrYLlhJYUKv3BhpwZsfdxsSmbuWKs49EkM+7iFxMJYz6m+XEk/tvNnLspKD1omTlwGaoAcjLeMmi7UO0Gv8y56mm8ZYGKeV3d6bW+dQd7UczgvndmpPckgL5ShwDW1zM7ZvAlfBYO9BWsAyDbrgiG9bRnkJC8RYjV4YaevJrO9BYNsAjmEo5jiYLw2PLitxCLJHMg+AMIJgU7w2lZiYVg+N2A0ZiK2dGYwA42lIwZZMx7bSyz0veVIYmGexSLbDlyV6czZMByADNpJP/wyqU8nbJcZPNs6/CJJGYnCSWIdrCKwt+3LheWVqfpawdayARfRyaZGtbvG9n7DY+M3bLmMdK7wtgswqU8GHUkZAObldvZzyXkG+ctpSG+NQba30anfy8bFQoegXdtT8xRc29fa9LLuswaAbLOaNm/bgL58XWIxCX2EzRvqHIO8uZRBg8RKu0W4CL9osu1fRhILX6edbQ+QHTHIULOi28dfOwTIHRnkTIwJbaf7QX3PV1sOnpXpggWOZB+ACNsFmISOIp1B6TLbWJdlOljERWIdgNdSYiEKd96r6xKLthpkFwyyicDe3k5tJO3bqcEKjBZbJvzV67qDxLrQ9wg8wbKotop1NmvbxNGg5bge0lsN+m/al6thuHUGefNn0czIuApV6bMGgGyzzI1QJPUwwEYvQjMcEzkchgPFIEdbxDrrHfzChezD9NUqwERNES/ykjiy7wtLOMHTDPK2aYipcCRHAdDgqo3W96QInLpYbA36stUAqJMyAHlL2UCVzp05awCIaMJY5FvHhYdV4iSxDpQLQsKovuc3rTyZARCM9ly0tQLeWwJ3zyWDbIJCYGu2ds/PwAuVU47tviKfuYygTKHa7Dk0oC+qEut2anAu4W+La7WSDdjXIJu+th48M/arjgCycXKq/O307cusUmScgyG9VW5CtRWzXSchBm4cP/qsASDbrIYt0Vaew00G2Rh/26ymxCLwtpcyuLCeM32VGeNA6Zq2Y5Cn2nrODfsoTMLfpj2VOVQFS8MgOwKjo22BqF7QTsvQsQ/yttIPtSl0B5DbgSuZzZ1KLLxIa5C3ZJCjKqktBF1UKkYrYLlh5UttiTd24/jhj9sxyL7RBjsa0ktaMMhJVrLv2Y0CblYc+swrE36xGfto/IYjB3ZqsFoDM2+704lFVrIfVlAVbpjtyNegr8XgmSMv6zrAxNsOICcOGeQnkvQ27CvJS8ahpxx3HMhk+qwBINss7aG7zopuwBRljSG9zMHgWWMyNo78LQDyAhMSAg5An178pmyZWrcmsXDBIK+CVTYGMvozNPpEJ2A0mjKWKYus2DxoonaLcKX1XUVzbxcUsqDCww8dgT79ohBbOyDMVWKdM4DcToM8kmmd0uiiUjHG3xIgm2CR0BFAHmmrvW1OAYqyIpQGILvRILe1edvz3KT7gdIg1wB5w74MQA5LRxpkvd5kYnuJxaGvnw8HzPY41CTRFulw5t1kElZdMMgAS/R6uIHlokn3c2WnthZ2tg2D3HwvDwzyUHVpp4Gth/TOMcj2JRar3V+8rc2bjpkGBwyy1pdNtk2tazDbrob0yNS12jZUZenK8QMUgywTKsnmQROmL0aO2HYdzc2WoRz5glSM3UhkoCF32g70oQM5XEks/PGUUJSkyRaWalIyInWWWAdaC15ut5koNHCNHAHkyShgIUe1lGOTcq31HQfeKihky3S4qUOAHIc+Z1s6MxjQ55dLpy4W2waYLLOCw8CdZ3Qc+iyyopXEwgRIuXLXqAHyBp9hXkrKSqp3YDa37mUd+gLfE1u7a9SgHdT1dZRK2kcNANl26V3pmofgddXQD9W+hrZ70v/O1kN6DYBsvy/14MTCMMjbaKM1g+yEqVXDg2NjvbNpTygDet8ThL6Dqd0wJpJb2s9pEOOMFTVBIduyotmcVIzduH00+tp02MWUl6shPScnE0CgWdE82SKUo0jwkO7kKEDqx4RbapDLRN1bYexGg2zY2m0S/lz7DQe+R+G3kFjkJROHoSrrAHk7Btkv3RyD14PqWzqkKAZZA2QXwD0K1BzONulw+t0UOWKQ6+TdLRjktfeyA6ZWCLGSZDYG/a/tKytXQVkOYrn7rAEg264whjxhFHgIscWQXhCD5600RVZ7WukxR9uwonqK2AyqWddl6sVvJDXLucWQnrN0P9AM8nw7iYV+ASykSqyz6kLS6MsEmMy11+T1fa0kFk5kH34IXrB9BHa+IBGOWG2oZUXbDp6JYsnCoQY51AC5SLcAyPreEg5fNIW3CsfZtEyoiu+IIZpGAQs5pkw3Z5CTrCIWGRKxkpZZrjYBJssaILv5DMehx2mxHYO80GuIV7hxsajTZIk29tAF9R7Y992dAkxCX3n1hvHGem3zHqifEdsaZG3rmpSo+3YDgGzW24kZ0nNi1affgeb+2BC41+/lQWIx1FppBlkIsbmcIV8Zoi+dAOR1m7fttb7a+Nu6xELrV6stLNWqEgrlCSulo2G4aArFkmng1f/t11YdyBHaj5k2FcYExn5uG8cPNIPsSDZAOGHPy7cb0ssWLB0yteZl4W8R5qB+fuFuMwEEevCs2IIVNVpfFyDGVBFMGFVbDjQ6jpGNI58Fo62s+gyDXPqxM+9Vb8u0M2gm1rmTWJxs6e27zEo8KrwydaL1rS3VGG3soQvqM9w3gRwO7vlJ5Cv2fEsNchz6q5kG2xrk5lD/hsz2mt+wIzu1ce34oe+PDeYB1uaohiG9odaqoWvaWM6QrW4iJ6zo2pCe10Ji4WpITx3NBuUC3xNbyVGMJ6wTiYX+LA7Doj6GvL4vtXDMqsgp6AtqBnm7vhJXiXUAYczUy7dkkOfuQkJ0TwChTCirDQcaUYEcLhlkT/e1jWwgWZ6pv+tQy1cG8UpfuWEZBtkV6JtEynNYbsBamTIAuXLEHgOMo0ClGm7FIFfKIswRWBhHjYS/Lbx9J7jR1JqKQ5/FFn1lRUVRyRVAdmE/F2niaksNssvo5DWr02ivpcTCzSlA0mSQ8836GocDgzzURdWwjhlvKmdo+D0us8o+e+V5SsJRKA1yWUnyctO+VvHXVtP9oP5vFtsMD5r4a+037ASMaiByFGRbA+TTMnQGrghjdRwKWzHbUnhkBE7B6NTb3sVi4ZCpbWqjNwbuUhKWS8fAXfW1jTNDulASA1eBHABVMCUmgWrzQcuaQXYE3CeRGtIT2wDkTEU6uxxojENfD55tFzU9JnHKIK/s5zaVWDT12u6A+2KLaG7zDpjouRT3DPLmeu3aLUL41r2sV57DGoxuAZBdekbXGCbanEFek4k6Au591QCQbVfj2Ka2k7muGpnzTjTIoNwGdNQ0bOquoXZ/9fGS7SPLWte0WB3lXNuTSWBzGOmsF4ODYAvZgAHIReiUqfVkQUCxVVx46ceAcAhGp0y3jZrOF8yqqI6jtd+TAiJbJfwVCQJJLsbKw9NhX9sA5GypALI/cscg17raLVw/PAfeq82aaInFNlZ9CoimSIes1Tjy1QZ9S4nFqErrUzPrPYXqWgEbgRjT014NRN3cW3Hos6g210YvcrXxn9R+wy4AcqBdLDYf0ltkhQaiGvBZfheuvZej6WYa5DWJhRumtiauDJO/IYM8iXylOR8kFkOtVVNisemQlw6+qH0NXYCG0DgzNPLVr+1rWTtruNH66pdFNttc+mGGzuhBYuFnW2uQT4rAIYO8YkU3l1jMyX3195z1FU2YiC3DL7K5AsiuQLs+Yp+IdGvHj9Ih+2g+Q7kVQNZ+ww4BcnOzunEZMO3oehmJRR0dvUEtHGt9QcU614NnG9YyL9UwsiMpwyTymUsjpduMcV/mJTdCrQt2GmCiGeQN7q3FeQbZ5eDZlgzyxNipOQxVSbbQIC+eAMhunEiWeQlBBF6w8WcYRz4UKciqtgJ9K9YAkG1XOK0XqI1lA/qhy8pK+Rq6Sjxr+DNfKx0wuz8Tf+0QiG41PGg0tUItuk5An2GQ/XxziYVeOI7z0KEG2bCiqZrC3rCvXEcUT0futNETkq18kGW+4MwlQPY8Sn/MmHQLmYx6bktHkc5A/RmKLZjaOtI5dgmQ1e+W2eaOEX6xJCcE3819NYkC5nKMvxVALpiQIhxoV03VaXpbMshR5e64eRIFahgONt7kLLKSo1CvI46A+zjyOTMAecOQCWhEOruQWIS+8hD2tYvFBrKipQHIDpla8+9syiCvJBaesyG9uHkKHm7ObI+b6X6OTk36qAEg265oUi9Q49AnKbZjagE34QkaIE9HGwLkevcXu2OQzcsim2+tQa4DORz2teclpEW12ZCXBleP8h4YZLGFNjqb1wONzqQf0R4xWzC1uq8lDn2QgTKYMCXZ/BSgFwZ5cz9RU2agz1UgB4DQANnIOTYpr0zITTSugzIMsr+FVZ+yU0vwRu5eynGo0/Q2/AyLskKWGb4snIEFI0cBNgIxoAI5jgLDILuSWHiclgYgbzF4VqchuhnSAx2BDRtpoxd5oYgPR5KBVbBYtTFANuvaJArWZJq2+6rfNdFk488wDv3Vf8MgsRiqrsbNPd7K5m1a34hTp96+Cnwv82tAw/l0PxdMn+fVfW2sQc5WgRzgyuZNA2Stg9usrzkIj+PMdzqkBxBvyYqmnvp7TuQoANGEsUw2l1jo04kFI3c9AVU4IRbbM8jSIfu4sp/bHPQVOlQkchTIAeBrQJnMTzb+O0G5rDdfLirWutqgXG7soTtPSyakeA7lKLEZPNuQQU6KSg1Agju3iMinxKf0oq0kFgd1IIcjBjn0OaklFpuAvgZA9iMnpxPmhC8Xmw811rIBRwDZDMC3kVhMHPY1GQWr9TOcXHs6kZfKhWQNIA9JekPVFSoPXSp1JLMxuAonK79hV7KBfFGDt3l6TV8Nj9O1ZBzbpRcDpQvb0FkDmFXaxSJ0wbbrCGytg9uIgcyU48cir4hd9AT1Ajj18i1Y0TmJGBMFHoHv6DOMpozlFkxtkSJkxVJGTFzJPkAND26zmdCLv8vEOvOy8LYAyMYHeeQSII/V7zaOGZvUqFqS+e6ulecJci/GlyWU2UZ/Z5kVTERS//e4qGkUKF3tpvrVVMk+AGdgYapBXxnEGzPIi6zkwHfNIPuc5HpIbxPZgF5DwipxKEfRel+xeWrdIi0VceVIYuF5glGg53A2tHlbaZA9LdO0/xlOTCw31Bhio56Ms4b5e2/RGgCy7TI3gwajG72cG9HJsFrsrPeVzevF4dq+GgzyIi/d6Wp1X3HobzY4qBeOOQ4lFvozNC+1xXWbCd2XjKZKA+mYQT4Kt9NGq0AOd0wt4ZSoSra2xFs69BsG1PDgNhKLRuS7s9K/O9hCNiD19RpN3IG+YGwisDcHyGG5pHCp14bV798C9O2R1JIRFzWJfGZVuJWd2mrozJUlnnqOcv96ls/UMnPPIMehz+NyewbZpV67HogTm99bal0PajLLRU2MP7Oxebvm1GSRFQSeICJXQSwuAPIoYJmXVJXcSPpR2/SZawUDQB6qUY1p8EkUsEiveTnrZLimxMIJaAgNQFZA91rQ0Li5F2lRa5etVwMgbyOxOCuND7I7iUUNkDcE7jKcUEmYuLpWBiAHxWagHSBXWl+XUgaiCVG1ZJEVyE2OwvW9tWDsZjOoS0R7TFpILITDxDo8j0yMCcvNNcgynZFLn8nYXV9BvA9AoUNJrquyksQklIFbfWGtB98QjM6zklikTl/KE80gyw0Z5HlWuA/kMADZi7eSWOx77n2Qj7dgkM2zGpZuHT9gOwa5DvDSckg3fQXMs0L9/g1OTeap6knUG3sHADnykRI1SxVe788817hiOvJXG7VBgzxUXQ3rsknks8jLq0FDk6k1onsXx84aiE43ZZCbADkr3ckGdF/jjeUoiuE60ayEE29fvdCMMBHYGzCQ+YJKLwTOwGho/JkLFpvqfbM5CxxLGaIpAklYpWQbBdBoBlk6TPcDvNFUD+ltJ7EQLu3UgMyPtwLI5AuWjIgdfoZG31xsyCCbFLbKpV4bVgB8Q1Y0TRMiCmdMLayGB7dikHuSWGTeeIshvXLlN+zQB/lxbiKwNwuZAJVo6VpisWAzW7ysqMhLqdZ1R1IG09cibcY6X8/WTqOgfie66GsNL0TXa6MNcaM0yKavwcViKFMNZ4ZJFKjd11XaWrPwRxO3DLJhausbflMGeY9F5pBBNhrkbSQWwmNWBowCD99FoIP2fBxXJrVuM+BuXuaubd4O/Hwrm7e5dC+xAMW4b8Rs60V2wcgpg+yNlLvGtac45/ryHR8JFn5MVG2ewuZlc+aM7SdZNiqaHABQppsBZGOnVjlmh+QWAQWwGmh0yiCPfBK20CBnylkDcAbcx6GHEJCKeCubt6lIwQutJ8OZikOfs1wg/WgFmK7pCVDOJc5Au1pz5nIz149aNjDSsgFXTiSjQBEf0QpDXFVzI+dzKGWoh/pNWMg199aiZpCbEouBQR7KVEODbEDl/CowYxb+cFqDC2cAuVgyCRSgvJ5BXu1K55lLDfIeZIvNJRY6VGWZV85B30iqF+BmAHlR6yXdJemphWbfz64fsgQt31kyKx36DcNKsy2SzZjtbAWQXTLI/mjKdNOeoF7QA4d2agCFr1w/qk3sAwGvUDpy60mWjRpPlMSiSrdhHxOnTC3QIBw2ZNwNwHf4Up5EPks5QpTpRh66fQzpCSHUGipGGwFRUKcAU5E6vVZx5FNJNEGzmTND6AuV0uiYQTaD3tcB0Trdrx6Gc9PXNPLVZj7anEGOo4aUwSGDXEs/rtmoPuGsAYPEYqhG1Tf3bN38+7IyLETUkFi4GtJD7cxHgXe9/Zy+uQs/JiscgtFoopP0fIpKkl93RJ/NatmHM9Cu+wo1y7dp2IvzxDrNIO95+Wagz8Rfy5G7kBBY02xvxNY2JBbOTiYAtAZ5U39m2RdADnSwyiYe6YBfLFYDRY4qHo1IZbhxwp+xU3M9gCM2ZNNMVY2TL1elQjk29/ZdG9JzCtwDlsQbSz+WmYrldrnJMRI4uWHIxDIr9PG8G19fWK3PZxsyyAb07QWls2E409d8i1jnRQ8Si/i8xOJaBrk5pDdILIY6XzVAXtSg5EoGuRayT+v4YJfpcGRzpqPg6p70zwEs9SCD0/CLRgT2tSyy1oAt88Kd9ZzuKyy3YJDzOZnxG3Yssdjzss2AaD3QGDllapsSi40isOshvZEbmz5T0YSYlHmSb/TjRTpnIUfEkZvjZlMynGwF3INiQerQbxjUkeiCbdhHNXjm0m8YQJjAjw0lFn2EE6hQDjPgtQkr2hjS60MbvUFPRVmRlRWxTNwyyHpdr4LNQiZq4iOfu7OeMwB5Q39m85zuGZmMs7CXQEnnNmSQF1mxGhwENwyyxjC1Nlpb2F5W85rk05scL1CSxbdoDQDZdq1pkDcYiMtXOp1lVuIJ3GgNG8L/tXScy0q/KOfSAGSXEot5vZBeq0PWzIJ7BnlaW3Ft6oOceY43E54P/ojJpkl6ZqCxCN2Ez5hqSiw2uVZ5PxILoikeknxDVrRM5gq0u+wJBRambB6sogI53DLIdRLbpuzjckkkSqeJdaBkMsDGEgvhECyYMhHYwMa6WtcSC9WXr3S1W8QUKwbZpcRCvcvK4HoHBNNXDa4c+A3D6l12uqH93FyTEfue24HG6UgzyNFmsqKFib/OVjJN22Xey4usWPV1xRphiJtag/wWtniDASDbr2jFeNSWalfpRWsGOa6PTJxoDRu70npa9qrK5iB8FqV6QNzZvOmEv1D9N1/PIM8g2nMXf133Na0jbjfVIKeu2XaAMGYiss312sBxGTmXMhDSpgAAVyhJREFUo8AWQ3p6Qc89FWDiri/1LFbJhtZl2dy5swaAjKZKYrEhQI6qBZljv+FR4LGQY7wNmdpUR1K7DOSAhqPIhsDd6yGcYNtY57nWa0uEM9Bn+prLkSJdrrFbNKxoVLkbhoMVwCr8zYYH63XdoZ2ar0M5FjkQjK+XMujntB60dDg8qHyQNzs1qUkily4WhkHOyo3mAeprZYJCXM8oOK4BINuu6EkG+eohvZXEoj4ycdJXAyCbadmrSk/rLrQDh9OgECRTX12jzSUWpWMgOsHL5oS+uB4g62G4pXA8pKf7ikVasxpXln55H+eh482EWtAnpFtpo/sa8KrSzcBVlSoG2elAI0A01RKLDSzxUIl1ucPEOlBDXqkY4W3ozGD8kgPHADkaq+FBuaEG2SvcM8jTKGDGFiETacGBl6vwEoeDlpMoULKBqrjWQ7cO5JBuGWQjncuDycZs+zQUzqKTTdUhXtuEX5hTAEfrlmKQC2S42b1Vh1I5HNJbOwWvDQgu72uRNk7BBwZ5qCeqscsyN9eVWsOGFcoiK90NUzVu7knoX69h1dO6Boi50yCrvqZsOBCnF07lzew2/MLYz11rqdYYOgOHmwmAMGZMRlpUlNe5IOh767QauZVYGP9nkWyljfZc2//oe15syIrKbO4+3Q8QmkHeVGIxku4DOQASLybY0J850wA51AEjrirQ4SjlBv7MVSVX/TuVDfgstpFY5DqxzvE0/yTyOd3QmcHcey4DOWDFIOfeeKNTgEVesh/o58LxQOOiti7b0JkBtwxybQtbb76uvl7zrFShVA5t3lYAuamNvryvuU4cFEI4HbTsqwaAbLs8H4IYstlmQ3rngkKcgb61Ib1NNMhq97d2ZOKkLwOuFOOxGYPcg8RCez7WC+l1PQHzXiQWE8ZSMRnXXqtGpHPcl8Ri04FGMSIeuR2GM/f8puwj2aIXiYU32mMqUpbZBsODUhLLJWXgnonJRExQbMYgG8AaTdwC5MkoZCFHG0VgJ0VJ3IPWdzrymbMFQE4L9jy3dmqgAbLR1V4X6KCf08BhIAesTtMyL97YxeIo1M+FwxOmOPJVANQGDLKZqxhL4zjlNi58Jd+5/N4qK6ncpUItsfAjJ17Wq+TdprvG5ffWMmuc7Dr0jO6rBoDsoqIp5NsyyNOV6N5VT/rfi6NgYynDypvZLbNtdufX6jL7klhEE60j9zeTowALOXI3ZGkqjNWxKGx2CgDuB8/C1We42UCj0ms7tZ6D+t7aVFcr8kUvEgsz2JYtN+irzPCpqAK3GmSAzI8Jqu0A8sgxgzyNlLvGJgzyIiuZ9gCQx4F2i4DNJBZZyZ5InYOFOAo4LTaLdV7WANmtlME8S+mGAHmRlRz6GiA79rLeVGJhNhMj82w4c7HQALn0QfhXD8M13SIc67WjwNM+yNdbLs6bp+D5/C3tgQyOAbIQ4luFEJ8VQnxeCPFHL/j+/1oI8XP6/35CCPERl/30VnrwzIDKK0Md8oV6GPxIH5m4sghrMMiRf72GVe/+1mxbHPYV1xKL63yQ57VntGsXC7IFk5F/vexDLxizarQ6XnJVYUwkN0z4M8y26yS9IAIvZM/blEFesBQ9aH314iw21NUKHens9L5iNdhmdLxXlsPj0/NV+PEKBFxTJlDE9ZBerEM5qk3AVVoSm2G4wJ0tnucJyg3jgKGRWOcYLEwjn8fFhtZletPvFW6H9IwGORE6Avua4cEkLzkItH7a4UBj7eQUXe+uYdY0Y/vpzsVC44W8rAO0ruupllg4ZNunkX4HhtcD5GXzFHzQIF9eQggf+HPAtwEfAL5TCPGBcz/2q8BvkFJ+GPhB4C+66qfX0tZlq2nZqyQWeoESgmVWqLx3Jz01GeRNQJ8K5DA/51obvZFsoCygTKnCKUle1Yuvk9Kej9NAbBzLfVY59hsG5c9caQZ5Q4DcB+gjmrLvb2o/NyehDwZZgbeg2ExX6xULFtK9BtkMthUbsKLmmFX28KIpg80jsKU5/nU8aGkcIzZJ+FvkBVNSimDidBgOgFBvDDYaPCtUUIjjz3AS+RxvyCCrNU0qgNyDxCIRYxWyUaTX9FVyIAxAduwZbRwjrjlhWuphOK+2EHRzvZ4M5bj83lpLrHMMRCdRoEi+6HqJxTwtV45XmTtmu69yySB/PfB5KeUXpJQZ8Eng25s/IKX8CSnlY/3HnwSec9hPf9U4trnWUi1bHUPMUy26d1FhDIjaXWOeFcirdvN6GM45g6wXG8NcXQmQ9ULmPLGu0ddRWGwwOLgahnMNrgjjOuHvWuBe+w07ZpABoimHXraxD/KiB62v+Qwjubw+oRHwiyULHKcOshps2wQg55plFj1o+VQE9mYMcl/M9iQKWDDeKOFvkZXEJCqUwnGF0YgSf2MGOSZxfq3iKFA2b7CRBnlMhkD2MqS3NJrtK/qSUrLMS/Z84zfsekhvMw3yvAe/YVByItC2sFqmeWlP9fB8UJ+quqqJ0WtvwCArJy69fmqS7a1cLgHys8CXGn9+RX/tsvo9wH9z0TeEEL9PCPEpIcSn7t+/b7FFR6XT4UDvvq4b0tM3t1NdrRANbXRAJSEtrgANxuYtdRheAjXLN9KygSuDQvSD6TyQA+oH+yjIrk+H032dFGEvsgG/3FxiUfojKrwegPuEqbdpkt6CuXTsrAFr+vZNmO2gXLLEcfw1EMbanzm9HiCnCw2QHSfWgUr4CyihuNoiDPoJ5ABNMMgRYkOJxVSkyB50j5NRQLKFrnYs3Q7DgRoeXCX8XR9+4dq2DFYSi4W8fvAsySukRMlRHPc1acoGNtBrx5Gveg/G4LvZQK/Zwl7T1zI/zyC7jFb31xnkKwFyuVrXHVv19VEuAfJFZ1wXUpZCiN+IAsh/5KLvSyn/opTyY1LKj925c8dii45KSyxALVpXMpDprL65F1lR7yLd9DWFbLZZwp/e/Rkzcme6Wv0Ahdqe6UoGWV/TRL8E3F4r9Zkc+tkGchTV+0npnn0kmuAXGwaYZHOKmm13L7HYExtcK4B8zkw6Di+BhoXgBrHORYYvcxbERL7b2eVQSyzkBsfzBiAHjhProCHj2GCoUfQQyAH65cwYL99QykCC7CGcYBL5Wle7WV9j2QODHPoNIHr1ZzhLtewDnLKP9ZBXPdR4/eDZnrFTc3jPT0cBs7S4Vutr+lJuEa6lDI2h/muY7TX71dy9xGItwOQagDyJAihz5cU9uFhcWq8Azzf+/Bzw2vkfEkJ8GPgvgW+XUj502E9/1RD+x1FwNaumk+HKSpLklfOQCTWkZ6xbLmG2pVy5WBgzclelF2e/WBL53kYAeaHt1JyCUf1g3wjSq08AoH5JHhdBLxILX2tqN5FYFDqBrQ+JxUQkGwaYLJhVkfue/IDSi5iIzT/DIpi6HbIEhH7xyw10teniFIDAsZ0agNhi8MzPFxSo4WKXNRmpUI5NnEjqSOce2PbpKGDJZgzyPC2dJ9aBkaNsLrG4ERg7NbcsXxz6zDbwZzbD7NM6sc4lQFaxztJofa+QGy6afsNO7QMbtrDXSCzq8BIjsXAcqjLPCsWcBzFklw8Xr8JLVvkOb+VyCZB/CniPEOJFIUQE/DvAjzZ/QAjxAvC3gH9XSvk5h730W43dn5oAveLlnJ7BaK8Ghs5Z0WyxPgxwUZWZSmOKpuu2LS4qXLFW49DbyBLPsCR7LvsaGQZ5g9Q6vZA9zHoAfdE+okwJKDZgkGfKoJ+eADLpRuEXMptxVvWgiwbKYKJCOa67Vqla9Ise/Ia38Wc2gRyu7dRgBdzLDYC7Xy6VdZfjzcQk9JnLMUGxqVtEgteD7jEOtRfyNTKZqpIkea6GH10D5DWJxdV9zdKC25FmkEcHbvuKfM4MQL5iozPT6+wUrYN3zCCXldQnbFINy19Stf2q4+jk+r2cXi/9mGdNiYXbYbjJKFitn6O9K+/5PsJL+ixnAFlKWQDfB/x3wC8Cf0NK+RkhxO8XQvx+/WP/CXAL+C+EED8jhPiUq356rXDa0CD7V9u8pWda66sWB7eRwFMdYHINQK5v7r112xYXpS3CjC3elaxo7etrGGSX10oBkgMvIS8laXEdcBc8Sj33Egv90phuAvqyhQIx9CCxCCfEckMGOT1jTuy+J6AKJkzEBvZzGlCUPRzPm5fsJrpaYwUXTd2CGIBgrPpazk+u/9lyUc8CuKw48pkTE24EkAti0tpn2mVNRwFzOd7ITi3GuDI4DgoJfVJCpPA20iDfNHZqjq/XdBRwvIH9XD0QLt36DcOKXEm964cHVWprDxKLsPFevkb6sayH501fDjXIob86gYv2ajLhfBVltQovqQPQ3toA2ekbSkr594C/d+5rf77xv78H+B6XPeykDIMspdLvXCkbmMFor36BuwV9E0hO1cPOFUf0jeORNdsWZ30pz2Fz7HVpNdwiIO+FQd7Xerh5WjIKLrkO+ohrlldue4J6IdxjuZFsIPEmCAHj0HEm0GiPsVxeD9qrCrI5M2Ke7oFBlqFikK+9VpoVqfrQzBkGeYPoXeN0EfcCkNV/e7o447qrEJZL8h4GcEaBx5wxvszV8GBwuaTDMMh+DxKLOPKZydG1TK0KL3HPiII5ohcUwZRwA4D8YpBBinOdqALI19vPGQZ5LLX1nOdufTAntYmI1b2ezWB6+8KfnacF++MAZm4BcuB7yhbWhHJsYvMWelqm6VBi0UzeHe1d2pcJ1JqOfMj0JntgkId6oiJzbKNB31WsWjqDaL9+gRvw6qav9YS/S+3n1tL9HAdymL6yOXujgFlyPYM803GqfWiQjR7uys9Q2+zM06I3BvlGsMFAXHrGQsRMXYeXAIwOGFeL610s8jkCyUyO3YXiNCuaMiW52moRal1dH3Zqhkn0NhjwqvoEyPEKIF9XYbmsB0BdlhCC3Dfa6Kuv1zxTzgxeHxrkyFcb9Q38hveMprYHKQOgrtclLJ+peVpy5BuJhdt7fm/k8yg3APmK43m9xo6qRS+gHRr2c9cA92mtQXbbV633vc7mTa+zsVcqf2nHw4OLrFS2sNH+pRKLtdTdQYM81KU10nrBdEYcBpcf71aVYkVHew3RvUsGeU9LLBrDABdVQ2LhNP667msK+VwdW14JRNWCcWwAskvgXksZFPszu7KvGVW0T15K9wyyvrduhRsMnqUz5sTuewKI9hhVi6v19ronQEksXFviAWK0z3ST4UGz6PdwPI/nkYpxPWx5VVXpjFSGTOOR87aMzjlbXK+rHctlL/HXALnxNb4W9BXsieVq/XVYcRRwWkbX6sgXWcke7iUDAHtj9ZxnwQYAOSs49PvRIE+jgIf5BhIL/YxG5aIHtl2TRDVAvvxZnBniwzFTC8afudRBVQlUF2OHRaqkj55ZQ5zavCm9dlpUmkG++N5ay0yo11P3z6LLGgCyi4oMQD5T3pSXhXKY3XS0VwMws8i56WvF1MIVoK/ua2Xz5rTCCWQLxSBfA0QBTgrDIDveTLDSw119CnBGpbVW7iUW6t66GWyQWpeeMpNj9xIZgNE+AklQLsmu9NdWn6FikN335cUHTFlefV81+vJ6WtBTL94IIJPNmTPqZZMTTRRQui7AZJGXxKT1Pe+66sHJaxjkZLkkoujlpTyN9EDctRILDdrBeV+1rlbE1wLkWVpw4Ll3iwD1TnuQagb5ir5mmoEMC/dMbU0S1fZzF/eVFUpXuz8KekmGm450sJgB4pdsKGZpobBCnWjpDrib+6rWRl/CIK+RfOZzjgaAPNT5MgthdnZ1KEe2Yq3MC3zftWwgndUg/FLQ15BYzF3bvOl/p5ZYXAeQvYDTwmcUeAQu/Wo9H8JVstiVfaUzCh0925/E4hpvXykhm3EqY/bGodueGn3tsbx60FIvnHPG7I/c9xXEB+yLDQCyXvT92L2UASDzp4opu6ZEPmfB2H0ADRBP1bpl0vsuq3lasMeyH702UJlY52scI8xAo2tGFBTomzOuZ00uq1laMu3B1xeUs4YnYOlNr5ejpAX7IlE2fVfoum3U3ijgNJcKxF0BkM37yC/mvW0mzqqrJRamJ8UguwfusQkWuybWeZYWCiv0wNTWhFpSXKlBXk/3M8/iAJCHOl+jFYO8p1myC1/Q5uaO9mvtrVOANdqHMmUiCoTgcr1vI1Jz4TL+2lTtrnGNxCI9g9E+86zsVTYAXONEclrrJPecXyu1QB/516TWFSlUBaflyH1PUDMFe9eB0ZpBnvTCbHujfTXQeC2DrBZ0vwc7NYA8mDKuNgnkWJAwdq8hZ6Vzvi7h7ywp2O9JygCsmOor/FcBZKI8o/sIJ9gbBSzkWEU1X2ERZjYTqi+310sIwXQUsBDxtZuJRVoqZruHazXVsyVytH8tQI4CT2nze2KQz6QGyJf0VVvPRZ62eXMrsdgzM0vXeJLXDHLqHojW1yrNr9QgG4lFX331UQNAdlGGKUjParb2QjBa77J6klhoZsXLVVjI2aUMsuorDSZkZcWBawZytN8AyNdY4o32+xmGAxjt1SzfdcA908fA7hlkYz+X1taAl/UEcFKO3Wq1z/U1JbmGbVd9zRi7vdcbfe2JhLMkv/LHyuSMTPpMxv3oaotgSiwXVNXl7CNAkM9Yev0MukwmE3LpXwuQDegTPb38RGOm46qqenwp7400gwxXD3gl/Uks1vq6AohKKfVA47IXzf3eKKCoJPIKizDQoM9ofV0PDuo18bjUz/slfRnQd+RrS7yx29OJPfMObJBsF9Us0am7qftTk/36xLlUn0s+V/NT5+pMY5y9kelLDC4WQ11Q5mZNZ+zpY+SrGeS9xk7VMYMMkJ7qB/ESIGNAjFSLRy+DZ+kZ++OArKwu9xxOz2B0oI4te2KQjf/qdaxookGM+6jpVYDJ1T2pz/BROeoJiGqJhVhe7URSD+n1I7FgtEdASZZcLWcolsqbuZf7CmUnN93Afi4s5/W95br2xiEzYkR6euXPzZcpE5HiOQYLpjzD6l8jG/AahIPrUgzy1fpVgLO06E1iYfqayavTzpZ5SSVhIpNeNKJTLdGrwsuP5wFNfOgBL+cMsurpuNSf4SX3vHlHHnh96chDta5fB5BrBvnUeV+rmaW8ETf95OdYy0THWvox2nceJOS6BoDsos4BUVjtrtaqqUFOlNbX9xzeUI2HbjryLwdYevdn4kF7YUXTs3ohvZRFTk9rBrkX2cBoX+nhuJ5BTkRPm4kgAn/EgXcdU6vurUd51I8cRd9beywvP5mA+sW9FBP33sxQb1bL5dWgr0xOmdPTQCNQRUb6cfWg5aiYkfn9sDBx6CuAfI2UIdFBIkFPeu1gvBmDLOr1tC8NsmYfN2CQpfCcH8+DWqtPK53wd4k2euU3vOhnoFGvP0V4HYNcKoIomznvy3gOn+UCgssZd/Pe3q+t+lwDZF+ddm0CkEdNBrkHiYXRIMPFAPk8g/wWl1fAAJDdlNllpWdXO0Y0NMjzrOiBqW1KP8J6avjJvhRTe6a/776vA8gX7GlC8Upme6SuVV8MspfNiAKP2WVMX5lDkbAQPTHIAKO96wfP9ML5IO/HAaEZYLIJg0w07UVXaxbpMrka9FXJGTPZH4OspB/XDw+OqgVZ0JOUQQjmTPCvYWqzxTEAweSwh64gNED8GuDu5/1ZS61JLK6M3i049BJE1A+btj8OOKnGyhv3Em208asdlfPeWG2A3L9+SO8gEmowrScd+TwraoLm4p70OxB9AuV487U3VoPq8hqAPH8CILu7XmsSi+jyzeo8VbNNysXitJfP0HUNANlFhTEIH7KVY8QsvUAD2TgSPEv6AMjrw4Ozy3SZDa0vrB4Q130ZX84rmW0tR+lHV6uOBDeSo6AA8l4ffUV7yrosucQ+EOod/mk16gm0aw3ydZ7D6RkVHkEffsPQ2KxezSBXyUwzyP0AZG+8z/4G9nNxtSAP+tPxLb0JQXE1QM41gxxNj3roCOLJhEz6dWjKRVVWkqhc+be7rlrKAFfKBs6SQgVy9HS/T6OAEyMbuKQvc89FZT9A1DxT6TUBJvOs4Gakn4certdk5GvQdzmzXTszSAOQ3UssKgmJp5/5S9at2pu5tlNzd72mTYlFzSA/eb3O0oI9E0rVwylAHzUAZBclhLqR1hjkC9jacxpk51pRs/utQd/VUoZ6cLAn4H7oXeM5vDak14czg7LFm5qF9LKeUL6+4Nib2dRon1guKYx5+1V9Ebvf4OieQDPI1+q1e7Kea/QlrmFFRTZjLsf9sO2ANz5gJHIWiyucLKqSCcuVzVkPlXjTWnd/WRkbuPG0HwZZsbUx+RUymXnW1Pr2wCCPA86MxCI5ufTnZqlikPsCC3vjgMfaJ/460Bf2EMhhegJIrgHIs7TgVqCH4foA7lGw0vte42Jh/PCdA2R9rc7q04kn7/m0KMlLqdZ14/jhMJZ7Evor16uacLhYYlFjmPSst02hyxoAsqsaHUA6q8HJxS4WM8ykZ31k4rSnlTZ6epXncHIK44N+nDUafe3rae9LNaxa+L/oa0jPuGtEV1wrvbCeyjHj0LE3s6loj1gv2Bdq2xt9zWTcD9sejJHCZ08sL+8JIJ2xFHFvWl9zb10X6yyyGTNi957fuvxYgUuj572wdM9Vj0xMFkzV0fsVVWmgGvUEkPe153CZXA6QZ8Z6DnoBV6PAXw1PXnE6MUty9r20t+PmvVHAg8IMnl3tzBDk816G9Mx7bcnVASbztOBG0OMmx5wM6nf1RVXrtY0lo+O+TA7CrAiUR/UF16u2hDVSBsc9eZ5gLwoUyXeVBrmJYdKBQR7qqhrtQ3qqAi08cbHEwkzrCsFZ0oOutiGx2B8Fl1tfaaa2HlDoQ4PMKtb5Qga5KiGfI0c96bVBfTb5goNIXBGqohaKk6o/9pHRfu3PfOlnmK3cInrZTAiBGO1zYwN3jQX9M8j+NbIBL5/3yiAbXW12FUDeQRpV7k/re+uykhoQ9mXztjcKmcmY8ooAE2M9VwQT8Pp5rVWRcSu6qi8dNd3TtZqOfB7Vsc6X+NWmJSDx8n5AjFl/lmICVa482i/p67BPBrkGyPtXuliMAm+ly3etQW7OLF3CbK+Iq7C3YThFqOVXapDXTsH1HNNbvQaA7Kq0rkkIoYT3l/kg6x3ZPCvcA9FwAsKr/ZnnWXmxhlU/dP0xyBogyys8h/VCkQd7VLK/YTiAm1FxrQb5uOxJ66v7Mizfdcz2nHE/EguA0T6HfnLtkN5Mxu7v9UZPAKNyQVFeHoEdFHNmPdq8Gfa1WFwOkHP9PdGTnRoop4HJdQEmPYcAmNQ6ecUwnLJTW1KG/W0mgvGUEl+duF3TV1/HzXujkJPqGm/ftGBCqkJO+pBY6BOsGZf3ZbyZj7yeLfE2kFjs9xh8sZabcB1A7tEtYm9s/Jmv0CA356j0vNBbvQaA7Kr08TyoG/lC2UDD73FNv+OqhFhZqo0CykqS5BeABgOQkwJP4D7mVj/gcc2KXg6Qe/MbhvqzuRVkVwBR9XJ8XPQUyKH7Cgt1rS4Fo+mMIpgi8foD7tEeB156ueMHQHrGWY9MbVMbfamOXEqCYq7Y9p4+w3jvCOBKXW0yOwb6BchluMeIDIrs0p8RfQPkUcBcjq90sZinyk6tr/hrgL1xpNajqyQWaa7kUD2dAuyN/GvdNWYGtENPTK1OkzVDjRdcr0VWIiVKjtJjX3UoxxUAWQ3Dnap0O4daX2hEYF/FIO/ATq3GMFdpkM1mQkpN/g0Si6Euq9FqMnZvdBmDPKt3ZPWD6Lqi/VpiYf7dJ6oO5FA7Qud2XIblq4zn8EUDjdo/1+sp0rnR140guWJIT/sNFz35Deu+jD/z5Xrt09r9oM++Dq4LCslmnFb9uUUQTqjwlKXaZcA9X+JRsSDux5sZCLVFWnUF+5jMj4H+/IYBpAFyV2i2PWOn1hMY3R8H2p/5ar/hffqJTja1N/KZi6uty2ZJQdyT3zDo4cErgCho2UdPvr6w8hw+lZcDd3NC12df6xKLy9l2lVjnXusLrM8sjQ4u7OuJSOe+XFuSXCfjiQvXh3qOKl+ArIYhvaGuqMZDVx/lnC/NIJup1N4CHfSQHlwAkLXW12iQ9/vQihqdaDZjHHoXp4sZgGz8hnuyUwM4DLJrJRYPslF/g2fRHl4+B+TlYDSbkfnaeq5H6ceeuDrARKZnnFQ9pfsBCEEZTq/2Z9aLfR5M+vFmZsUKyyv8mbO5AjhBT8NwwEo3eAUrGuRq0NI1m2bKMMg1ML+gZmnBVCS9su3KXWNypcRinhaMenKLALUurgJMLr5ei6zgZtAfUwvqWp1Ulw8P1rKBHgctjQ+yHO1DmV6ojV4L5OiJqTX/LqP9Cx1SVpHOfm9a39r1Soja3el8zZJz1nMDgzzUpdWYjDXm30+U9gpcOzJx3tc+KgLbmH+f66txc8/SvKdhOL0rTc9WUZvnq9bUqsW/Tw3ykacigS/VawMPsqDHwbM9BJIJVwzEpTPSWo7Sn2PERF4fFDKT4/40yLACyNdscvq0U7suKQtWGuRoctRDQ7o0wLxKGx0W/cVfw4pBDq6wn5vpIT2vx5fy3jhUbO0lm4m0KPHKBI+yVznKghEScanE4iwtuB1qCU1f2uhxwOPCMMgXsKL6hG5lp9aDD3IUUEk116L6uogVLVdMbU9aX7h6SK8OLxn1PaTX8Kg+J3eqKsnMzFGZ6zgM6Q11aUX6JqqqyyUWOm2mN79hqB+6SyOwa4B80I83M2ht9AEqmtu//FoBZ/qYrp9rpR7wA29JJWGZXyCzyGYQTjnNZD+yD9jMczg9W+m1e9NG7zORi8t7khKyGfMeh+FAyQauTK3T97zs0S1iZT93OUAudWLdeK8/BtnTco5kdjlAjsp5b/HXoO7fM2Klu68uHrQ0GmS/RznK3sjn5AqAPEsK9ow3c19M7TgA1KnJZZuv02XOnZEByD25a0QBj4vLA0xqv+FqoUK2eojlNnKGRFwuSVkL5OjhWo0Cn8j3dKzzxRIL44g1jbze+tofN1yvLgDui1xpyNVmQl/HYUhvqEvL3LSZ8kK+8OWcnEB81J9bhOlLu1jABRKLJoPcR7rfub5qXdj5Mm4R+pjuMO6BrR0rYHLAFQNxWptWa9X6KA3kbvjp5Z7D2YwFE6aRj+f1IxtgtMdYXgFEixRR5czkuD+JBcBonylXJPwlxwCUox6lDOGEEu9K2UCpB/gmPQLkcKIA5lIPCF5Uo2q+Yt16KM8TpP4+HtWlg3pnmkHuFyAHHJfjSyUWSvbRT8CEKbPxzP3ppdfqNCm4GWiw09vwYMDDOsDkyetlns1xeabW3R6kTgf6HTIXxs/6YunHSsrQn45cpdZdPaQ39XIVKd6XZ7RxvRofPiH9WJ2Ch4PEYqgNqgGQL9QgV5UO5DjagcTibCOJxVlfDHLd1xUBJrqvh5kCyAd9AOT4CIB9DZBPL/IcTs+Qoz0WWU/hJVAD96dHyZVe1nMR9w5Eo3LBLM0vkaOoF+Mp014lFmK0x/5VDHJi7NSOeusJIUhETHAFQK6SU2ZyzOF03FtbY+2ukVwCkKWUxNWCosf4a4As0OvpJal18yRX+tVeh/RCjqu49oU+X0b2AfQGFsxzpWKdL763Tpc5twLd17inNMRxwIP88oS/k6Vax8blrF53XdeBSa2Tl9vPrYb0+vP1rU+cL9FGz9KSvVGwCj/qSWJRu16Nj54EyJrV3jPpfj315boGgOyqGhrDvVHIIispqwZoSE8BtRvrV2JxsC6xeAIgn9Y/N0t68GY2NT5oBJhcotdGuUUA/Xj7RvuAYE+qhfNkefGgZam1q72w2lC/1J4KrxiIS8+YyR7dIgBGiuUbVcnF9oHLYwBO5bRX4O6ND64e0tOLvTc96q0nUCDmKl2tTM+YEXPQl7YdiKc3AMi0vON8JXnFlH7t1AByE8pxCUBOl3MCql5fyipuWg/pXbAh7DvdD1YMcupfbj93muTc9HQYTE8A+WAccC/x4RJttCEfouK0v570el27a5yTfpSVXBEfPblYQNOf2QzMrvc1S3M1V9KQQzrvyWwm0lx9PnotX/Wk5If7w5DeUBtVDZBnF8sZzELfu8RCaaP3Ruqjf5JBNgB5fz060nlfitk+iMNLmVqiPU6SiknkE/YR6ex5MD5gqu3nTpcX92XYtF5YbagZltvBJaBPSkhOOJHT/j4/qF9sh8zVQnq+tJThhGl/chQgiA+ZiuXlEgu92IeTG731BJD5U6IrEv6EBsh9xV8DTA6OgMuH9E6Wmqnt+eVXXgOQy6T/l/LeyGcmY8Ql6XCztOAQvQHqiRWdRD6egIW3d+m1Ol0WHHkLpfMNol76OoxDjpdlHaB1UU8AYXbWI2hX6/VJefHwoFnvD82QXk8OKXtjTRLVGGJ9ozPXDPLqXe1+87VfnziXV0ssegxV6aMGgOyqzK4uOb7Yc1iDhf4ZZB3KIZd44oKoYn1zl5GSDfQrsTjjMA7r47b1vtQO/jTJe2XUGB8pXRyXSSxO1XEmfTLIRwDc8peXBNCcgSx5WE7666nR16GYXwzcawZ50l+6H4pBPmRx8ecHyOUJpRSMpv1OXRfhHlF5eayzl5+xFP1ZzwEc7B9QSK/WP5+vk2XOHste7dQApAFN55grU9VSv7B7nJzfG4WcYvSrFw94HQgNkHuS7wgh2B+HzNi79FqdJjkHzHvrCRR5cJYWyPHBhdfqZJkzjXxEetJbX2ZtfFwD5PW+zHvoZlRoX9/+ZDK1i8UFfZ01reegN4kFaCAcHymA3Dg1qSUWo2AFngeAPNSlZRiD5Hj95jJlbqLxYcPXsD+ALAxbe142oB+6GX176K4Y5LOkWJejmL6iPU6XRc+g75CRZvkuBO7LYxJfvZT7lljc8hcXA1G9+bpfxP2x2lDf84fMLw5W0ff8CdN+pR/xDaYi4WyxvPDb+eIxZ0w4iPth00yV4R57LEguckcBgnxO4vWr9T2YRMyIkZcMnp0sMjUMN+735ScMQL6EFWX5WP3/uL9TgLVQjguu1y4YZFDr0AnTFQnTqCQvyYqKfTnrjak1PUkJ1ejJ43lQoP0wDtXn21NfZpP+0LhrJJcAZOMZ3eOg5TpAXme2T5a5WtfN13uQ75hrdZZoiYUs1yQpaxgmOYZgDGHsvC/XNQBkV2UW6uXjlX6nyWDVAPmIk2VO5Hv9HKWa3XlycjFbm54BgplUi0Z/APmgZpDhAmZ7eQzxkV4c+pUNBJn6rC6UWCwfM/fVQtYbQA7HEIw5FJdYqukX0Jv5eEcM8uxittZILOS0HpDppTQ4yeePL/x2MX+keurzWgFydMg+i4s3Xmg7tR7dIgD2IuU5fGn07tkxgagIpv3KUYRZTy8ByKIhWeurDrQ/M3AhK3qWFByKOVJ4vblFgFqHHlcTtQ6c00ab53JS9TcMByv5WR4drjYzjapB3/K4N4A8Dn1Ggcej1AcvuJRBvhGYdL/+JBaz5HKAfLo0m4lj9YUeNoVHEy1HWearz6fxLJr30HQUqM+3x42qyxoAsqsyQHR5XIOUNdBgdtHjQ44XanHo5Si1Bu7HHMUhx+dfzonyZj4zZuS9SSwOIJtxNFLX4AnQoB+6/iUWh3jpKXHoP9lTnkCx5FSohaxf4H7EIfNLALJ6Ab2ejjnaBYMs5pey7aBYpKAPDXndl7rny/mjC79dLk44ZdIvaAeIjzgSs4s3XqiJ/qLP8BKUpdpCTPCyS8IvTh8CEO3f6rMtgsnVGuQwO1b/o8cX89Ek4kxeLrE4XuTcFAsFKLz+7vejScjDaqJYvifAlVov4nLWq8TCvAOz4OBCZvt0mXNrLJVrQ4/M9kEccpoW6r45B9zNGnbYs1Xf/jjgNMmRtUxz/d46XmQKsPZ4amI+v+NlvkaymTLX6mAc6E3OkfOe+qgBILuqcAxBDMvHNUg5XlzEIB9ysszqHZrzajDbBxcxyBqIml5vTHo6dtZ93fLVYnQlQO4b9CUnHMTBk3IUvdCf0rMGGWB8yD4KXD1hqab7elz1rEHWn+EB8/V7vdFXKsZMJz0fvTU2qxdWcsKpnPa78QK8yU2OmHGyeHLAC2BanZGHPXoz65p7+4T5JQD5TAHk+OB2ny2xH485lTHVBexjVlT1nECvADkOlYsFXCixOFlm3AoWK/a7pzqIQ+7nRvpxvPY9Q9KMenSLgNVA3DI4uJRBfjrUz0HPpwCny6sB8r4099bNXno6iiPyUrI01oaNvqpKcmIY5OVjFarSA3A/0vKz48XFDPLxImd/HCjiY3k8MMhDbVDxESTHNfh9EiCrBLnjRd4f09cAyEeTiJNFtv795WOYrABy38D9pneJ3lc/dP1rkI8UQB5ftJk4BuBxNSX0BXHYn9sA8RFTOaeoJPPsnIZV93Uip/1eq2gfKTwOxZzjZfbk95Nj5t5ef/eUKX1v+RcwVwAiOeaE/iUW/vQmvpDMTi/oK0+ISSl7BDGmlv4BcX4xU1vMFUAe9wyQb0xCTpmSzS4GV0dG69sz+3jG5R66xwttp9Yzm3YYh7yZ68Gzc5tCc1oR5Ke966IB5t7Fw4NnScFTkfFm7rev0yS/EiBPq343XzVeqPT8QaOvWVZQSQ1YjZShh5PncegRBZ5a1y8YmD1Z5qt1PTnu9d5yWQNAdlnxDVgesz8OEYJ1OUNyrGxjPG+1I+yrJ4DlYw7j4ALQ90gzyArgHPXMIB9yAUAuC0hPqMZHWmLRs3VZPufmWDypq9UL18NqwsG4J4lM3dcRE82aPZ6fA6MNO7VeAbLnIcaH3PQWnFzEIC+PmTGt2YjeSi/WfnYx6POzU07lpHcG2cgUktMHT35T31vVuB/WqllJeEhcXswgVwvVlz/pt6+jScSpnNbx2806WeYcijl5MAW/v8/Q90TDrejJe+t4kXPkzXsHC4dxyBupBshPMMgFHhVBdtYvENXgaebtQ7FU8rRmX8ucOz2HlwCrU9QLAPLpMicKPKL0WH2hJ4B8Q1+rx4m2VFuupGFmXT00EoueehJCqM3EMm8YEDQZ5Gy1rg8a5KE2qvERLI/xPaEYyCZbm6zsbI4Xeb2AOK9oCl6opR8RJ8ucqukYsXwM8c0azPfGbGsP2oM6lONJOUoaHiJlj37DUH9Gz4zSJwFy7RbRs5QBIF7Zz13EbFciYM64v/vK1PiIO8HiEonFSf+gHerFOi7PyIonA0zC/IxTpv1qyFmxsNns4RPfS88UaBY9ezMD5NERe9XF4RdiB24RoFi1UyYXSixOlhlHYkYZ9c+2+/EBFeJC2cDxMudA9qv1BbVmP6zZx+O1750u8zoZdBcM8glaU98A7mUlOUsLbvr9M8gHYwP6LmaQaykD9Ha9DjXQPFnkStbR6KvWRcf9AmRQ95WSWBypLzQBcpNBHjTIQ21UjYfuaHJuIK5hZ3OyzPtj1YSo+zqMQyqpjm3qWhgGuUdnDagf9KlmrtZAn76GC+0W0feQHsBTUXqxLhp4M+/ZTk33FWmd6OPzMpnkWCePiZ0A95ve4lKJxeNqsgPQvgoweeIzLFKCKuk/VAWIDxSDXMyeHB5cHN8HwJ/2OwwHUIyOiCggf9Kj2Uv6BQumjiYRJ3J6idZX+fpWO3gpH0xi5t7+GstX97XI2JP9ukWAtnmTGiBfoEE+FP3LUaaRj+8J5a4Ba6DPOBbd8HbBIAecJkV92tusFUB+pAct+3kX1hILA9wXDQa5SVz1DZAnGiA3Mh7qvhb6WhUZ5POBQR5qg9IaZFAL/OMmq6btbPKyUn6ZfQ9TLR/XQKU+Dq8q1e/kJifLjMNJj7IBPQARZsdEvnchQJ4L9WD2bfMGcNtfPjmkpxfUN9JR/0B0fISfnSGonmRrl8ekQc/ezI2+DsXFDLJcHvOgiPt11gDwQ/JgypGYPQmQzelEsNevswYQaPBbLZ4EV8mpAsjhXv8AuX65XdBXkJ2QilHvHqdHccipnOCnl0gZxAzRs+wDFGg4EQewePIU4HiZMenZLQIaPshwAYNc1IPQffYlhOBgHPDoAma7dkAQ/cZfw4pBluMj5URSrtaHNQa5pwE9WA3GHy9ymKwzyMc7klgAK1tYP1C2hQ0G+fEiU33X1nNHvfXlsgaA7LKaDHJ8gcQiPqqHJnodXGowyNBga9MTlRgU3+TxvMfBQVC7UuEhtLvG6QUA2RzP9Sux0AA5UElsT8hRELyeRP0zyPERAsk+y1ov3uxr6atrtQsG+YALgChAcsyJnPQ/pAeUo6OL7ef0Ip+HO0h9algunq9Us8qj/X6H4YAaDOQXMNuj/ISF1/+1ujGJOGVKkD85DHeyzDlkjj856r2vwzjkWO49AZDTokRkczzKnTDIc8ZI4T+pq01y7kZa/7uDvu4XemPV6MsQD/tSB0/0HGBSVJLMyHPOWZcdxmF9qtpXmfXx8SLTEouLGOSod7eIQy3JBNbipo2zRt/Wc33UAJBd1vhIHVMW6aUSi+MdAuQn7OcMYxTf4HiZ9WfxBsontAbuwYUM8rFmRXqVWOiXyJG3RJ6XoyTHyqYvrTjsWb9qXiIHYr5+MqH7mot9fE/0LhtgfMReNXuSQa5KRHrGyS6G9FDey4fMODkv/dDgtIyOeu+pHh40Q0CNKmdKgxwf9g+Q/akCyIuTe098b1yckgT9xkyD9oZlSlTO1dBuo06WOUdiXjPyfdbRJORBtQeLC/SrtbPGUa89qZNBQR4+6Tl8usx52gDknh1SlLuGscVb9VW7Rci5TmAb99aTITYWOg31vN63ZpB7PJ0wASb18GDj3jLStaMRivHuXWKh188GQD5LlbPGoQl6gUGDPNQGZXboJpRjzebtuE7Rg55ZUa23Mg4VNRg1N/fkZr+Dg2t9PXoy4U8vWuZ4rm+/YYBDffy35s6wfIyMb/TrQlL3dQTA02FyocTiTKhhuF6dNQDiI+LqjOPlOW9fEzO9g8Q6ADG5eSWDLHtKyVqrYEQixgQXAORq8ZhUhuzv999XqFnri9w1ptXZim3rsTxPrFj+c6Ecx/OMQ+Z4O2KQ75dT5DkG+WTR0PrugKkFSMODJyUWScFtkwzXM4g5iEPeyHSsc5NBbqb79QzaDdky8570HF7TIO9gKPV4kSlgnp7Um8IT7awxLjXb3rPEYp6V5GWl7mljJ1pbwkYDgzzUFlXHox5zOIk4TXLKSmohu/LHrG+uXWiQ63QcvStcrhhkNTjYN0C+Wfd1EUB+WKrjuV0M6Znjv/U0xMdU4yPKSvZuEWZeum8bpU9KLJLj/j2QTY2P8GWJly9J8oY/swlVkdOdSCz8yRFHFwWY6L52cTwPsPAOGF3kObx4xDFTDnbAto8OFFuWnT0pG9iXM4pdsO1AGT3J8gEsFzNGIt/JS/kojngo9ZBew/XjeNkchjvqtSfz3C/9/ScY5JNlzq2gfxcLUAD59SSCc64fRk7Xd3iJ6kmdsJ0J7a6h+yoryVlS6PjrfjXIoCRFx4t8DUOAAqP1gB7sRPpRx03rnmpWey3++qi3vlzWAJBdVs0gKzmDlHoxaNjG1DdXn3KG+AZkZ+qYhiaDbPq6qUT30779atXE7oUAeXzI8bJEiB7jrwHCCfgj9qoLLNWWx3XSWf8Msvp3746SdelOVUFywmM52QlTW8dNn3eMMGwDuwHIwfTWxQyylhWFu9D6Akl4wLh40pnBSx7zWO73bj0HEO/fASCfrTPISsow24lbBEA5Xnm4N6uY6z/voK/DSchjuY8okjXXj+NFQ2LRM1jYGwX4nmAungzleDRPue0twAvU2tZjHcYhJ7W376ov80xG2XHvQNTIvR6W66EcxlnjaCT0vFC/m69Dc+JsroeZw3nCeq5fBhlYAXfdw+OaQR40yENtU/WCfrxu3bLQL57p7dVUat/xycC4OCMKvJVsQIOFJDwgyav+Qd/kJiyP1UJ6TspAfIOHc6WL9r0eZQNCwPQ200LroM/1lYbGWWM33r7PhIt1m7fsDGTFw2LS/wlAo69DMX/iWgEcy91okL3JkY51XmfbpX4Wo56T4Uxl4SGT6snBMz895kzsMQp6TGfUdXS4z0KOKOfrQ3qny5wjZjt7+VWx1hjP14F71Zid6LuO4pDHxtu34fpxvMg4qCUW/fZlQh3OxPQJBvnxPOeGN+8tga1ZhviQ5zyHHy9yQl/gLR/BtOeExqlaI++X68ODBrTXcpTeg3FCRZ6dc5Q5XuxuGG411J/B5JZ6DqVshIo1Ncj9y7Bc1ACQXVaDQV5Zt2SrBX5ye6VB7pMVbcZNN9laszhoD82dRAJrDfJZWig5iukrvsGjecbNvlltgMkt4lzLPJqpdclxPdzR60AjwES9SO54swuB6L1dhJdAfW/dEGfr0g+t0XzEwU4YZOIbRKJgMZ+tfTk/u89juceNvX5ty0wVo0MO5BlpsR4XPsqOWexgGA7g1jTiMXvIczZvJ6dnjEVeD/H1Xd5UMds1wWCqPtbdAUCeRDyWWr/a0CGfmM0E7IbZNu4aDSCaFiWztOBInoC5lj3WjUlIXkp1AtEA7o/mKTenEWL+QAGvHuvWVB2jvpGOaEo/zDvxlte/1hcaEovJ+qmJYpCjtVPovmptZml6G8oUspVjUa1BHvXnGe26BoDsspqxzlcwyPujoF8P1gZwr49yoDZEP05U2ljvoC++CdmM27FASlYAq8Eg7wQgT28TpnpQcKZ7krIehgO4vddzX+EYon1uidN1IKo3X69kO9Iga+B+k7N16cdc+fqe+UeMwx0snhqkFPN1XW1xep9Hcr//e91UfIMjMefRubjwcXFKFu6GhTkYh5zIPbxz7OOZDi8Z7e/AmxnwjAzmHINcu4DsQPd4NAl5LA2DvLq3jhc5d7xTpD+CUf+2eIdxyAN5oNZOPeD1eK6ex/3qpHcgCiswmoUHa2z7o3nGrUmorl/PDHIc+cShz6N5oQfP1omQW745Beh3U3ioXa9kfQqtrteXjcRisnoW107Bk2OIvzLYYxgAstsaH4HwYX6/Pu4+WeSrxUEzyDtxiwBYPuLGJFod0ethBPPn/of0jgB4JlJG9jVb22SQdwFkJrfwFg84GAc8nKernmTJYxTLd2tv1H9f09vc5GQ9LlwD0ZfTKbf6Bu1QM1O3xMm6TGb+gBIfsSv7H91XdU5XW83v84j93Wy8AH9yk0NmPDxruH5IyV51Sh7tRsrgeYKZf0CQrmt9F4+V7dvksH/2EWBv75BUhpQNgFxVklG6Wk/7rsM45DFPOiAcLzOeCWaI6Z3epQygTgFeKwyzra6X2YRN80c7YZDNerQIbqydAjyYZTw/yUCWO/kMb04jdW0aqXUPNRFyU+yGQT6KI7KiYmk2ybXeN1uXWPQoZTB44PEiX21kFg85XuTsjQJC34PZvZ3cW65qAMguy/PUzTK/Vx9PPG5KLOIbPJil3O4bXJkbeP6A2/sRD2b65dyImQb6B+5a53VHT1nXfemjt0fzjJu7AH2T27B4yO290Qq0zxRYuC8P8cQONhMA09vsVydUEs4S7Q2rAfIDedj/fQUwuYkUHrfEKY/WmO37nPlH3NxFTwB7TwHgzc95+y4e8Uge9D+Qqis4eIqRKHh83GC28wUhhUr32lEl/gGjfH14MNW+yHs3nt5FSxxNIx6yT65TBkGdyN2Ux+oPO5ENRDy6QGLxeJ7ztHcKe7sBC7f3Rryc6iE8vSYY4mOUPe6dqTU9AZwFN2B2v3b9eDTPeGGkBxx30NfNaaTW9cntGrg/1O+eAyOTmfQMkM2JczkG4cHiEfO0YJGV3Nkfqc90cqtXKcNhHBJ4Ql2bNQY5W51Wzu/D9KneenJdA0B2XXt3YHafwzjE94TamS4eqB2pH3D/bBcAWd/Asze5vTfivmGvFisgCvTPquljv9tCvZgfzjLIl5CeUE2f5vEi49ZOJBa3IJvx9KQhsdBA6/XigJvTCK/PwcG6rztMi2Ng9fIzwP0hB7sByJ4Pk1s87Z3xoMmKLh7ymAO1uO+iNHiKkgfIhh1XkDzkodzfzckEEN+4C8Di4ev116T+DHcBFkyl0Q32inUGuZq9CUB4dHcXLXE0iXgkDyhmK4D8YJZyR5woOUrQ/2cYBR6Mj6gQa7KB+7OUO+J0Z2za7f2IlxLtzKAB8sN5RkhBkO2mL/M+OfZuQLGETIHPR/OMu5EGyDuQftQM8t5Tq/VznjEKvMbpRL99mWv1cF6of3vxoCaMbu+NNFPbLxD1PMGtPU2omVCexQMezLOVxHB2b2ebQhc1AGTXtfc0zO/he4Jb04h7Z4neZamb6MEs5c7+DvSro0OY3ePO3ojTpFBDQmdvwv7T3DtLEIL+AdbeMwDcqLQObJbWC9YiuoWUOwDtUH9Wbx/NVxIL3der+bTW1vVejeHBJtteBFNSov7vK11ieoe3hWfcnzUA8vw+D+QBd3bMIB9Vx8xSzbZXJVF6zEMOeepgN31Nb70NgPT4tfpri0fqf4v9Z3bSE0AS32FfnkGx+gyFAe57u2GI7uyNeCAPkWerU4AHZym3xQnFZHcv5VsHExW/3WCQH5yl3GA3w3Cg1u57lR7y1CeWqiftmLIjIArqdAuA2T2SXA0OPuPr04pdSD9qgPw06E2gOdkVszchiKHnICFDJNyfJaqvszcbADnSQLT/57Am1MznNLvHvdNE9VuVimTb280Jk4saALLrmj6ljpOApw70zXX2Buw/Q1lJHs2z3YCGvacUg6wfxIenS8WK7j3DvbOUm5NIaYr6rH31YE3S+3hCa5D1S/mRp464ntrvL4Z01ZdizN4+OuXBbJ2p/WKytxutL8DeU0TpIwQVb54agHyP5Ugz8bsCo9PbPOWdrU4mUKzo68Xe7hjkaErhx9wWJ6vPcP4Aj5Jj/xaTqH+/YYCxZmPL0zfrr509eBWA0Y3dMLUAcqpfcrMVGA2X98mIegcLpp46GHFPHhEsVj3dnymAvEvd4529ESfioGZqAe6fJeyXxzs7Bbi1N+Kh1J+T/gzfPEu4u0MgOg599kcBr5f7dV8G9D2FPq3Y7/+ev3Mw4t5Zgtx7Sm1yypyHM82Knr2h3ks968if0uvkvdNUA/c3uH+m1i3FIL+5EyB6Z3+k1s9oqtaB2Zua5BurExRZDRKLobaoPaVBRkru7I24d5bC2euwf5eH85RKUoPUfvt6Gmb3ahD1+P5r6ubef4Z7p+lugMz4CPwR3vxNbk71ZkLv6O9VinV45nAHfWkm7/ngjEfzTLHt83vgBfzqLNwdEN2/i6gKbnOqTiYAZveY+2ozsTuA/BS35OMVQJYSzt7gterG7gAykMd3NEDWfZ0pWUMW725Br1ni2QogLx4pgHxw+/ldtARAcHh3rReAcfaA0+DmTobOQIGGN7nBKH2g2CrUgNdtTggOdsda3dkf8aa8ocAUsMxKvPSEQOY7Awu39yJOmVB5UX1v3T9Nee9EM8gHb9tJX3f2R7ySaYA8v1dv7G9zrMJLdsBsP3MwJi8li8joau/zYJaqwevZm/XJZp9VM8hnqXr/nL1Zn8g99eXAIAPsP0N1+joP55kC9Ga+Y5BYDLVx7T0NZQbLxzy1P+b+aVIzyA/0jnCXDLJ5EGeatWL/Ge6fJbsBMkLUwP2ZwxFvnCb1Q/daodiQXTLId33tMXyqpB9y+hSvn2bcPdpBT42+nvUfrxjk09d44N9hEvlMR7thRTl4G0flQ+6datC+eIQoU96UuwXIcvo0T3G8WuA1QC6nu5MyMD4iJ1gbHsyPX6eQHjee2g2IARjfVP/2yf1X6q/tZQ/r04ld1N4o4LF3E0+WtWzg/mnCU+KYcMcA+ZXyCE6VNOb+WcpdobWrOwKiioEULMdP1329eZbwzvHpTvt65nDM5xd6ePDsTd7Ua8RR8UABUa9/SPL0gVq/H4kj9YXZm7xxkqivz96sTzb7rFHgczQJFaG2/wzM7/HgVLk73QxTpeHeEYP8cJ4q16T9ZyhOXkNKDej1BnGQWAy1eR08q/7/6avc2R8pi6Iyg/279eKwE/3j/jNw9gbPaMAyN0yRlljsBIiCWozO3uDuYcwbJ3ozgeBLiVpUd3KtJrdB+NyWCiC/eZrAySsU+28jKyvuHuzoWh0ogPy+yUwxyFLC6au8Lm9w93BHPQEcPkcoM4LkIUlewpl6Qb8hb+5OgwwEN57jrnjIa8fqRWMAsn+4OykDnsdZcJNxsgLI1dkbPOCQZ476jQJu1v7t5wBYPFTrwlmSc0s+otgl2y7Eiu3Xn93x4/vsiQRxtDu2/c7+iFfLI+TZ61BV3J8lPCO0HvnwuZ30dPdQBd8ch3dqgHzvNOWF4Fi5IuyI2X7mYMxnz8bghXD6qlrjgWl2vz6p67ue1u+Ue1obnT1+lYfzjLcdjtVczg4YZFCbnHtnifr3q4KzR4rQCmqmtn8g+vT+iLyUyqFo/y6cvlH3yqnGEDu6513UAJBd16FeuE9e4enDMXc4Vn/ef4ZX9Iv62V28CA+fh3zOnWBB4AmyR4opKvee5v5ZWi8avdf+XTh9jbuHYwVkjr8EB2/j9XnBjUm4k+hdPA/2n+GwVKzVGxogz8cKWD2zKzC6r1igF0enCrQvH0OR8FJ+g7cd7SYZDqjZqWfEI/UCPFVg5g15c6d9hTdf4G3iIa8fq4l5efo6lRS1DnhXNR8/w438zdpdI5y/zgNusLerEwDg5lPPkkuf4rFaF944XvKseEC145dfOdWflWarikdfUn/eYV9vO4p5Q95EVDksHvLqcbJzBnk6ClRYiHcbTtVn+OZpwl3xWAErfzf31jOHY944y5CHz8LJK7x5mhAFntKV7wggGzLolUpJLGZv/ioAz04rSE92CNzHvHGa1v9+9vgVtX6evKx+4OiF3nsy6/erj5ew/wzB4g1AKrb95BVA7ERH7qoGgOy6zMJ98grP3Yh5m9AeyPtv47XjJaEvakF+r6UZF//0Ze4ejfFPXwYv4A15k6KSPHdjR+zVjbfD8cvcPVDuGuXjl+Dw+dWR167q4FmmSw30jpdw8grHodrBP3O4I9C39xQIn7eHJ7x2nOgFCj6XHOyWQdanJm8TD3nl8bJmFt6QN3cnRwHE4XNEouBMW6qlD1/mPofcvdl/0lmz0r3nuCvvc7pU7hr7y9d4EO72JfPM0ZTX5U3EyUsA3L//BlOREt58x077im6a9VQD45q12h2D/OxRzBvyRt3PK48X3BUPkcLbGfsIcPdwzKvlDTh9ndNlymlScFs+3CmAeeZwTFFJ8r23wckrvHGa8PR+hDh5ZXdylIMRQsCvLicQjEkefBGAF339rr7x9p309dyNmFcfL+p/3z95meeOYjg2ALn/e/7ZG+pd99rxEg6exatybnPK8zcn6v2zfxf8HWQCOKoBILuu6R11nHTyJZ6/MeHtQg/j3Hwnrz5ecvcw3o2HrnmhHH+Jtx3GxPNX4PB5vnSs9JnP39wR6Dt6O5QpL46UR2b1+GU4eoGXHi544ebujpy58Q6Cky8yjXw10Fim3BOKcdgZGPV8OHyWF7z7vPJ4QXmsAPIvL/Z3zCArgHxXPOSVxws4fkml6O0/vZsTAFN6s1o+VuCqePAFXpJP7/a+Ajh8nrviIa8+OoOq4mb+BvP42Z22NB0FvOE9zXim7qnZm78CwOSpd+ywKzh86nmWMqJ8+KuUlSTWm9ZdMsjP34h5VeoBr+OXeOXxkneEx4i9Z3bG1IJi+341vwFVzuuvqo3Orfz1nQArU89okmM2ugsnr/DK4yXvP8ggPYUbL+6kp1Hg88zBmJcfL+HwefXOAZ6R+l199I6d9PXcjQkPZhmLqbq34/krvO1orE5VvWAnG53n9Gn3q8dLuPEOAN4X3efGRGGcryR5BQwA2X15nrppjl/muRsxL4h7ZP4Eprd59XipbvhdlDmeOfkSz96IuZG+BjfezpceqePn53fGIL8DgHcE9/Ep8WevIQ+f56VHC95xe7qbngBuvog4eZV334pY3FdHcF/IbxCH/m5OAOq+3sUzxSvkpeTs9c8B8EX59G4B8t5TyHDKO703FYP88Fd407/LMzf2dtcT1It3eKoAsn/yRV6WT/PCrd0C5PjOOwhExZuv/iry7DVCCqodHJ+er5Px2zhIlH519uYXATi6+64ddgQv3JrysnyK9N7nefM04VnuU4pwp9ZSt/dGvOpp9vPhr/DK4yXv8d+Em+/cWU+gmO2fX6p00uMvfZaAgsn8Vbi5u8/wRb2G3/fuwNlrvHL/mI/uHatv3twNQAZ4+60JLz9cwNHzBGdfUjkAud587YhBfl5v3F9ZRlSjQ94m3+TZo1gB0YNne03RM3UQB0wjX63r+v7+yPQxQgjFbA8Aeait6/Z74f7nGIc+7wnvcz98FoTgiw/mu2Ov4hsqLOTh53nHrSlPV29SHLzAlx4vEYLdAawjtRg9L+7xrHiAJ0tOxs+SFdWOGeQXAcnXHp4SPfplAH5meYcXb0/V4rCruvUuDhcvA5L09V8ii454zAHvurNDMCoE4va7eX/4Ji8/WsCjL/Cr8ul6wd9Z3Xo3EsHT2Uscn5wQJ/f4YvU0z93Y4WYCuPX8+wA4eeWXOH1dMbXR7d2CK4Bs/wWOqseQzZEPVV/Brd2BGFBs7cvyaeSjL/D5ezPeLV4hPXxxJ+4HpjxPcOPGLU78G/DoV/jSowXPV6/C7XfvrCeAd92Z8ulUycDSN36J58R9hCzg1u76euHWBE/AF+RdkBUHyy/xvshIGXYIkG9O+eLDBdx4BweLL/Hc0VhtpMPpTqznQN3rAC8/XLCcPscL4h5vvzWFh79SE0l9lxCCF25N+eLDORy9QIVQn1++hMcvwZ337aQvVzUA5D7qzvvg4S9DWfAu701eqp7i/lnKw3nG+5/Zjek+QsDTH4A3f4EPHqbcFqfcG73A5++d8cLNiYpQ3UXdeAf4EdPjz/H1sWKvXg7fAahd/s5K75Y/PLrPreUXkH7EPz8+5J13dshqA9x6N0F+xi1O4cHneDh+BwDvfmrHbO3t9/Ju8Rqfe/0E+fBX+KXsKd73zG61vkQTkulzvMd7lS99/tMAHI+f21lIiKnxsx9W/+PeL3D80s8CsP/cV+2wI1XVrfcAkL7+CxyefY5H/lMQH+20pxdvT/mifJrR2cv88uuPeY94Ff/p3V+r9z2zz0vyLuX9z3Py8HX2qlNFjOyw3vP0Pq/KW5T+CB5+ng/F2lnj1u4Y5FHg89yNCT+bKnnAe8UrvF28DoidMbUAb7894cEsJbn5fibVjK+/uYR7n4E7792Z7/c7b6s1/Jfvzbg3ejvv8V7hfU9N4N4vwtNfvZOeAN7/zD6ffeOMXIS8Jm/xnuANePDLgBwA8lAt6qmvUtZur/8Md8tX+cnlc3z6tRNA3Ww7q6e/Gu79Ah8QSjLwWe9d/PyrJ3zwbYe76ymI4KkPwOs/y9dPXqdC8FNzxYJ81d0dbSYAnvkgCI8P8Cu8m1dYHryTLz5OeecumVqAO+8H4OvjV5iefp6XvGd5+mDEYbzjQYnb7+VWeY/Rw08jiiWfk8/xVbvaDDbrqa/iPeIVZr/6zwGQdz+y44aAvTscezeYHv8S6cs/zSO5xwsv7v5Fc/Di1wHw6i/+JM9lX+DR/nt23BE8dTDm5dF7CKqU5KV/wfPefUZ3dwcWTL3/mQN+Pr+LfPPTvE/oAcJdA+Sn9pB4HMdvZ3L8Ob5p/7Uvi77edWfKPzm+QYXHe71XeNvsF9U7MtzdSY55t3xWKpD+8fg1eP1n4e7X7Kynw0nI8zdjPv3qCb8k3smz4iF3Z59WHsg7BMjve2af108S/sVLj/lM9Q5eSD4L939JfVO/j75SyilAFkJ8qxDis0KIzwsh/ugF3xdCiD+tv/9zQoivddnPzsq8hP/pnwXgU+W7+Fv/Uk1f75RVe/qDkJ7y1Et/G4C/e+82X3q05Kuf3TGQuftheP1n+Vr/C3xRPsM//lUlRdlZMhyoaM2nPsDbF5/mo97n+ensBSoJH3v7jd31BPDcx0D4/J7xP2avPOEfL17kq3e5wTH1/NcjkPx+74cB+FT1Xt5/d8cMMjB+4aO823uV0a/+Q07khKff8YFdtwTA8cF7eWH5S0T3f45f9t7Fs7uaAWjUV33VBzmWU+7//D/gXbyG/8wHd90SAOVd9Zr46i/9NTzkan3dYX3V3X1+qnwfQT7jd/p/H4mAZ79upz3d2R9xZ3/Ez4n38/78F/h6PgN3vgomN3fa18fecZNP38t5LXyBXxd8jvj+z8Czu331f/T5IwD+0ucUSP/G9MchOVHvoh3Wh5495OdfPeHHZ0rjLj71/1Hf2DGDDPD/+2cv89PVu9mbvwy/9Hch2tupvt1FOQPIQggf+HPAtwEfAL5TCHH+bfRtwHv0//0+4P/tqp+d1lMfUKL6z/wQUvj8vHwnf/tnX+Mjzx+pOMtd1Xu+GQDv5/46L43ey3/9GRVD+g3v3F1aFgAv/gZYPubdJz/BPyy/hh//5Qe7B6IAL/w6xl/6cW6IGX/t8fsJPMHH3rHjvkb78MyH+NjyfwLgR0/fy298/+4Glup6/hNIf8S3+T/FQ7lPcOd9dXjBLku891vwkXzt/Mf4VPU+Pv7i7V23pOo9v4n3ea/wjuzzvH7r63era9f11EHMzwYf4hPzf0QoSp762G/edUsAvP3dH+SePOJfy3+cwhvBi9+065b4hnfd4mc8JfX4Vv+n4G1fs3MgKoTgN77vDp98+E72RMLbT34KXviGnfYEq/fL31l+iK/n04jlI3jh1+20p6NJxLuf2uPvfHbGP6/ex/Nf+lH1jXfs9t76xIu3ePnRgh++9wy5F8PPfVJZBz6zO+D+iRdvMYl8fvRnX+ML8YfUF3/hh+Gd/5o6Af4KKpcM8tcDn5dSfkFKmQGfBL793M98O/BXpaqfBI6EEF85LtOmhICv/Z3qf37d7+QT71fDCN/58d3Z7QBq4vRd/zoAi498NwAffPag3k3vrL7q31LpdcA/GP3PAPjd/8puh4MA+MT/BoDcG/M/Vh/ht3z02Z3rVwH4dd8HwE9WH+A1bvMtH/gyiPoMY8TXfCcAf7n4Nn77x3Z8r5u6+1GW++oY9b8/+G18wzt3C2JMPfuN/ytSQlIZ8OK//nt33U5d6Ud/NwBvhs8zfeev33E3qv7tj7/A/1f+GwBk7/8tEO2ebT8Yh3z4qz/EPyoVmy0+9nt23JGq3/q1z/Hj1YeZoa/R1/++3TYEfOS5Q168PeWHym9UX5jcgg/+tt02BXyPfsf83NPfob7w4jftfNDyt3z0WaaRz4IxyVf/L9UXv+537sTBwlQc+XzHR5UN5Qe/4TfB2z6qvvHR37GznlyVMOlN1n+xEL8d+FYp5ffoP/+7wCeklN/X+Jm/A/zfpJT/RP/5HwB/REr5qXO/6/ehGGZeeOGFr3vppZec9Oy0pIQv/XO4+2HOyoA3T9PdD1IBFKnSDz3zYV56tGA6CnYrZTB1+hpIyUn4FF98OOcjuwbtpt74ear9Z/mnr1d8/B03dzfM2Cwp4Yv/hF+J3sfBwSF3dmk716wyJ/n8j/Glg6/jXU8f7sbv+6LK5rz+y/8S//mP89Quw2fO1emD13n5jTf54Ae/Ztet1FVVkp/7lz/BBz7wIaLJl4GGXNcX3jzh5qOf4eh9/+pOHSyalRYlL71+n3fmv0zwzn911+3U9cUHc+LsIU/zcAVmdlwni5zP3z/j6w5nUJU7tXgzJaXkn/3qI772hRtEx7+iMgx2PJQKysUijnzujEp49AUlr9jxCVNZST735hnvfmqPcHEflo+UjvwtWkKIfyGl/NgTX3cIkP8XwLecA8hfL6X8A42f+bvA//UcQP6PpJT/4rLf+7GPfUx+6lOfuuzbQw011FBDDTXUUEMNtVFdBpBdbr1fAZrnqs8Br7X4maGGGmqooYYaaqihhuqtXALknwLeI4R4UQgRAf8O8KPnfuZHge/SbhbfAJxIKV932NNQQw011FBDDTXUUENdWc4mjKSUhRDi+4D/DvCBvyyl/IwQ4vfr7/954O8B/wbweWAB/C5X/Qw11FBDDTXUUEMNNdQm5XQEX0r591AguPm1P9/43xL49132MNRQQw011FBDDTXUUNvUl8f471BDDTXUUEMNNdRQQ32Z1ACQhxpqqKGGGmqooYYaqlEDQB5qqKGGGmqooYYaaqhGDQB5qKGGGmqooYYaaqihGjUA5KGGGmqooYYaaqihhmrUAJCHGmqooYYaaqihhhqqUQNAHmqooYYaaqihhhpqqEYNAHmooYYaaqihhhpqqKEaNQDkoYYaaqihhhpqqKGGatQAkIcaaqihhhpqqKGGGqpRQqU9v3VKCHEfeGnXffwaqNvAg103MZTTGj7jr+waPt+v7Bo+36/sGj7f/urtUso757/4lgPIQ/VTQohPSSk/tus+hnJXw2f8lV3D5/uVXcPn+5Vdw+e7+xokFkMNNdRQQw011FBDDdWoASAPNdRQQw011FBDDTVUowaAPNRl9Rd33cBQzmv4jL+ya/h8v7Jr+Hy/smv4fHdcgwZ5qKGGGmqooYYaaqihGjUwyEMNNdRQQw011FBDDdWoASAPNdRQQw011FBDDTVUowaAPNS1JYT43wkhpBDi9q57GcpeCSH+MyHELwkhfk4I8UNCiKNd9zRU9xJCfKsQ4rNCiM8LIf7orvsZym4JIZ4XQvwjIcQvCiE+I4T4D3bd01D2SwjhCyF+Wgjxd3bdy6/VGgDyUFeWEOJ54JuBl3fdy1DW678HPiil/DDwOeD/sON+hupYQggf+HPAtwEfAL5TCPGB3XY1lOUqgP+tlPKrgG8A/v3hM/6KrP8A+MVdN/FruQaAPNR19Z8D/xEwTHN+hZWU8u9LKQv9x58EnttlP0NZqa8HPi+l/IKUMgM+CXz7jnsaymJJKV+XUv5L/b/PUCDq2d12NZTNEkI8B/ybwH+5615+LdcAkIe6tIQQvxl4VUr5s7vuZSjn9buB/2bXTQzVuZ4FvtT48ysM4OkrtoQQ7wA+CvyzHbcy1P+/vft3tTmO4zj+fNVVBix3MZBMLAyShSK/km6iDK7IP2AwmPgfZDBYFcsVZVFikdGPUMoid0BCBmWweBvOUd/hEt1z76fzPc/HdL6fc4ZXfTunV+/v5/s9o3WZwWDqZ+McE22qdQC1leQBsHaBty4CF4CDy5tIo/S381tVd4afucjgsu2N5cymJZEF1rz600NJVgG3gHNV9a11Ho1GkhngU1U9TbKncZyJZkGecFW1f6H1JFuAjcCLJDC4/P4syY6q+riMEbUIfzq/vyU5A8wA+8qHovfBO2B953gd8KFRFi2RJCsYlOMbVXW7dR6N1E7gSJLDwEpgTZLrVXWqca6J4x+F6J8kmQe2V9WX1lk0GkkOAZeA3VX1uXUeLV6SKQY3XO4D3gOPgZNV9appMI1MBhOLa8DXqjrXOI6W0HCCfL6qZhpHmUjuQZYm1xVgNXA/yfMkV1sH0uIMb7o8C9xjcPPWnOW4d3YCp4G9w+/t8+G0UdIIOUGWJEmSOpwgS5IkSR0WZEmSJKnDgixJkiR1WJAlSZKkDguyJEmS1GFBlqSeSXIsSSXZ3DqLJI0jC7Ik9c8s8AQ40TqIJI0jn4MsST2SZBXwBjgA3KyqTY0jSdLYcYIsSf1yFHhQVS+B70m2Nc4jSWPHgixJ/TILzA1fzw2PJUn/wS0WktQTSaaB18C6qvqRZCPwENhQ/thL0j9zgixJ/XEcuFtVPwCq6i3wEdjVNJUkjZmp1gEkSSMzC2xNMt9ZmwZOAo+aJJKkMeQWC0mSJKnDLRaSJElShwVZkiRJ6rAgS5IkSR0WZEmSJKnDgixJkiR1WJAlSZKkDguyJEmS1PELxZICLIfIkP8AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ax = plot_ramsey_fringes(Δ_min=-5, Δ_max=5, N=1001, η=10, label=\"Ramsey\");\n",
"ax = plot_ramsey_fringes(Δ_min=-5, Δ_max=5, N=1001, η=10, label=\"ideal\", ax=ax, func=pop_e_ideal_func);\n",
"ax.figure.suptitle(\"Actual vs ideal fringes for large η\");\n",
"ax.figure.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "5e0419ee",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:42.210980Z",
"start_time": "2021-12-15T20:18:42.103578Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGqCAYAAAAWf7K6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB56UlEQVR4nOzdd3zV1f3H8dfJzd6bAGHvPWUooKCI4N57tlrbOvqztdqqra3W1lEVd3HburUiDhAHU0H2SMgkCRkkJITsnXvP748bNVJURi434/18PO4jd3zvPZ/75eabN+ee7znGWouIiIiIiLj5eLsAEREREZH2RAFZRERERKQVBWQRERERkVYUkEVEREREWlFAFhERERFpRQFZRERERKQVBWQR6TKMMdYYM/AHHrvUGLP0aNfkbcaYHGPMSd6uQ0SkPVFAFpF2rSXA1Rljqo0xe4wxLxpjQtu6HWvtq9bak9v6dTsDY8zdLf+5mHSYz+9ujFlkjNnd8jp927hEEZE2pYAsIh3B6dbaUGA8cAxw5/4bGGN8j3pVHtDe3ocxxgCXA4uBKw/zZVzAEuDctqpLRMSTFJBFpMOw1hbgDmoj4dshE782xmQAGS33XWuMyTTG7Gvpteyx38vMM8ZkGWP2GmMeNMb4tDzvKmPM6m82annt640xGcaYMmPMky1hEWOMwxjzz5bXyDbG3NCy/QHDrTHmdmPMTmNMlTFmhzHm7FaPXWWM+dIY84gxZh9wtzEmwhjzijGmxBizyxhzZ6s67zbG/KfV8/u2btsYs9wYc0/La1YZY5YaY2JbbX95y2uWGmPuOIjdPr3l5/8BFxlj/A/iOd9jrd1jrX0KWH+ozxUR8QYFZBHpMIwxvYB5wOZWd58FTAaGG2NmAX8HLgC6A7uAN/Z7mbOBibh7o88ErvmRJk/D3WM9puU157Tcfy0wFxjb8jpn/UTpO3EHzQjgL8B/jDHdWz0+GcgC4oG/AY+3bNsfOB64Arj6J9po7ZKW7eMBf+B3AMaY4cDTuHuEewAxQOJPvNaVwOvW2jQgB/c+oeX1phljyn/kMu0QahYRaTcUkEWkI1hojCkHVgMrgPtaPfZ3a+0+a20dcCnwgrV2k7W2AfgDMHW/Ma/3t2yfCzwKXPwj7f7DWlvesu0y3IEY3GF5vrU231pbBvzjx4q31r5trd1trXVZa9/E3dvdejzvbmvt49baZqARuBD4g7W2ylqbA/wTd6g9WC9aa9Nb9slbreo+D/jQWruyZf/chXv4wwEZY4KB84HXWu56jVbDLKy1q621kT9yWX2g1xURae8UkEWkIzirJXD1sdb+qiX4fSOv1fUeuHuNAbDWVgOlQM8f2H5Xy3N+SFGr67XANycH9tjvdVpf/x/GmCuMMVu+6VnFPUQkttUmrZ8fi7vXd1er+3bt9x5+ykHVba2twb1/fsjZQJa1dkfL7TeAOcaYuEOoRUSkw1FAFpGOzra6vhvo880NY0wI7mEEBa226dXqeu+W5xyqQr4/NKHXD21ojOkDPAvcAMRYayOBJMC02qz1e9gLNNHqfbTU+c17qAGCWz2WcIh1f1trSw9xzI9sfyXw+rdFuseAr6Wl190YM71ldpEfukz/gdcVEWnXFJBFpDN5DbjaGDPWGBOAeyjG1y3DFL5xqzEmqmU8883Am4fRzlvAzcaYnsaYSOC2H9k2BHcALgEwxlxNy0mGB2Ktdba8/t+MMWEtAfsW4JsT87YAM4wxvY0xEbiHkRysd4DTWsYO+wN/5Qf+DhhjegKzgPeMMYHfXFpe48qWWldZa0N/5LKq1esFAgEtNwNabouItEsKyCLSaVhrP8c9rvZd3L2lA4CL9tvsfWAj7qD5EfD8YTT1LLAU2Ib7hMGPgWbAeYCaduAeQ7wG2AOMAr78ide/EXdPcRbucdevAS+0vN6nuEP9tpb38eHBFm2tTQZ+3fJ6hUAZkP8Dm18OOIA0oK7V5XFgvDHmB0P+D6gDqluup7bcFhFpl4y19qe3EhGRH2SMmQs8Y63t85Mbi4hIu6ceZBGRQ2SMCTLGzDPG+LYMRfgz8J636xIRkbahHmQRkUPUcnLbCmAo7qECHwE3W2srvVqYiIi0CQVkEREREZFWNMRCRERERKQVBWQRERERkVYUkEVEREREWlFAFhERERFpRQFZRERERKQVBWQRERERkVYUkEVEREREWlFAFhERERFpRQFZRERERKQVBWQRERERkVYUkEVEREREWvH1dgGHKjY21vbt29fbZYiIiIhIB7dx48a91tq4/e/vcAG5b9++bNiwwdtliIiIiEgHZ4zZdaD7NcRCRERERKQVBWQRERERkVYUkEVEREREWulwY5APpKmpifz8fOrr671dSrsRGBhIYmIifn5+3i5FREREpEPpFAE5Pz+fsLAw+vbtizHG2+V4nbWW0tJS8vPz6devn7fLEREREelQOsUQi/r6emJiYhSOWxhjiImJUY+6iIiIyGHoFAEZUDjej/aHiIiIyOHpNAFZRERERKQtKCB7WWlpKTNnziQ0NJQbbrjB2+WIiIiIdHmd4iS9jiwwMJB77rmHpKQkkpKSvF2OiIiISJenHuQ2kpOTw/Dhw7n55psZN24cJ554IjU1NT/5vJCQEKZNm0ZgYOBRqFJEREREfkqn60H+ywfJ7Nhd2aavObxHOH8+fcRPbpeens5rr73G/Pnzueiii3jnnXcoLi7m1Vdf/Z9tZ8yYwWOPPdamdYqIiIjIket0Admb+vXrx9ixYwEYP348ubm53HXXXdx6663eLUxEREREDlqnC8gH09PrKQEBAd9e9/Hxwel08uCDD6oHWUREROQACsrr+CK1mNNGdScqxN/b5Xyr0wXk9ubWW29VD7KIiIgI4HRZtuSV8XlKMV+kFpNaVAVAdLA/p47u7uXqvqOA3A707duXyspKGhsbWbhwIUuXLmX48OHeLktERETkiFXUNbEqo4QvUopZllZMWW0TDh/DMX2j+OO8ocwa2o0BcSHeLvN7FJDbSN++fQ97mracnJy2LUZERETEiwor6liavIdPkotYl72PZpclKtiPE4bEM2toPDMGxxER5OftMn+QArKIiIiIHLHM4io+aQnF2/IrABgYH8q1M/pz0rB4xvaKwuFjvFzlwVFA9pDf/e533i5BRERExGNcLsvW/HI+Sd7D0h1FZJW4138Y0yuS358yhDkjEhgQF+rlKg+PArKIiIiIHBSny/J1dimLtxexdEcReyob8PUxTOkfw9XH9mX28AQSIjr+4mcKyCIiIiLyg5wuy/qcfXy0rZDFSUXsrW4gyM/B8YPjmDOyG7OGdCMiuP2OJz4cCsgiIiIi8j0ul2XDrjI+2rabj5OKKKlqINDPhxOHduPU0d2ZOSSeIH+Ht8v0GAVkEREREcHlsmzOK+ODrYUsTipkT2UDAb4+zBoaz6mjuzNraDzB/l0jOnaNd9mOlZaWct5557F+/XquuuoqnnjiiW8f27hxI1dddRV1dXXMmzeP+fPnY0zHOPtTRERE2j9rLSmFVby/pYBFW3dTWFGPv68PJwyO49TR3TlxWDdCA7peXOx677idCQwM5J577iEpKel/5lH+5S9/yYIFC5gyZQrz5s1jyZIlzJ0710uVioiISGdRUF7H+1sKeH/zbtL2VOHrYzh+cBy3nTKUE4fFExbYucYUHyoF5DaSk5PDvHnzmD17NitXriQ6OppFixYREvLjK8OEhIQwbdo0MjMzv3d/YWEhlZWVTJ06FYArrriChQsXKiCLiIjIYamobeLjpELe21zAuux9AEzoE8U9Z47g1NE9iA7x93KF7UfnC8iLb4ei7W37mgmjYO4/fnKz9PR0XnvtNebPn89FF13EO++8Q3FxMa+++ur/bDtjxgwee+yxH3ytgoICEhMTv72dmJhIQUHB4dUvIiIiXVJ9k5NlqcUs3FLAstQSGp0u+seF8NvZgzlzbE96xwR7u8R2qfMFZC/q168fY8eOBWD8+PHk5uZy1113ceuttx7ya1lr/+c+jT8WERGRn2KtZVNuOe9szOPDbYVU1TcTFxbAZVP6cPa4nozsGa5M8RM6X0A+iJ5eTwkICPj2uo+PD06nkwcffPCwepATExPJz8//9nZ+fj49evRo24JFRESk09hTWc+7m/J5Z2M+WSU1BPk5mDsygbPH92Rq/xh8HT7eLrHD6HwBuZ259dZbD6sHuXv37oSFhbF27VomT57MK6+8wo033uiBCkVERKSjamh28tmOYt7emMfK9BJcFo7pG8X1MwYwb3T3LjkDRVvQXmsH+vbtS2VlJY2NjSxcuJClS5cyfPhwnn766W+neZs7d65O0BMRERGstSTvruTtDXm8v3U35bVNdI8I5JcnDOC8Cb3oF/vjEwTIT1NAbiN9+/b9n2naDlZOTs4B7584ceJhv6aIiIh0LmU1jfx3cwFvb8gjtagKf18f5oxI4PwJiRw3MBaHj8YVtxUFZBEREZF2ylrL19n7eH1dLou3F9HodDEmMYJ7zhrJGaN7EBHctecr9hQFZA/53e9+5+0SREREpIPaV9PIfzfl89q6XLJKaggL9OXiSb24aFJvhnUP93Z5nZ4CsoiIiEg7YK1lbZa7t3hJkru3eEKfKB46fyCnjupOkL/D2yV2GQrIIiIiIl60r6aRdzfm8/q6XLL2unuLL5ncm4sm9WJognqLvUEBWUREROQocy/mUcYra3Z9O7Z4Qp8o/jlzIPPUW+x1CsgiIiIiR0ldo5NFWwt4+atd7CisJCzA3Vt88aTeDEkI83Z50kJLqnhZaWkpM2fOJDQ0lBtuuOF7j23cuJFRo0YxcOBAbrrppm+Xn25oaODCCy9k4MCBTJ48+QeniRMREZH2YVdpDfd+uIMpf/+c297djtNl+dvZI1n7xxO5+4wRCsftjHqQvSwwMJB77rmHpKSk/5nz+Je//CULFixgypQpzJs3jyVLljB37lyef/55oqKiyMzM5I033uC2227jzTff9NI7EBERkQNxuSzL04t5Zc0uVqSX4DCGOSMTuGJKHyb1i8YYzVvcXikgt5GcnBzmzZvH7NmzWblyJdHR0SxatIiQkB9fzSYkJIRp06aRmZn5vfsLCwuprKxk6tSpAFxxxRUsXLiQuXPn8v7773P33XcDcN5553HDDTdgrdUvmoiISDtQXtvIWxvy+M/aXHL31RIXFsBNswZxyeTedAsP9HZ5chA6XUC+f939pO5LbdPXHBo9lNsm3faT26Wnp/Paa68xf/58LrroIt555x2Ki4t59dVX/2fbGTNm8Nhjj/3gaxUUFJCYmPjt7cTERAoKCr59rFevXgD4+voSERFBaWkpsbGxh/rWREREpI2kFVXx4pfZvLe5gIZmF5P6RnPrnCHMGZGAv69GtXYknS4ge1O/fv0YO3YsAOPHjyc3N5e77rqLW2+99ZBf65vxxq1900P8Y4+JiIjI0eNyWVakl/DCl9msythLoJ8P54xP5IqpfbSgRwfW6QLywfT0ekpAQMC31318fHA6nTz44IOH1YOcmJhIfn7+t7fz8/Pp0aPHt4/l5eWRmJhIc3MzFRUVREdHt+E7ERERkR9T29jMu5sKePHLbLJKaugWHsCtc4ZwyaTeRIX4e7s8OUKdLiC3N7feeuth9SB3796dsLAw1q5dy+TJk3nllVe48cYbATjjjDN4+eWXmTp1Ku+88w6zZs1SD7KIiMhRsLu8jlfW7OL1dblU1DUxOjGC+ReNZd6o7vg5NIyis1BAbgf69u1LZWUljY2NLFy4kKVLlzJ8+HCefvpprrrqKurq6pg7dy5z584F4Gc/+xmXX345AwcOJDo6mjfeeMPL70BERKRz25xbxvOrs1mcVIS1llNGJnDNcf2Y0CdKnVSdkAJyG+nbt+//TNN2sH5oHuOJEyce8DUDAwN5++23D6stEREROThOl2VJUhHPrc5ic245YQG+XHNcX66Y2pde0cHeLk88SAFZREREpJW6RifvbMzjudXZ7CqtpU9MMHefPpzzJvYiNEDRqSvQv7KH/O53v/N2CSIiInII9tU08sqaHF5Zs4t9NY2M6RXJ7acM5eQRCTh8NIyiK1FAFhERkS4tt7SW51Zn8daGPOqbXJw4NJ7rZvTXanddmAKyiIiIdElb88pZsDKLxUmFOHwMZ43tyXUz+jOoW5i3SxMvU0AWERGRLsNay/L0Ev61Yidrs/YRFuDLdTMGcPVxfbUMtHxLAVlEREQ6vWaniw+3FfL08p2k7akiITyQO+YN46JJvQgL9PN2edLOKCC3kWOPPZavvvrqf+6/6qqrOO200zjvvPMO+TXvvvtuQkNDdcKfiIjIYWpodvLuxgKeWbGT3H21DIoP5Z/nj+H0MT3w99XCHnJgCsht5EDhWERERLyjtrGZ177O5dlVWeypbGB0YgR3nDqB2cO64aMZKeQnKCC3kdDQUKqrq7HWcuONN/LFF1/Qr18/rLXfbrNx40ZuueUWqquriY2N5aWXXqJ79+48++yzLFiwgMbGRgYOHMi///1vgoM1AbmIiMihqqhr4pWvcnjhy2zKapuY0j+af54/luMGxmhGCjlonS4gF913Hw0pqW36mgHDhpLwxz8e1LbvvfceaWlpbN++nT179jB8+HCuueYampqauPHGG3n//feJi4vjzTff5I477uCFF17gnHPO4dprrwXgzjvv5Pnnn+fGG29s0/cgIiLSmZVUNfDCl9n8e80uqhuamTU0nl/PHMCEPtHeLk06oE4XkL1t5cqVXHzxxTgcDnr06MGsWbMASEtLIykpidmzZwPgdDrp3r07AElJSdx5552Ul5dTXV3NnDlzvFa/iIhIR1JQXsezK7N4fV0ujU4X80Z151cnDGBEjwhvlyYdWKcLyAfb0+tJB/oKx1rLiBEjWLNmzf88dtVVV7Fw4ULGjBnDSy+9xPLly49ClSIiIh1Xzt4anlyWyXubCwA4e1xPfnnCAPrHhXq5MukMPHr6pjHmFGNMmjEm0xhz+wEejzDGfGCM2WqMSTbGXO3Jeo6GGTNm8MYbb+B0OiksLGTZsmUADBkyhJKSkm8DclNTE8nJyQBUVVXRvXt3mpqaePXVV71Wu4iISHuXVVLNLW9uYdY/l7No624undybFb+fyYPnj1E4ljbjsR5kY4wDeBKYDeQD640xi6y1O1pt9mtgh7X2dGNMHJBmjHnVWtvoqbo87eyzz+aLL75g1KhRDB48mOOPPx4Af39/3nnnHW666SYqKipobm7mN7/5DSNGjOCee+5h8uTJ9OnTh1GjRlFVVeXldyEiItK+7Cyp5okvMnl/SwH+vj5cc1w/rju+P/FhWtxD2p5pPctCm76wMVOBu621c1pu/wHAWvv3Vtv8AeiFOyj3BT4FBltrXT/0uhMnTrQbNmz43n0pKSkMGzasrd9Ch6f9IiIiHV1mcTWPf5HBB1t3E+Dr4PKpfbh2en/iwgK8XZp0AsaYjdbaifvf78kxyD2BvFa384HJ+23zBLAI2A2EARceKBwbY64DrgPo3bu3R4oVERGR9iOzuIrHPs/kg227CfR1cO30/lw7oz+xoQrG4nmeDMgHmmxw/+7qOcAWYBYwAPjUGLPKWlv5vSdZuwBYAO4e5LYvVURERNqD9D1VPPZ5Bh9tLyTIz8EvZgzg2un9iFEwlqPIkwE5H/fwiW8k4u4pbu1q4B/WPc4j0xiTDQwF1h1qY9ZaTQDeiqeGzoiIiHhCWpE7GH+cVEiwn4Prjx/AtdP7Ex3i7+3SpAvyZEBeDwwyxvQDCoCLgEv22yYXOBFYZYzpBgwBsg61ocDAQEpLS4mJ0So54A7HpaWlBAbqxAUREWnfMoureORTd49xiL+DX50wgJ9P60+UgrF4kccCsrW22RhzA/AJ4ABesNYmG2Oub3n8GeAe4CVjzHbcQzJus9buPdS2EhMTyc/Pp6SkpA3fQccWGBhIYmKit8sQERE5oF2lNcz/LIOFWwoI8nPw65kKxtJ+eGwWC0850CwWIiIi0jEUlNfxxBcZvLUhH18fw5XH9uUXM/prjLF4hTdmsRAREREBoLiynqeW7+S1r3MBuHxKH351wgDiwzUcUNofBWQRERHxmH01jTyzYievrMmhyWm5YGIiN8waRM/IIG+XJvKDFJBFRESkzVXUNfHcqixeWJ1NbZOTs8f25KYTB9E3NsTbpYn8JAVkERERaTPVDc289GU2C1ZmUVnfzKmju/N/Jw1iYHyYt0sTOWgKyCIiInLE6puc/GftLp5avpN9NY2cNKwbt8wezPAe4d4uTeSQKSCLiIjIYXO6LO9uyufRT9PZXVHP9EGx/PbkIYztFent0kQOmwKyiIiIHDJrLUt37OGhT9LIKK5mTGIED50/hmMHxnq7NJEjpoAsIiIih2RtVin3L0llc245/eNCeOay8cwZkaDVbKXTUEAWERGRg5K8u4IHlqSxIr2EhPBA7j93FOeOT8TX4ePt0kTalAKyiIiI/KhdpTX8c2k6i7buJiLIjz/OG8oVU/sS6OfwdmkiHqGALCIiIgdUXFXP459n8vq6XPwcPvx65gCumzGAiCA/b5cm4lEKyCIiIvI9lfVNLFiRxfOrs2lyurhoUi9umjVIy0JLl6GALCIiIgA0Nrv4z9pdPP5FBmW1TZwxpge3zB6s1e+ky1FAFhER6eKstXy0vZAHlqSRu6+WaQNjuX3uUEb2jPB2aSJeoYAsIiLSha3L3sffPk5ha145QxPCePmaSRw/OM7bZYl4lQKyiIhIF5RZXM39S1L5dMceEsIDeeC80Zw7PhGHj+YyFlFAFhER6UJKqhp49LN03lifR5Cfg1vnDOGa4/oR5K8p20S+oYAsIiLSBdQ2NvPcqmz+tWInDc0uLp3cm5tOHERsaIC3SxNpdxSQRUREOjGny/L2hjwe/jSd4qoGThmRwO9PGUL/uFBvlybSbikgi4iIdELWWpanlfD3xSmk76lmfO9Inrp0PBP7Rnu7NJF2TwFZRESkk0kqqOC+j1P4amcpfWKCeerS8cwdmYAxOgFP5GAoIIuIiHQSxZX1PPhJGu9syicyyI8/nz6cSyf3wd/Xx9uliXQoCsgiIiIdXH2Tk2dXZvH0ip00OV1cO70/v545kIggP2+XJtIhKSCLiIh0UNZaFm3dzf2LU9ldUc8pIxL4w7yh9InR0tAiR0IBWUREpAPauKuMez7cwZa8ckb0COfhC8cypX+Mt8sS6RQUkEVERDqQ/LJa/rE4lQ+3FRIfFsCDLSvg+WgFPJE2o4AsIiLSAVQ3NPPUskyeW52Nj4GbZg3kF8cPICRAf8pF2pp+q0RERNqxbxb6eGhpOnurGzhrbA9+f8pQekQGebs0kU5LAVlERKSd+ipzL/d8lEJKYSUT+kTx3JUTGdsr0ttliXR6CsgiIiLtTPbeGu77OIVPd+yhZ2QQj188jtNGd9dCHyJHiQKyiIhIO1FV38QTX2TywpfZ+Dt8uHXOEH42rR+Bfg5vlybSpSggi4iIeJnLZXlnUz4PLEljb3UD509I5NZThhAfFujt0kS6JAVkERERL9qUW8ZfFiWzNb+Ccb0jef7KiYzROGMRr1JAFhER8YI9lfXcvziV/24uID4sgEcuHMOZY3pqPmORdkABWURE5ChqaHby/Opsnvgik2an5VcnDODXMwdqPmORdkS/jSIiIkeBtZbPUoq596Md7CqtZfbwbtx56jD6xIR4uzQR2Y8CsoiIiIdlFlfxlw92sCpjLwPjQ/n3zyYxfVCct8sSkR+ggCwiIuIhFXVNPPpZOq+s2UWwv4M/nTacy6f2wc/h4+3SRORHKCCLiIi0MafL8ub6PB5amkZZbSMXT+rNb2cPJiY0wNulichBUEAWERFpQ+uy9/GXD5JJ3l3JpL7R/PmM4YzoEeHtskTkECggi4iItIGiinru+ziFRVt30yMiUMtDi3RgCsgiIiJHoLHZxQtfZvPY5xk0uyw3zRrIL08YSJC/locW6agUkEVERA7TqowS/rwomaySGk4a1o0/nTac3jHB3i5LRI6QArKIiMghKiiv494Pd7A4qYg+McG8eNUxzBwa7+2yRKSNKCCLiIgcpIZmJ8+uzOKJZZkA/O7kwfx8en8C/TScQqQzUUAWERE5CMtSi/nLB8nklNYyd2QCd542nJ6RQd4uS0Q8QAFZRETkR+SW1vLXD5P5LKWY/nEhWgVPpAtQQBYRETmA+iYnTy/fydMrduLrY7h97lCuOa4f/r5aBU+ks1NAFhERacVay6c79vDXD3eQX1bH6WN6cMe8YSREBHq7NBE5ShSQRUREWmTvreHuRcmsSC9hcLdQXr92ClMHxHi7LBE5yhSQRUSky6ttbObJZZk8uzKbAF8f7jptOFdM7YOfQ8MpRLoiBWQREemyrLUsTiri3g93sLuinnPG9eT2eUOJD9NwCpGuTAFZRES6pKySav70fjKrM/cyrHs48y8exzF9o71dloi0AwrIIiLSpdQ1OnlqeSb/WpFFgJ8PfzljBJdO7o2vhlOISAsFZBER6TI+T9nDnxclk19Wx9njevIHDacQkQNQQBYRkU4vv6yWv36wg6U79jAwXrNTiMiPU0AWEZFOq7HZxXOrs3js8wwMWuxDRA6OArKIiHRKX+3cy10Lk9hZUsOcEd340+kj6BkZ5O2yRKQDUEAWEZFOpbiqnvs+SmHhlt30ig7ihasmMmtoN2+XJSIdiAKyiIh0Ck6X5T9rd/HQJ2k0NLu4adZAfjVzIIF+Dm+XJiIdjEcDsjHmFGA+4ACes9b+4wDbnAA8CvgBe621x3uyJhER6Xw255Zx58IkkndXMm1gLH89cwT940K9XZaIdFAeC8jGGAfwJDAbyAfWG2MWWWt3tNomEngKOMVam2uMifdUPSIi0vmU1zZy/5I03lifS1xoAE9cMo5TR3XHGOPt0kSkA/NkD/IkINNamwVgjHkDOBPY0WqbS4D/WmtzAay1xR6sR0REOgmXy/LOpnz+sTiViromrjmuH785aRBhgX7eLk1EOgFPBuSeQF6r2/nA5P22GQz4GWOWA2HAfGvtK/u/kDHmOuA6gN69e3ukWBER6RhSCiu5a2ESG3aVMb53JPeeNYrhPcK9XZaIdCKeDMgH+n7LHqD9CcCJQBCwxhiz1lqb/r0nWbsAWAAwceLE/V9DRES6gOqGZh79NJ0Xv8ohPNCXB84dzXkTEvHx0XAKEWlbngzI+UCvVrcTgd0H2GavtbYGqDHGrATGAOmIiIgA1lo+3l7EXz9MZk9lAxdP6sXv5wwlKsTf26WJSCflyYC8HhhkjOkHFAAX4R5z3Nr7wBPGGF/AH/cQjEc8WJOIiHQgOXtruOv9JFZl7GV493CevmwC43tHebssEenkPBaQrbXNxpgbgE9wT/P2grU22Rhzfcvjz1hrU4wxS4BtgAv3VHBJnqpJREQ6hoZmJ/9akcUTyzLxd/jwp9OGc8XUPvg6tES0iHiesbZjDemdOHGi3bBhg7fLEBERD1mzs5Q7Fm4nq6SGU0d1567ThpMQEejtskSkEzLGbLTWTtz/fq2kJyIi7UJpdQN/+ziF/24qIDEqiBevOoaZQzU9vogcfQrIIiLiVS6X5e2Nefx9cSrV9c386oQB3DhrEEH+WiJaRLxDAVlERLwmfU8Vd7y3nfU5ZRzTN4q/nT2Kwd3CvF2WiHRxCsgiInLU1TU6eeyLDJ5dmUVooC/3nzuK8yf00pzGItIuKCCLiMhRtSytmD+9n0TevjrOHZ/IH+cNJSY0wNtliYh8SwFZRESOij2V9fz1gx18tL2Q/nEhvH7tFKYOiPF2WSIi/0MBWUREPMrpsvx7TQ4PLU2n0enit7MHc93x/Qnw1Ul4ItI+KSCLiIjHJBVU8Mf3trMtv4Lpg2K558yR9I0N8XZZItKeuJzg077+w6yALCIiba66oZl/Lk3j5a9yiA4J4LGLx3H66O4Yo5PwRKSFtZD0Lnz+F7j4Deg2wtsVfUsBWURE2oy1liVJRfzlgx3sqarn0sm9uXXOUCKC/Lxdmoi0J7s3w+LbIW8tJIwGZ5O3K/oeBWQREWkTeftq+fOiZL5ILWZY93Ceumw843tHebssEWlPqvbA53+FLa9CcAyc/hiMu0xDLEREpHNpcrp4blU28z9Px8cY7pg3jKuP64uvw8fbpYlIe9HcAGufhpUPQXM9HHsDzLgVAiO8XdkBKSCLiMhh27hrH3/8bxJpe6qYPbwbd58xgp6RQd4uS0TaC2sh7WP45A4oy4bBc2HO3yBmgLcr+1EKyCIicsjKaxu5f0kqr6/Lo0dEIAsun8DJIxK8XZaItCd7dsAnf4Cs5RA7BC57Fwae5O2qDooCsoiIHDRrLe9tLuBvH6VQXtfEtdP78ZuTBhMSoD8nItKidh8suw82vAABoTD3AZh4DTg6zsm6OqKJiMhB2VlSzV0Lk/hqZylje0Xy77NHMbxHuLfLEpH2wtnkDsXL7oOGSpj4M5j5RwiO9nZlh0wBWUREflR9k5Onl+/k6eU7CfDz4d6zRnLJpN74+GhOYxFpsfMLWPIHKEmFfsfDKX9vV/MaHyoFZBER+UFfZu7lzoVJZO+t4YwxPbjztGHEhwV6uywRaS9Kd7pPwEtfDFF94aLXYMg86OCLAikgi4jI/9hb3cDfPkrhvc0F9IkJ5pVrJjFjcJy3yxKR9qK+ElY+6J66zTcATvoLTPml+3onoIAsIiLfcrksb2/M476PU6ltbObGWQP59cyBBPq1r0n8RcRLXE73Ih+f/xVq9sLYS+HEP0FYN29X1qYUkEVEBICMPVXc8V4S63L2MalvNPedM5KB8WHeLktE2otdX8Hi26BoG/SaDJe8BT3He7sqj1BAFhHp4uqbnDzxRSb/WrmTkABfHjh3NOdNSNRJeCLiVp4Hn/4Jkv8L4T3h3Odh5Lkdfpzxj1FAFhHpwlZllHDnwiR2ldZyzvie3DFvGDGhnWMMoYgcocYa+HK++4KB42+H424G/2BvV+ZxCsgiIl3Q3uoG7v1wBwu37KZfbAiv/Xwyxw6M9XZZItIeWAtJ77p7jSsL3L3FJ/0FInt5u7KjRgFZRKQLcbksb23I4++L3Sfh3XTiIH51wgCdhCcibgWbYMntkPc1dB/jHk7RZ6pHm2x2NePr074iafuqRkREPCZ9TxV//O92NuwqY1K/aO47exQD40O9XZaItAdVRe6ZKba8CiHxcMYT7hkqfHw81qTLuvgo6yMe3/w4T5z4BIOjBnusrUOlgCwi0snVNzl5/IsM/rUii9BAXx48z30SnunEJ9iIyEFqboC1T8HKh9zXj7sZpv8OAj27jPzWkq08sO4Btu3dxriQIbisy6PtHSoFZBGRTmxluvskvNx9tZw7PpE/zhuqk/BExD3OOPUjWHoHlOW4V787+V6IGeDRZotqinhk4yN8nP0x3X1jebLwJLq9vYpe/esg2qNNHxIFZBGRTqikqoF7P9rB+1t20z82hNeuncyxA3QSnogAe5Ld44yzV0LcMLh8IQyY6dEm65rreCnpJV5IegGXy8kddScy4e0kmguWEHziifjGxni0/UOlgCwi0om4XJY31ufxj8Up1De5+M1Jg7j+eJ2EJyJATSksvw82vACBETDvIZhwNTg8FwettXyc/TGPbHyEPbV7uMhnCucvqcS56RMcgwbR48UXCJnq2ZMAD4cCsohIJ5FWVMUf39vOxl1lTOkfzd/OHsWAOJ2EJ9LlOZtg/fPucNxQDcdcCyfcDsGeHdOwvWQ796+/n60lW5noN5CHtw3C7+MVEBlJwt1/JvK88zC+7TOKts+qRETkoNU1uk/CW7Ayi7BAX/55/hjOGd9TJ+GJCGR+Bkv+CHvToP9MOOXvED/Mo03uqdnD/E3z+SDrA7r5RvNE4UkkvL0KV0Mm0VdeSeyvfokj3LMnAR4pBWQRkQ5sRXoJd7WchHf+hET+MG8Y0SH+3i5LRLxtb6b7BLz0JRDdHy5+Awaf4tHloeua63g5+WVeSHqBZmcTf6ibxTHvJNOcv4TgmTOJ//2tBPTr57H225ICsohIB1RcVc89H6bwwdbd9I8L4fVrpzB1QPs6yUVEvKC+AlY8AF//C3wDYfY9MPkX4Ou52WustSzOXswjmx6hqKaICx2TuWBpDc4NS3EMGkj3558j9LjjPNa+Jyggi4h0IC6X5fX1ufxjcSoNTS7+76TBXH9CfwJ8dRKeSJfmcsLmf8Pn90BtKYy/HGbdBaHxHm32e+OM/Qfxz+0D8ftoBUREkPDnPxF5/vntdpzxj+l4FYuIdFGpRZX88b/b2ZRbzrEDYrj3rJH010l4IpLzJSy5DYq2Q++pcMq70GOsR5ssqinisU2P8UHWByT4xfBE0UkkvL0aV30G0Vdc4R5nHBHh0Ro8SQFZRKSdq2t0Mv/zDJ5blUV4kB8PXzCGs8fpJDyRLq9sF3z6J9ixECJ6wXkvwoizPT7O+KWkl3gx+UWczmb+WH8iE/+TTHPeEoJPOIH4237fYcYZ/5hDDsjGmKuAeGCLtXZpm1ckIiLfWpZWzF0Lk8gvq+OCiYn8Ye4wonQSnkjX1lgDqx+BLx8D4wMz74BjbwS/II81ecD5jD+pwrnxE/c44+eeI3Raxxpn/GMOpwc5DtgDeHYtQhGRLqy4sp6/fLiDj7YVMiAuhDeum8KU/joJT6RLc7lg+9vw2d1QtRtGnQ8n3Q0RiR5tdmvJVh5Y/wDbSrZxjO9AHtk2EN+PV3aI+YwP1+G8m764e5BFRKSNuVyWV9fl8sDiVBqcLn47ezDXHa+T8ES6vPyN7nHG+euhxzg4/yXoPdmjTRbVFPHopkf5KOsjEnxjeLLgROLfWYVt2kn0VVcR+8vr2/18xofroAKyMSYQ+BUwDYgEFgOve64sEZGuJ6Wwkj++t53NueUcNzCGe88aRb/YEG+XJSLeVFkIn/8Ftr4Ood3grKdh9EXg4+OxJmubankp+SVeTHoRl8vJHTWzGP9uEs6CTwg56US63Xor/n36eKz99uBge5BfAaqAx1tuXww8ApzviaJERLqS2sbmlpPwsokI8uORC8dw1lidhCfSpTXVw5onYNXD4GqCaf8H038LAWEea9JlXXyU9RGPbnqU4tpiLmUK5ywux7llKb5DhtDzpRcJmTLFY+23JwcbkIdYa8e0ur3MGLPVEwWJiHQly1KLuet990l4F07sxe1zh+okPJGuzFpIWQRL74TyXBh6Gpx8L0R7dmaIrSVbeWDdA2zbu43JvoN4dPMAfJesgpgYEu75K5HnnINxdJ2hXgcbkDcbY6ZYa9cCGGMmA196riwRkc5tT2U9f/1gBx9tL2RgfChv/WIqk/pFe7ssEfGmou2w5A+Qswrih8MV70P/EzzbZE0Rj2x8hI+zP6aHI5ancmcS99/V0JxJ9LU/J+YXv8AR2vXmWz/YgDwZuMIYk9tyuzeQYozZDlhr7WiPVCci0sk4XZbXvt7FA0vSaHC6+N3Jg7luxgD8fT03nlBE2rmavfDFvbDpZQiMhFP/CeOvAofnZoaobarlxeQXeSnpJax1cVfVTMa+sw1n0aeEzplD/O9+i3+vXh5rv7072D1/ikerEBHpAnbsdp+EtyWvnGkDY7n3rJH01Ul4Il1XcyOsfxaW3w+N1TDpF3DCbRAU5bEmvx1nvPFRiuuKucI1hTM/LsW5/VP8hg8n8cEHCT7mGI+131EcVEC21u7ydCEiIp1VbWMzj36WwfOrs4kK9mP+RWM5Y0wPnYQn0pVlfOoeTlGaAQNOhDn3QfxQjza5pXgL96+7n6TSJKY6BjF/fV8cn62GuFi633cfEWedifHg7BgdSeea1VlEpJ35InUPdy1MpqC8josn9eK2U4YSGayT8ES6rJJ0+OSPkPkpRA+AS96CQSd7dHnowupCHtn4CItzFpPoiOXpnOOJfe9LsFlEX/8LYq+9Fp8QfZvVmgKyiIgHFFbU8ZdFO1iSXMSg+FDevn4qx/TVSXgiXVZdOay4H9YtAL9gOPlvMOk68PXcf5hrm2p5Pul5Xk5+GWMtf644gdHvbMVZ/Dlh8+YR/9tb8OvZ02Ptd2QKyCIibajZ6eKlr3J45NN0nNby+1OG8PNp/XUSnkhX5XK6T7774l6o3Qfjr4BZd0FonOeatC4+zPqQ+RvnU1xXzJXOyZzx4V6cOz7Db/RoEh+dT/D4cR5rvzNQQBYRaSObc8v443tJpBRWMnNIHH89cyS9ooO9XZaIeEvWcvjkDtiTBH2Og1P+Dt3H/OTTjsTm4s3cv+5+kkuTmeYzmPlre+NY9iWmWzd6PHA/4aedpnHGB0EBWUTkCFXUNvHAJ6m8ti6XbmGBPHPZeOaMSNBJeCJdVelO90IfaR9DZG84/yUYfpZHxxnvrt7NIxsfYUnOEno5Ynlm5wxiFq4GHx9ifv1rYn52DT7B+g/7wVJAFhE5TNZa3t+ym3s/2sG+mkauOa4f/zd7MKEBOrSKdEl15bDyQfj6X+AbACfdDZN/CX6BHmuypqmG57e7xxk7rOEv+45n5LtbcO79grAzTif+llvwS0jwWPudlY7iIiKHIaukmrveT+LLzFLG9IrkpasnMbJnhLfLEhFvcDbDxhdh2X1QVwbjL4eZd0JYN8816XKyMHMhj29+nNL6Uq5unMRpH5bgTPsc/7Fj6fbUUwSN1jpuh0sBWUTkENQ3OXl6+U6eXr6TAD8f7j1rJBdP6o3DR8MpRLqkzM/c44xLUqHvdPd8xt09G0zX7F7DgxseJKMsgxN8hnH9V33wWfEVpkd3evzzIcLnzdMQryOkgCwicpBWZZRw18IkckprOXNsD+44dRjxYZ776lRE2rGSdFh6B2Qshah+cOGrMPRUj44zzqrI4uEND7MifwUDHN15Ln06EYtWg58fsb+5meirrsInUMektqCALCLyE4qr6rn3wxQWbd1Nv9gQ/vOzyUwbFOvtskTEG2r3ueczXv9cy3zG97bMZxzgsSbL6st4euvTvJX2FqEmkPuLT2DAuxtwVSwn/Oyzibv5Zvy6xXus/a5IAVlE5Ac4XZbXvt7FA5+k0dDk4jcnDeL64wcQ6OfwdmkicrQ5m2D987D879BQCROughP+6NH5jBudjbye+jr/2vovaptquLF2KtPfz8aZ8xmBU6bQ7bbfEzhsmMfa78oUkEVEDiCpoII73tvO1vwKpg2M5a9njqB/XKi3yxKRo81a9zCKT+6A0gzof4J7nHG3ER5s0vJZ7mc8vOFh8qvzOds1hks+a8JuXIGjXz+6P/0UoSecoHHGHqSALCLSSlV9Ew9/ms7LX+UQHRLA/IvGcsaYHvpDJNIVFafAJ3+EnV9AzEC4+E0YPMej44yT9ibx4PoH2VS8iXE+ffj75skEfPIVPhERxN51J1EXXIDx8/NY++Lm0YBsjDkFmA84gOestf/4ge2OAdYCF1pr3/FkTSIiB2KtZXFSEX/5IJniqgYum9yH380ZQkSQ/hCJdDk1pbD8PtjwIgSEwpy/wzE/B19/jzVZVFPE/E3z+TDrQxJ8ong8ZzoJC9dCcy5RV19N7PW/wBEe7rH25fs8FpCNMQ7gSWA2kA+sN8YsstbuOMB29wOfeKoWEZEfk1tay58WJbE8rYTh3cN55rIJjOsd5e2yRORoa26EdQtgxQPQWA3H/AxO+AMER3usydqmWl5IeoGXk1/Gupz8ad80xryXjLN4GaGnnEL8b2/Bv1cvj7UvB+bJHuRJQKa1NgvAGPMGcCawY7/tbgTeBY7xYC0iIv+jsdnFs6uyeOzzDHx9DHedNpwrp/bB1+Hj7dJE5GiyFtIWu6dt25cFA2e7Z6eIH+qxJp0uJ4t2LuKxzY+xt24v1zQcw7wPS3ClL8dvzGgSH32U4PHjPda+/DhPBuSeQF6r2/nA5NYbGGN6AmcDs/iRgGyMuQ64DqB3795tXqiIdD1rs0q5c2ESmcXVzB2ZwJ9OH073iCBvlyUiR1tRknuccfYKiB0Cl74Dg2Z7tMmvC7/mwfUPklaWxkw7hF+s7onP6jX49OhOghb6aBc8GZAP9C9r97v9KHCbtdb5Yx8Ea+0CYAHAxIkT938NEZGDVlxVz98/TuW9zQUkRgXxwlUTmTXUc8vBikg7VV0Cy+6FTa9AYATMfRAmXg0Oz513kF2RzcMbHmZ5/nIGmwSeS55K+Mdr8AkIIOaWW4i+4nIt9NFOeDIg5wOtB80kArv322Yi8EZLOI4F5hljmq21Cz1Yl4h0QU6X5T9rd/HQJ2k0NLu4cdZAfnXCQIL8NaexSJfSVAdrn4JVj0BzHUy+Ho7/PQR57ryD8vrybxf6CMGfBwqOo/97G3HVfEnkBecTd+ON+MbEeKx9OXSeDMjrgUHGmH5AAXARcEnrDay1/b65box5CfhQ4VhE2tqm3DLuWphE8u5Kpg+K5S9naE5jkS7H5YKkd+Hzv0BFHgyZB7P/CrGDPNZkk7OJ11Nf55ltz1DTWM3NFZM5blEWrvwVBM2YTrdbbyVgkOfal8PnsYBsrW02xtyAe3YKB/CCtTbZGHN9y+PPeKptERGAsppGHvgkldfX5dEtPIAnLxnPvFEJGtsn0tXsWuMeZ7x7EySMhrOehn7TPdactZalu5Yyf9N88qryOKdpFBcvrcduW43foEHEP/ssodOneax9OXLG2o41pHfixIl2w4YN3i5DRNoxl8vy1oY87l+SSmV9M9cc15ebTxpMaIDWRhLpUkp3wmd/hpQPIKwHnPgnGH0h+HhuppotxVt4aMNDbC3ZykTbh5vXxxDw+TocMTHE3XwTkeecg/HVsai9MMZstNZO3P9+/QuJSKeSvLuCOxcmsTm3nGP6RnHPWSMZmqDJ9UW6lNp9sPIh95zGDn+YeQdMvQH8gz3W5K7KXTy68VE+y/2MXiaGp9OPJfaDtWDyib7+F8T8/FocoSEea1/algKyiHQKlfVNPLw0nVfW5BAV7M8/zx/DOeN7ajiFSFfS3Ajrn4MV90NDJYy7zB2OwxI81mRZfRnPbH2Gt9LeIhBf7tt9LIPf34qrfCVhZ5xO/G9+g1+PHh5rXzxDAVlEOjRrLe9v2c3fPk5hb3XLEtEnDyEiWEtEi3QZ1kLqh/Dpn9wLffSf6V7oI2Gkx5qsb67n1ZRXeW77c9Q21XBzxSSO+yAHV95KAqdOoduttxI4fLjH2hfPUkAWkQ4rY08Vd72fxNqsfYxJjOD5KycyOjHS22WJyNFUsAk+uQNyv4K4oe6FPgaeBB769shlXXyU9RGPbX6MopoiLmwYw3lLq7FJX7pPwFvwL0KmT9e3Vx2cArKIdDg1Dc089kUGz6/KJiTAl7+dPZKLjumNw0d/kES6jPI8+PyvsP0tCImD0x6BcVeAw3PRZl3hOh7a8BAp+1KY5uzPP9eMwW/VRhxxccTdew8RZ5+NcWhu9c5AAVlEOgxrLZ8kF/HXD3awu6Ke8yckcvvcocSEBni7NBE5WhqqYPUjsOZJ99CKabfAtP+DQM+djLuzfCcPb3yYlfkrGWTjeXb7MUQsWedeAe/mm4i+8kp8gj13AqAcfQrIItIh7Cqt4c+LklmeVsLQhDAeu3gcE/tGe7ssETlanM2w+RVYdh/UlMCoC9zTtkX2+unnHqa9dXt5csuT/Dfjv0TaIB7KmUKfRZux9evcK+D9+tf4xsZ6rH3xHgVkEWnX6pucPL18J0+v2Im/w4e7ThvOlVP74Ovw3DymItLOZHwGS++AklTofSxc8ib0nOCx5mqbanl5x8u8mPQizU2N3LZ3IhMWZeAqXk3IiScS/9tbCOjf32Pti/cpIItIu2StZemOPdzz4Q7yy+o4fUwP7jx1GN3CA71dmogcLUXb3TNT7PwCovrBBf+GYad77AQ8p8vJ+zvf54nNT1BSV8LV1WOZt7gUm/kV/qNH0+3hhwme+D9rSkgnpIAsIu1OVkk1d3+wg5XpJQzpFsbr105h6oAYb5clIkdLRT588TfY+joERsCc++CYa8HX3yPNWWv5cveX/HPDP8ksz2R240B+tiIWnw0b8O3Vi/hHHibslFM0M0UXooAsIu1GTUMzTyzL5LlVWQT6OvjTacO5fGof/DScQqRrqCt3n4D39TPuE/COvRGm3wJBUR5rckfpDh7Z+AhrC9cysjmBFzePI+TzDTjCw4n9w+1EXnwxPv6eCebSfikgi4jXWWv5cFshf/sohaLKes6bkMhtpwwlLkyzU4h0Cc2NsOF5WPEA1JXB6Ath1h0Q2dtjTeZV5fH45sdZnL2Y7jac+enH0OOjTWCLibrmamKvuw5HRITH2pf2TQFZRLwqraiKPy9yL/Yxsmc4T146ngl9PNdbJCLtiLWQ/F/3fMZlOdD/BJj9V+g+xmNN7qvfx4JtC3gz7U0CnQ7uKZjEsA+ScZWvIez004n/zc349ezpsfalY1BAFhGvqKxvYv5nGbz0VQ5hgVrsQ6TLyVkNS++C3ZsgfgRc9i4MONFjJ+DVNtXy7x3/5sXkF6lvquXmveM59sNduAq/IujYqcTd8luCRo7wSNvS8Sggi8hR5XJZ3ttcwN8Xp1Ja08DFk3pz68lDiArRGD+RLqE4FT67G9IXQ3hPOOtp95AKH8+sQNfkauK9jPd4euvT7K0t4cqq0Zy2tByb8TV+w4cRf++9hB53nEfalo5LAVlEjpqkggr+vCiZjbvKGNc7khevOoZRiRrjJ9IlVBW5F/nY/G/wD4UT/wxTfgl+QR5pzlrL57mfM3/TfHIqc5hXN4grVkTjs3kzvr16EffPhwifOxfjo5OA5X8pIIuIx5XXNvLQ0jRe/TqX6GB/HjxvNOeOT8RHwylEOr+GKvjyMVjzBDibYNIvYMatEOK5qRs37tnIwxsfZlvJNiY1JvLXdaMIXLUZR3Q0sXfeSdQF52M0M4X8CAVkEfEYp8vy5vo8Hvwklcr6Zq46ti+/OWkwEUF+3i5NRDzN2QSbXobl/3AvDT3ibPfS0NGeW4EusyyT+Zvmszx/OQObY/hX0niilm7EBBQT8+tfE3311ThCQzzWvnQeCsgi4hEbd5Xxlw+S2ZZfwaR+0fzljBEM6x7u7bJExNOshdQP3eOMSzPdS0Nf/AYkem4FuqKaIp7a8hTv73yf2OZg/pk5gd6Lt2KbNhF10UXE/vJ6fGNjPda+dD4KyCLSpooq6rl/SSrvbS6gW3gA8y8ayxljemgFKpGuYNcadzDOWwuxQ9zBePApHpuZoqKhgueTnue1lNfwaXJyV/44Rn6Uii3/mrB584i7+Sb8+/TxSNvSuSkgi0ibqG9y8vzqbJ5clkmzy3LDzIH88oQBhAToMCPS6e1Jds9lnL4EQhPgtEdh3OXg8Mzvf4OzgTdS32DBtgVU11dyQ8kYpi/OxxZ+TbCmbJM2oL9cInJErLV8kryHv328g7x9dZwyIoE/zhtG75hgb5cmIp5WnuuemWLrGxAQ7h5jPPmX4O+Z3/9mVzOLdi7i6a1PU1RdyKUVwznz03DI3Ij/8GHE3/s3TdkmbUIBWUQOW1pRFX/9MJkvM0sZ3C2UV38+meMGapyfSKdXUwqrHoL1zwEGjr0Bpt0CwdEeac5lXXy661Oe2PwEOZU5nFLTnytWDsJ3y3b8NGWbeIACsogcsvLaRh75NJ3/fJ1LaIAvfzljBJdO7o2vQ3+cRDq1hmpY+5R72ramGhh7CZzwB4hI9Ehz1lq+2v0V8zfNJ2VfCsfWJfKXr4cRtGY7jpgYYu+4g6gLL9CUbdLmFJBF5KA1O128vi6Xf36aTmVdE5dO7sMtswdrFTyRzq65ETa+BCsfcE/ZNvQ093CKuCEea3JryVbmb5rP+qL1jG6I57lNIwlfsRWf0FBifvMboi+/DJ8QTdkmnqGALCIH5aude/nrBztILapiSv9o/ny6pm0T6fRcLkh6F5bdC2U50GcaXPQ69DrGY01mlGXw2ObHWJ63nP6NkTy1fTSxX2zD+O4j+uc/J+Zn1+CIjPRY+yKggCwiPyFvXy33fZzC4qQiekYG8fSl4zllZIKmbRPpzKyFzM/h87uhaDt0GwmXvgMDT/LYlG15VXk8teUpPsr6iG5NwTycNoZeS5Owzm1EXXA+Mddfj198vEfaFtmfArKIHFBtYzNPL9/Jv1Zm4TCG384ezLUz+hPo5/B2aSLiSfkb3HMZ56yCyD5wzrMw8jzw0AlwJbUl/Gvbv3g3411CGn24J3s0Q5akYms2EX7GGcTe8Gv8e/XySNsiP0QBWUS+x+WyfLBtN/9YnEphRT1nju3B7XOH0j0iyNuliYgnlaTDF3+FlA8gOBbmPgATrgZfz5xjUNFQwUvJL/GfHf/BNDZxW+4Ixi7ZiS3fSOjsk4i76SYCBg3ySNsiP0UBWUS+tXHXPv76YQpb88oZ2TOcxy8ex8S+npm2SUTaifJcWH4/bH0N/ILds1JM/TUEhHmkubrmOl5NeZUXkl6gtr6KG3aPYNonBdjiTe5FPn7zG4JGj/ZI2yIHSwFZRMjbV8s/lqTy0bZCuoUH8ND5YzhnXE98fDTOWKTTqiqClQ+5Z6cwPjD5evdcxqFxHmmu0dnIuxnvsmDbAkprS7imeBhzPtsHuVsJGDOa+AceJGTKFI+0LXKoFJBFurCq+iaeWr6T51dn42PgphMHcf3x/Qn216FBpNOq3QdfPgpfLwBnI4y/HGbc6rG5jJtcTXyw8wOe2foMhdW7Oa90AOctD8AnI4mAQQOJe/IJQmfN0om/0q7or6BIF+R0Wd5cn8fDn6axt7qRc8b15NZThmicsUhn1lAFa56CNU+4r486H064HWIGeKQ5p8vJx9kf8/TWp8mrzOX0sn5cvKovvjvS8UtMJO6B+wk/9VSMQyf+SvujgCzSxazKKOFvH6WQWlTFMX2jeP7KYxjTK9LbZYmIpzTVuZeEXv0I1Ja6F/mYeQd0G+6R5r5ZFvqpLU+RVZHFyWWJ/P3L/vhvz8A3IYHYu+8m8pyztfqdtGsKyCJdRGZxNfd9nMIXqcX0ig7iqUvHM1fzGYt0Xs2NsPnfsPJBqCqE/jNh1l2QOMEjzVlrWZ63nCe3PElaWRrHV3Tn7jX9CdycjiMultg77iDygvPxCQjwSPsibUkBWaSTK6tp5NHP0vnP17kE+zn4w9yhXHlsX81nLNJZuZyw7S1Y/nco3wW9JrvnMu433SPNWWv5avdXPLH5CZJKk5ha2Y0X1w0kZH0qjqgoYn7/e6IuvgifIA3hko5DAVmkk2psdvHKmhwe+zyD6oZmLp7Um/+bPZjYUPXeiHRK1kLKIlh2H5SkQsJouORtGDTbY6vfrS9azxObn2BT8SYmVMXw/IbBhK3dgU9EBDG33EL0pZfgExLikbZFPEkBWaSTsdaydMce/v5xCjmltcwYHMedpw5jcDfPzGkqIl72zbLQX9wDhVsgdjCc/xIMO9Njq99tLdnK45sf5+vCrxlVHcWCTUOI/DIZn9Aaom+8gegrr8QRGuqRtkWOBgVkkU5kU24Zf/84hfU5ZQyMD+XFq49h5pB4b5clIp5gLWQtc/cY56+HiN5w5lMw+kJweObP+47SHTy55UlW5q9kaE04T20ZQuzqFHwCa4i6/hfEXH01jogIj7QtcjQpIIt0Ajl7a3jgk1Q+3l5EbGgAfzt7JBdO7IWvwzO9RyLiZdkr3cE4dw2E94TTHoGxl3lsWejUfak8s/UZPs/9nH61ITy+bQjdVqZi/GqJuvoqYn7+c3yjojzStog3KCCLdGD7ahp57PMMXv16F74+Ptx84iCundGf0AD9aot0SjmrYdnfYddqCOsO8x6C8VeAr2fOLUjdl8rTW57mi7wv6FsTzKM7htJjeQrGJ4PISy8h9tpr8Y3zzMp7It6kv6IiHVB9k5PnV2fzzPKd1DQ2c+Exvfm/kwYRHx7o7dJExBNy18Kyv7l7jkO7wSn3w4SrwM8zv/MppSk8s/WZ74Jx8lB6rEgFk0bk+ecT+4tf4JeQ4JG2RdoDBWSRDsTpsry3uYB/Lk2jsKKek4bFc9spQxmkE/BEOqe89bD8Ptj5BYTEwZz7YOI14OeZKdNaB+N+1cE8mjyEHitTMSaNyAvOJ+baa/Hr3t0jbYu0JwrIIh3EyvQS/r44lZTCSsYkRvDIhWOZ0j/G22WJiCcUbHQPpcj8FIJjYPZf4Zifg79npkxLKU3h6a1PsyxvGf1qgpm/fTDdV6W5h1JceBEx1/5cPcbSpSggi7RzO3ZX8vfFKazK2Euv6CAev3gcp47qjo+PVsAT6XR2b3Ev8JG+BIKi4MQ/w6TrIMAzU6a1DsYDqoN5bNsgElanYxyZRF58CTE//xl+3bp5pG2R9kwBWaSd2l1ex0NL03hvcwERQX7cddpwLpvSmwBfrYAn0ukUbYfl/4DUDyEwAmbdCZN+AYHhHmluR+kOnt76NMvzljOgqiUYf5mO8c0i8tJLiPnZz/HrpikipetSQBZpZ8pqGnlqeSYvr9kFwHUz+vOrEwYSEeTn5cpEpM3t3gwrHoS0jyAgAk74I0y53h2SPaB1MB5YGczj2wbS7ct0jH82UZddRvTPrsEvXsFYRAFZpJ2oaWjmxS+z+deKLGoamzlnfCK/OWkQiVHB3i5NRNpa/gZY8QBkfOIOw8ff7g7GQZ6ZS3hbyTae3fYsy/OXM6gymCe2DCB+TQbGP4eoK68k5mfX4Bsb65G2RToiBWQRL2tsdvHG+lwe+zyTvdUNnDy8G7+bM0RLQ4t0RrvWwMoH3LNSBEW1DKW4zmM9xhuKNrBg2wLWFK5hWHkIj2/rT7evMjCBTe4FPq65Bt8Ynewrsj8FZBEvcbksi7bu5p+fppG3r45J/aL51+UTmNBHq1GJdCrWuhf4WHE/5KyC4Fg46S9wzM8goO3/I2yt5avdX7Fg2wI2FW9iXGk4z2zpR/S6DExwE9E//xnRV1+Nb3R0m7ct0lkoIIscZdZalqeVcP+SVFKLqhjePZyXrh7J8YPjMEYzU4h0GtZC1jL3GOPcr9wLfMy5z73Ahwema3NZF8vzlrNg2wKSS5M5tjiS5zb2JnxLFj7hzUT/6ldEXX6ZloQWOQgKyCJH0YacfTywJI11OfvoHR3M/IvGcvroHpqyTaQzsRYyPnUPpchfD2E9YO4D7iWhPbDAh9Pl5NNdn7Jg+wIy9qVzUmEMt67vSfCOXThiLNG/vYWoiy/GEeqZqeJEOiMFZJGjILWokoc+SeOzlGLiwgK456yRXDixF/6+Pt4uTUTairWQttg9lKJwC0T0glMfhnGXgW9AmzfX5Grio6yPeH778+yqyOa0/HjuWptAYGYBvgkJxNxxB5HnnYtPkGdW3RPpzBSQRTwob18tj3yWznubCwgN8OXWOUO4+ri+BPvrV0+k03A5IeUDWPkQ7NkOUX3hjMdh9EXg69/mzTU4G3g/832e3/48RVUFnJfbnb99GYdfbiF+fXoTe+89RJxxBsa/7dsW6Sr0V1rEAwor6nj8i0zeWp+Hw8dw3fT+/PKEAUQG6w+WSKfR3Ajb34LVj0BpJkQPgLOegVHng6Pt/7zWNtXybsa7vJT0Evuq9nBpTk9OWR2FozCfgEEDiXnoIcJPmYPx1Z92kSOl3yKRNlRcVc9Ty3by2rpcrLVcMrk3v545kG7hgd4uTUTaSmMtbHoFvnocKvMhYRSc9yIMPxN82n6ly/L6cl5PfZ3XUl+jtrqMq3f2YuaqcHz25hI4ciSxd/yZ0FmzMD4asiXSVhSQRdrAvppG/rVyJy9/lUOT03L+hERumDVQi3yIdCZ15bD+WVj7NNSWQu9j4fT5MPBE8MAMNIXVhbyy4xXezXgXR2Ut12f24ZjVDZiKHIInTiTmH9cTctyxmv1GxAMUkEWOQEVdE8+vyuL51dnUNjk5a2xPbj5xEH1j234KJxHxkupiWPMkrH8eGqtg0Mkw7RboM9Ujze0s38kLSS/wcdbHxFRYbk9LZNjqfKjPIvT444m57lqCJ0zwSNsi4qaALHIYqhuaeenLbBaszKKyvplTR3XnNycNYpBWvxPpPMp2wVePwaZ/g6sJhp8F0/4Puo/2SHNbirfwfNLzLM9bzqBSf+5P7kGvtbvA7CLi1FOJ/tk1BA4e7JG2ReT7FJBFDkFdo5N/r83hmRVZ7Ktp5KRh8fzf7MGM6OGZZWJFxAuKU90n3m1/G4wPjL0YjvsNxAxo86astawqWMULSS+wsWgDE4tCeHprT2I278IEFxF12aVEX3klfj16tHnbIvLDPBqQjTGnAPMBB/CctfYf+z1+KXBby81q4JfW2q2erEnkcNQ3OXlzfR5PLMukpKqB6YNi+e3JQxjbK9LbpYlIW8nf4A7GqR+CXzBMvh6m/hoierZ5U82uZj7J+YQXkl4gY18aJ+VG8sKGBELTC3BEOYi66UaiL7kER2Rkm7ctIj/NYwHZGOMAngRmA/nAemPMImvtjlabZQPHW2vLjDFzgQXAZE/VJHKo6pucvL4ul2dW7GRPZQOT+kXz5CXjmdQv2tuliUhbcLkgYyl8Od+9HHRgJBx/G0z6BYTEtHlzdc11LMxcyMvJL7OnPJ9zs2L509fR+OeX4JeYSPRddxJ5zjla3EPEyzzZgzwJyLTWZgEYY94AzgS+DcjW2q9abb8WSPRgPSIHrb7JyWtfu4NxcVUDk/pG8/AFYzl2QIzOGBfpDJobYNtb7qna9qa5V72b83cYfzkEtP25BHvr9vJG6hu8mfYmDZVlXJGewAlrQnGU7iFg2DBi/nkb4XM0h7FIe+HJ38SeQF6r2/n8eO/wz4DFB3rAGHMdcB1A796926o+kf9R1+jk1a938a+VWZRUNTC5XzTzLxrH1AFt35MkIl5QVw4bXoCv/wXVRdBtFJzzLIw4Gxx+bd5cVnkWr+x4hQ92fkB4WSO/SuvJmLU1mJoCgqdMIeb+n2uqNpF2yJMB+UC/7faAGxozE3dAnnagx621C3APv2DixIkHfA2RI1Hb2Myra3P518os9lY3cOyAGB6/eBxT+isYi3QKFfnu+Ys3vgSN1dB/Jpz9tPtnG4dTay3ri9bzUvJLrCpYxdA9vtyX3I3eG/KAfMLnzCH66qsJGjWyTdsVkbbjyYCcD/RqdTsR2L3/RsaY0cBzwFxrbakH6xH5H7WNzfx7zS4WrMyitKaRaQNjufmk8RzTV2OMRTqFoiT3VG1J74K1MPJcOPZGj0zV1uRqYmnOUl5OfpnUvTs4YVcoC7bEE5m6G5/QUiKvuJLoyy7Fr2fbn/QnIm3LkwF5PTDIGNMPKAAuAi5pvYExpjfwX+Bya226B2sR+Z6ahmZeWbOLZ1e5p2ubPiiW35w0iAl9FIxFOjxrIXuF+8S7nV+AXwhMug6m/BIi236YXlVjFe+mv8t/Uv5DeXkR52ZG88d1kQQUluLXI4So228j8rzzcISGtnnbIuIZHgvI1tpmY8wNwCe4p3l7wVqbbIy5vuXxZ4A/ATHAUy3jr5qttRM9VZNIRV0T/16Tw/OrsymrbeL4wXHcdOIgJvSJ8nZpInKkmhsh+b/uVe+KtkFoNzjxTzDxGghq+9/xwupC/pPyH97NeBf/fdVcnZrApK8D8KkqIXD0aGJ+fwdhs2frxDuRDshY27GG9E6cONFu2LDB22VIB1NS1cALX2bz7zW7qG5oZtbQeG6cNZBxvRWMRTq8mlL3iXfrn4XqPRA7BI69AUZfCL4Bbd7c1pKtvLrjVZbuWkrvPS6u3dGNAeuLME4nYSedRPTVVxE0bpxOvBPpAIwxGw/UOav/1kqnVlBex7Mrs3h9XS6NThfzRnXnVycM0Mp3Ip1BcSqsfQq2vQnN9TDgRDjrKffPNg6nTc4mlu5ayqspr5JUso1jcwJ5bHs0ccmFmOB9RF50EdFXXI6/ZloS6RQUkKVTyiqp5unlO3lvcwEA54zvyfXHD6B/nMYAinRo1kLm57D2Sff4Yt9AGHMRTP4lxA9t8+b21e/j7bS3eTPtTarLijk3PYrfbwwnoKgM3/gQon57C1EXXIAjQv/pFulMFJClU0neXcFTy3fy8fZC/B0+XDalD9fO6E/PSK1KJdKhNdbCtjdg7TPuhT1CE2DWnTDhGo+seJe2L43/pPyHj7M+JqakgWtTuzF6vS8+dXsJGjeO6NvuIuykkzB+bT93soh4nwKydAobcvbx5LJMlqWVEBbgyy+PH8A10/oRG9r24w9F5Ciq3A3rnoWNL0JdGXQfA2cvcC/s4evfpk05XU6W5S3j1ZRX2Vi0nkm7/HkoKZKE7YUYvxLC580j6rLLNH+xSBeggCwdlstlWZ5ezDMrsliXvY/oEH9+d/JgLp/al4gg9eqIdFjWQv4GWPcvSH4PXE4YeipM+RX0ObbNxxdXNlby3/T/8nrq6+zbV8CZaeHcuCmcoMIyHHEhRN10I1EXXIBvbGybtisi7ZcCsnQ4jc0u3t9SwLOrskjfU033iEDuOm04F0/qRbC/PtIiHVZTvXuatnULYPdm8A+DY66Fyb+A6H5t3lxGWQZvpL7BB1kfEF5cy5UpcYzf4IdPbRmBY0YT/ds7CD95Nsa/bXuqRaT9U5qQDqOyvonXv87lxS9zKKqsZ2hCGI9cOIbTRvfAz+Hj7fJE5HCV58GG52Hjy1C3zz1N27yH3CffBYS1aVNNziY+z/2c11NfZ3PRRibm+HJfShQ9t1eDbynhp5xC9GWXEjRmTJu2KyIdiwKytHtFFfW8+GU2r32dS1VDM8cOiOH+80YzY1Cs5hkV6aisheyV7t7itI/d9w2Z517xrt+MNh9GUVRTxDvp7/Buxrs0lJZwVmoYv9kcSmBxBY7YZqJ+9SsiL7wAv/j4Nm1XRDomBWRpt9KKqliwMotFWwtwuiynju7BddP7MypR0ymJdFgN1e7ZKNY9CyWpEBQNx93sXu2ujZeBttayrmgdb6S+wbLcLxiY7+Sm1FiGbDGYpnKCJ00i6g8XEXbiiRpGISLfo4As7Yq1lq+z9/GvFTtZllZCkJ+DSyf34WfT+tErOtjb5YnI4dqb6V7pbstr0FAJ3cfCWU/DiHPAL7BNm6pqrGLRzkW8mfYmu0uyODktkH9tCyU8dx8+oTVEXHAhURdfRMDAgW3aroh0HgrI0i40NrtYnFTI86uz2ZZfQUyIP7fMHszlU/oQFaKeHZEOydkEqR+5l4HOXgE+fu7p2SZdB4kT23wYRdq+NN5Ke4sPsj4guqiWi3dEMWGTL466GgKG9iLqLzcTcdqp+ISEtGm7ItL5KCCLV5XVNPLaulxeWZPDnsoG+seFcO9ZIzlvQiKBfg5vlycih6NsF2x6GTb9G2qKIaIXzLwTxl8BYd3atKnaplo+yfmEdzLeIbloK8dl+PJAchjd0qswfhWEzT2FqIsvJmjsWJ2zICIHTQFZvCJjTxUvfJnDfzfl09DsYvqgWP5x7miOHxSHj4/+iIl0OM5myFjq7i3O/MzdOzxoDky8GgaeBD5t+x/etH1pvJP+Dh9mfUhYURXnpIZx25YA/Cpr8UuMI+p3vyXinHPwjY5u03ZFpGtQQJajxlrLivQSXvgyh5XpJQT4+nDO+J5cfVw/Bndr26mcROQoqdwNm15xXyoL3EtAz7jV3Vsc2atNm/q2tzj9HVIKtzIt3cF9qWEkpDvBt5qwmScQef75hEybhvHR1I8icvgUkMXj6hqd/HdzPi9+mUNmcTXxYQH87uTBXDK5D9EaXyzS8bhcsPML9/LPaYvBOmHALJh7Pww+BRxtu5Jl6r7Ub3uLowuqOTcljNu3+eFbXY9f7xAib7mSyLPPwjcurk3bFZGuSwFZPCZvXy2vfp3LG+tzKa9tYlTPCB69cCzzRnXH31e9OyIdTuVu2PKqe2xx+S4IjoVjb4QJV0J0/zZtqraplsXZi3kn/R0yCrdzfKqDB1JCiMtyYvxqCJs9m8gLzid40iT1FotIm1NAljblcllWZ+7llTW7+CJ1DwAnD0/gZ9P7MbFPlE6SEelomhshfQls/rd7bLF1Qd/pcOKfYNjp4BvQZk1Za9lSsoWFmQtZkr2Ebnk1nJMSxh3bHDjqGvEf0IvI268j4swz8Y2KarN2RUT2p4AsbaKirol3Nubzn7W7yN5bQ0yIP786YSCXTO5Nj8ggb5cnIoeqJM09rnjrG1C7F8K6w7T/g7GXQsyANm2quLaYRTsX8X7m+5QWZTMrxZdHUgKJynNiAusJP2UekRecT9C4cfpPtogcFQrIckRSCit5Zc0uFm4uoK7Jyfjekdx84VjmjkogwFfTtIl0KA1VkPyeewhF/jrw8XWPKR5/BQw4ERxt9yej0dnI8rzlLMxcyNq81Yze6eTnaREM2mExzgYCRw0m4uqziDjtNBzh4W3WrojIwVBAlkPW2OxiSXIR/16Tw/qcMgL9fDhzTE8un9qHkT21DLRIh2It5H3tDsXJ70FTDcQOhtn3wJiLIDS+TZtL3ZfKwsyFfJj1IeF55cxLCeS6JF8CKptwxDqIuPIqIs46k8DBg9u0XRGRQ6GALActv6yWt9bn8fr6PEqqGugTE8wd84Zx/sREIoM1G4VIh1KRD9vegq2vw9508AuBkWfDuCug16Q2XeWuvL6cj7I/YmHmQvLzU5iR4sPfU4OJzXWCbwNhs2YRcfZZhE6fjvHVnyUR8T4dieRHNTldfJFazOvrclmRXgLAzCHxXD61jxb1EOloGqoh5QN3KM5eCVjoNQXOeNy9BHRA281H3uBsYEXeCj7M+pCvclcyfGcTF6aGMizF4tPcRODwnkTccQPhp52qE+5EpN1RQJYDyttXy5vr83hrQx7FVQ0khAdy46xBXDAxkcSoYG+XJyIHy+WEnFXuk+12LHIPoYjsA8ffBmMubNPp2VzWxebizXyw8wOW5nxCt5wqTk4L4JodhoAqF45oXyIuvZyIc84mcMiQNmtXRKStKSDLt5qcLj5P2cNr6/JYlVGCwd1bfPGk3pwwJA5fh+YaFekwStLdPcXb3nSvcBcQDqPOgzEXQ+8pbTqEIrsimw92fsDH2R/jzM1nZoqDR1L9CC92YgKchM6aScTpp7uHUPi17SIiIiKeoIAs5JbW8sb6XN7akM/e6ga6RwRy84mDuGBiL03RJtKR1JRC8n9hy2uwexMYBww8EU6+F4bMBb+2+30urStlSc4SPtz5Ibm52zkuBX6fEUz3HCcYF8FTxhPxmzMIO3k2jtDQNmtXRORoUEDuomobm1m8vYi3N+axNmsfPgZmDe3GJZN7cfzgeBwaWyzSMTRUQepHsP0dyFoGrmZIGAVz7oOR50FYtzZrqraplmV5y/g4+2M2ZK9mXHozF6UHMyjdhXFZAoYlEnHraYSfdip+3dquXRGRo00BuQux1rJhVxnvbMjno+2FVDc00ycmmN/OHsx5ExPpHqHeYpEOobkBMj6F7W+7V7lrroeI3jD1Bhh1PiSMbLOm6pvrWVWwiiXZS/gqZwWDM+uYlRHA9akufBtc+PYII+JnFxN++mmamk1EOg0F5C6gsKKO/24q4J2N+WTvrSHY38Gpo7pz/sReHNNXyz+LdAgup3vmie3vuGeiaKiA4FgYd7k7FCceAz5tc55Ak7OJNYVrWJy9mBXZn9M/s4aZ6f5ckebEv86FT4Qf4WecSsQZZxA0YQKmjdoVEWkvFJA7qfomJ5/u2MPbG/NZnVGCy8LkftH86oQBzBvVnZAA/dOLtHvWQv4GSHoHkv4LNcXgHwbDTodR50K/E9psdbtmVzMb9mxgSfYSPs9eSq+MCo5P8+PCdEtAjQufMD/C5pxC+Ly5hEydqpPtRKRTU0rqRFwuy8bcMt7bXMCHW3dTWd9Mz8ggbpg5kHMnJNInJsTbJYrIT7EWCjbCjoWw430ozwVHAAw+2d1TPOjkNjvZ7ptp2ZZkL+HT7E+Iz9zHjFQf5qf7EFTlwgQ7CDvxRMLnnkLItGn4+GtBIBHpGhSQO4GMPVW8t7mA97fspqC8jiA/B3NGdOO8Cb04dkCMFvMQae9cLijY4A7EO96Hijzw8YMBM+H422HYaRDYNsu4f9NT/Nmuz/gi5zNiMvcyLc3wULqDkAonJsiP0BNOIHzuXEJnzMAnMLBN2hUR6UgUkDuooop6Fm0tYOHm3eworMThY5g2MJbfzRnMycMTNIRCpL1zuSB/3XehuLIAHP4wYBbM/KN7WragtllhrtHZyNrCtXy26zNWZn9BYnoZx2Y6eDDDEFzlxAQEEDpjBuHz5hJ6/PH4BGsxIBHp2pSiOpDK+iaWbC9i4ZYC1mSVYi2M6RXJn08fzmmjexAXFuDtEkXkx7hckLcWkhdCyiKoKnQPnxh4Ipz4ZxhySpv1FNc11/FVwVd8mvspa3YuZ2B6FcdlODg30+Jf58IEBxJ2wgmEnTyb0OnT8QnRECwRkW8oILdztY3NLEst4cNtu/k8tZjGZhd9Y4K5adYgzhrXk36x+qMm0q411btnn0j9ENIWu0+08w2EgSfB8LNg8BwIDG+TpiobK1mdv5rPcj9j085VDE+t5bgMXy7NcuLb6MInMpywebMImz2bkKlT8QnQf6pFRA5EAbkdqmt0sjytmA+3F/JFSjF1TU5iQ/25ZFJvzhrXkzGJEZqaTaQ9qyuD9KWQ9hFkfAZNNe7ZJwbNhqGnukNxQFibNJVflc+K/BUsy1tGdvoGxqY3cWyWLz/LbsLHafHtFknYBScTdtJJBE+cgPHVYV9E5KfoSNlO1Dc5WZ5WwkfbC/k8ZQ+1jU5iQvw5d0JPTh3Vg0n9orW6nUh7Vp4HaR+7e4pzvgTrhNAEGHMhDDkV+k0H3yPvsXVZF8l7k1mWt4wVuctwpmQwMcPFxdn+9ChsAMCvT3fCr5lN2OzZBI4cqXmKRUQOkQKyF9U3OVmZ7g7Fn+3YQ02jk+gQf84a15PTRnVnUr9ofB36wybSLlkLRdvdwyZSP4Sibe77Y4fAcTfD0NOgx7g2Wbyjvrmerwu/ZlneMtZkLaNHyl4mZsLt2Q5CK53g40Pw+FGEXjaT0JkzCejf74jbFBHpyhSQj7LK+iaWpRazNHkPy9OKqWl0Ehnsxxlje3DqqB5M6a9QLNJuNVRB1grI+MS91HNVIWCg1ySY/Vd3T3HswDZpqrC6kFUFq1hdsJrU1C8ZmVbP5J0+nJvjwrfZhQkNIWzGDEJnziR0+nQckZFt0q6IiCggHxXFlfUs3bGHpTv2sGbnXpqcltjQAM4Y25NTRiZw7IAY/BSKRdqnvZmQsdQdinO+BFcTBIS75ygedLL7Ehp/xM00OhvZVLyJ1fmrWbNrFX47MhmbZTkjx5dfFjUB4NurJ+GXunuJgydM0Gp2IiIeooDsIVkl1SzdsYdPkovYnFsOQJ+YYK4+rh9zRnRjbK8ojSkWaY+aGyBntbuHOOMT2Jflvj92CEy5HgbNgd5TwHHk4XR39W5WF6xmVcEqsnasYWh6HeOy4U+7wL/RBb6+BE8YT+hl0wg94QT8BwzQCboiIkeBAnIbaXa62JxXzrLUYj7dsYeM4moARvYM55bZg5kzIoHB3UL1x02kvbEW9qbDzi/cl5wv3bNO+AZCvxkw5Vfu2Sei+h5xUw3OBjbt2cTqgtV8nb2S4O1ZjM2ynJfjIL60GQBHzx6EnTuD0OnTCZ40GUeopnIUETnaFJCPQFlNIyvSS/gitZiVGSWU1zbh8DEc0zeKSyYPZ/bwbiRGaUUqkXanZi9kLYedy9yhuGq3+/6YgTD2Encg7jsd/I/s99fpcpJalsra3WtZW7CGfds3MiSrkbE5cEqexbfZQkAAIZMmETp9OiHTp+Hft6/+Iy0i4mUKyIfAWktKYRXL0or5IrWYzblluCzEhPgza2g8s4bGM31QHBFBGhco0q40N0DuWshqCcSFW933B0ZC/+Pdyzv3nwlRfY6oGWst+VX5rClcw9rda9iVvJY+GZWMyrFcn2cIrnUB4Ne/H2GXziBk+nSCJ07AJzDwCN+giIi0JQXkg7Bx1z7e2VjA8rRiCivqAffQiRtmDmTm0HjGJEbio/HEIu2HsxkKt7hXsMtZ5Q7HTbXg4wuJk2Dmne5Q3GMs+DiOqKm9dXvZULSBtYVrSUldTeyOQkbuspy3y4eoSicAPgnxhM05jpCpUwiePAW/bkd+Up+IiHiOAvJB2LirjEVbCpg2KJbfnDSIE4bE0y1cPT4i7YazGYq2uk+uy14FuWug0X0eAHHDYNxl7kDcd9oRr2BXXFvMhqINbNizgbSMtYQk72J4nmXGLsOFpe4eYiLCCTt2KiFTphIyZTJ+ffpo2ISISAdirLXeruGQTJw40W7YsOGotlnT0IyvwxDge2Q9TSLSRlxO9yIdOau+C8QNle7HYge7xw/3neb+GRp3RE0VVheyYc8GNhStJytlLREpBQzLs4zIN3Tb5w7ENiiQkIkTCZ16LCFTpxAwZIhWrxMR6QCMMRuttRP3v189yAfBsTOdurR0zLix6gkS8YbGWti9yR2Ec7+GvHXQUOF+LGYgjDznu1AclnDYzVhryanMYUvxFjYUrSc/aS0xqXsYlmc5OQ+iq9wdCjY8lNCJkwg55hiCJ04kcNhQjK8OpyIinYWO6Adh4xtPEP3WMgBcEaEEjh1DxITJBI8bS+DIkfgEBXm5QpFOprrYPW4472t3KC7cCi73NGjEDYORZ0Of49yBOLzHYTdT21RLcmkyW4q3kJy3gaptW+iZU82gAsuZuyGstuUbttgowqZP+TYQ+w8YoB5iEZFOTAH5IJRdcQqv9y7Ab0cWg/JrGLz9S3qu+BIA6/DBDOpH5MQphIwfT9C4cfh17+7likU6EJcTStIgf/13gfibxTkcAdBzAhx7I/SeConHQHD0YTVjraWopogtJVvYsmczuanrcCTvZGC+k8G7LccWg883I876JBI+ZyIhE48h+JiJ+PXqpW+ORES6EI1BPgR1zXXsKN3B1pKtpGWtp2bLFrrnVDA4HwbttgS0dHA5YyMJGj2aiDETCBo1ksCRI3GEh3ulZpF2xVqoLICCjS2XTbB783cn1AXHQK8p7pXqek+B7mPAN+CwmqpoqCC5NJkdpTtIz91MVdJW4rLKGFRgGbwbwlt6h13BgQSOHkX4+IkEjR1L0OjROCIj2+gNi4hIe/ZDY5AVkI+AtZbdNbvZWryV7UVb2LPta/ySsxiU72RAoSWh/Lttm3vGEzJqNBFjJxA0ciSBw4fjE6xFRKSTq69wh+BvwnDBRqgucj/m8IeEUe4e4m8uMQPhMHpqa5tqSdmXQtLeJNLzt1C1fSuhWXvoX2jpX2TpXvbdtrZPTyLGH0PwuHEEjR1LwIABGIdOwBUR6YoUkI+S+uZ6UvalkLw3mczcLVRt30JIZiH9Cy0DCi2xVe7trDE4+3QnZPQYIsdMIHDoUAKGDMERGurdNyByuGr2uscKF22Dwm3un6WZ3z0eM+j7YThh5GH1Dlc3VpNelk5aWRpp+Vuo2L6FwMwC+hW6GFBk6bHvu22d3WIIGTmKsNHjCBw5gqARI9Q7LCIi31JAPhIpH8CORdBthPuPereRENrtoHu6vund2lG6g51ZG6ndvo2wTHfv1sBCS3jdd9s2JcTgP3QwUaPGEzxsOIFDh+LbvbvGP0r7YS1U5LlDcOtA/M1yzQARvaH7aOg+FhInQI/xEBR5iM1YCmsKSduXRmppCoUZW6lPTSEkt5Q+JZY+e77/LY0zLoqgkSOJGDOewBEjCRwxHN/owxuvLCIiXYMC8pFY/xysetg9dvIbwTHuwNxtZMvPEe6z6/0ObgGRmqYaUkpTSN6bRN7OrdSm7sA/aze99zjdf/jL4Jtz5JtDArCD+hExfBQRI8YSMHgQ/v364wgNafv3KtJaXTmUpELxDihOcV+KtkN9uftx4+OedzhhtDsQJ4x2D5s4xBPpappqyCrPIrM8k527kynbsQWbkU23wjp6F1v6lEBQo3tba8DZsxtBQ4YSMXw0QSNHEDhiBL6xsW361kVEpPNTQG4LtfvcQWFPMuxJavm5A5pbuoCNj/tr5PhhEDfEHRzihrjHVfr99FRwTc4msiuzSS9LZ2dhMmXJW3BlZBGbX0WfPZbeJRDY9N32jXERmH69CRs8jMghowgYOICAAQN0QqAcusbaliCc8v0w3LpX2D/U/dmOH94Shse4/2Pof/Bj6asbq9lZsZOs8ixy83dQnp6EM3sXYQXl9CyFnqWW+IrvtncGB2AG9iNixBhCWr5RCRg4UOP3RUSkTSgge4rLCWU53wXmoiQoSXHfZ1uWncVAZO/vh+bYIRA3GIKifrKJffX7yCjLIK0khcL0zdRnZuLYtZv44gZ67rUkloJ/83fbN0aHYvsmEjJoKFFDRhLUtx/+ffq4h2po7tauy+VyfwtSmum+7M2A0gz39fI8oOVY4Ahwf0bjh38XiOOHQUTiQQ0rclkXRTVF7KrcRW55DntydlC1Mx1nzi7Cd1fSsxQS91oia797jtPPgat3dwIHDCRy6CiChg4jcOgQDS8SERGPUkA+2prqYd9O9/yue9O/+7k3A5wN320XHAvR/SC6v/sS1ep6cPQPBhJrLSV1JWRVZJFVmsmerO3UZqRjcvKJLqz5Nji37nF2+vnQmBCNT6+eBPcbSPTA4QT1G4B/3z74xscrPHcG1roX2SjfBfuyvwvAe1tCcXOrAe/+oe5vN2IGuv/j9k0Yju4HPj8+q8M3n79dlbvILcumOHsH1dmZOPPy8SssJW6fk+77LPHl4O/87nnNIQG4+vQgeMBgIoeMJHDgQAIGDsSvRw99/kRE5KhTQG4vXE53eClJh71pULoTyrLdYaYin2978QACIiC673eBObK3uxcvouXnD3y1XdFQQXZFNtllOynOTaM6OwNnbh6+BXuJ3dtIQpmlW9l+wcXfQUN8JHSPw79HT8J6DyCy7yACe/XGr0cPHDEx6slrLxproGyX+1uKshz356ksx31f+S5oatU1a3wgsg/EDnIP/4ltCcQxg9xLMv/If8DKGsrYXb2bgso8SvIzqMzdSUN+PraoGP+ScqLKnSSUuUOwr+u75zr9HTR1j8XRO5HQfgOJHDCUgD593cN/YmP1ORIRkXZDAbkjaKr/rudvX5b7UtZyvWwXWOf3tw+OaQnMvVqF517un2HdISQOHN8tlmitpbyhnNyqXHLLcyjelUpVVjrOXXn47d5LeGk9cZWWuHIIq/9+U83+Dupjw7AJcfj16E5Q90TCevYhvGdf/Lol4Bcfj09EhMLPkWqqd4/7rdwNFQXuIRGVu1t+Frjvq937/ef4h0JUX/clss9316P6uL+R8PX/3ubWWiobKymuLaakppiS4hwqC3KoKyqgfk8hpqgE/5IKosqdxFVYYqrAb7+PXmOIP83x0fj26klo/0FEDRhGQJ++7qE88fH6HIiISIeggNzROZuhqtA9vVZFPpTnun9W5LnHj1bkfb/nEADjDslh3SA0wd1jGJbgnqIuLKHlvm7uYR7+wdQ111FUU0RhdSFFJVmU52RQl78LZ0EhjuIyQvbWEFvhIq6C701N941mPx/qo4JxRkdg4mPw7daNoIQehMT1IKxbIsFxCTiio3FER+Pj7/+/L9BZWQt1ZVBT4h7+UFMM1SUtP4vd91e2hOL9wy9AYCSE94TwHhDR0/2foai+ENnX/bNlKE6Ts4l99fvcl8o9VBTnU1Oym9qSIuqLi3DtLcWntJzAslrCq5qJqoaoqu9/k/CN+sggmuOjcXRPICixN5F9BhHaux9+PXq4v1HQfN0iItIJeCUgG2NOAeYDDuA5a+0/9nvctDw+D6gFrrLWbvqx1+yyAfmnfBPCvgnQVYVQtce9alnVHvft6j3uMGZd//t830B3j3RwdMvP/S/RNAeGU4KLPa4GSuqqKN9bTO2eIhqKinCW7MWxtxz/smrCKhqJqoboKr5dfnt/DYEOGsIDaQ4PxkaGY6IjcURG4hcRiX9kFIERsQRFxRISFUdwVByOiAgcYWEYPz/P7sef0lTv3s/15e6fdWXuqdC+ud76/pq97v1dUwKuA+wI43D/ByY0zt3jH94TwnvSHJZAVUgUVYHhVFofqqqrqCkroa58Lw0VZTRWluOsrKC5vBwqqvCtqMG/so6gmmbC6yCsFoIbD1x+Y6AvjVEhuGIi8ImLJaBbd0K69yIysR9B3XrgGx+Pb0JC1/oPjIiIdFlHPSAbYxxAOjAbyAfWAxdba3e02mYecCPugDwZmG+tnfxjr6uAfIRcTndgqypyB+aqIqjbB7Wl7mnsvvez9Lv5bn+IcUBAGASGQ4D70uAfwl4/f0p8DPsaXdTUNlFb00hDdSPOmkZcVQ04qhvxrW4isLqJkFoXETUQVvf9sawH0uhnaAjypSnQgTPAF1eAL64AP2yAHwT6YwL8MUEBmAB/HAH+OAL88PHzwfgYfBwGh4/BxwEOY/HxsTh8wNcHHK4GfGwjOOuhuR7bVI9tqoXmBmxzHba5Dprr3UHXgBNotua7i8vQjA9OnyCcjkCcjkBcJgCnTwDNxo8mlwOX0+BqAlezCxqd0NCMaWjEp6EJn8YmHA3N+DY0E1jnIrgBQhr+d2jD/pr8fGgI9ac5PBhXRCgmKhK/6BgCYuIIju1GWHxPQuN64BcXh29cHD4hmjtbRETkGz8UkH0PtHEbmQRkWmuzWgp4AzgT2NFqmzOBV6w7pa81xkQaY7pbaws9WFfX5uP4bqjFwXA2u3tDa0vdPxuqoKES6iu+u95QBfWV314PqN5Dz8YaejbXQ1NLsGyqAywE4L60WtOhwUCZj4NK40ONy1DT7KCu2UFDk4PGJkNTkw+uRh9cTT6YRoNPoxPfRnA0GXzrDb7V4NcE/k0Q0OSeucP/B3qu92eBppbLj/um8O8YwK/l8n3NQHXL5cAa/QxN/j40+7uDvtPfFxsQDGEB2NAQmkJDqQ4Pxy88Ev/wSIIiYwiKjCU0uhtBETE4wsNwRERoPmAREREP8GRA7gnktbqdj7uX+Ke26Ql8LyAbY64DrgPo3bt3mxcqP8Lh6x4CEBp3ZK9jLTgb3UG5qc493VhTPTTXEeBsJsHlvuBqdvdyu5rdJyW2vu1qBox75gXj03Ldp+W2wWJosi7qrJM6ZwP1Dc3UNzbhclqanRany7qvN7twulxYpwtnsxPrtDibmqDJnapbn172zXVj3beMtWAMPhgcfv44/AJw+Pnh8AvA1y8Ah7/7p69/IL4t1wMCQwgKjcIvOASfoCBMQIBOYhMREWnHPBmQD5QA9h/PcTDbYK1dACwA9xCLIy9NjjpjwDfAfQmK9EwTgH/LJcIjLYiIiEhX4MmZ+fOBXq1uJwK7D2MbEREREZGjxpMBeT0wyBjTzxjjD1wELNpvm0XAFcZtClCh8cciIiIi4k0eG2JhrW02xtwAfIJ7mrcXrLXJxpjrWx5/BvgY9wwWmbinebvaU/WIiIiIiBwMT45Bxlr7Me4Q3Pq+Z1pdt8CvPVmDiIiIiMih8OQQCxERERGRDkcBWURERESkFQVkEREREZFWFJBFRERERFpRQBYRERERaUUBWURERESkFQVkEREREZFWFJBFRERERFpRQBYRERERaUUBWURERESkFeNe7bnjMMaUALu80HQssNcL7XZE2leHRvvr4GlfHTztq4OnfXXwtK8OnvbVofHW/upjrY3b/84OF5C9xRizwVo70dt1dATaV4dG++vgaV8dPO2rg6d9dfC0rw6e9tWhaW/7S0MsRERERERaUUAWEREREWlFAfngLfB2AR2I9tWh0f46eNpXB0/76uBpXx087auDp311aNrV/tIYZBERERGRVtSDLCIiIiLSigKyiIiIiEgrXTYgG2NOMcakGWMyjTG3H+DxKGPMe8aYbcaYdcaYkT/1XGNMtDHmU2NMRsvPqKP1fjzpcPeVMaaXMWaZMSbFGJNsjLm51XPuNsYUGGO2tFzmHc335ClH+LnKMcZsb9kfG1rdr8/V9z9XQ1p9brYYYyqNMb9peayzfq5eMMYUG2OSfuBxY4x5rGVfbjPGjG/1WFc7Xh3Wvuqix6sj+Vx1tePV4X6udLz638eHGmPWGGMajDG/2++x9nO8stZ2uQvgAHYC/QF/YCswfL9tHgT+3HJ9KPD5Tz0XeAC4veX67cD93n6vXt5X3YHxLdfDgPRW++pu4Hfefn/tZV+13M4BYg/wuvpc7bev9nudItwTvXfKz1XL+5oBjAeSfuDxecBiwABTgK9/aj93xs/VEe6rLnW8OpJ91fJYlzleHem+arWNjlfux+OBY4C/tX7/7e141VV7kCcBmdbaLGttI/AGcOZ+2wwHPgew1qYCfY0x3X7iuWcCL7dcfxk4y6Pv4ug47H1lrS201m5qub8KSAF6Hr3Sj7oj+Vz9GH2ufnhfnQjstNZ6Y3XNo8ZauxLY9yObnAm8Yt3WApHGmO50vePVYe+rLni8OpLP1Y/R5+qH95WOV+7Hi62164Gm/R5qV8errhqQewJ5rW7n878Hwq3AOQDGmElAHyDxJ57bzVpbCNDyM77NKz/6jmRffcsY0xcYB3zd6u4bWr6KeqGTfA13pPvKAkuNMRuNMde1eo4+Vz/wuQIuAl7f777O9rk6GD+0P7va8epg/ORnr4scrw7Gj+2rrnS8OhgHc0zT8erHtavjVVcNyOYA9+0/390/gChjzBbgRmAz0HyQz+1MjmRfuV/AmFDgXeA31trKlrufBgYAY4FC4J9tWrV3HOm+Os5aOx6YC/zaGDPDU4W2A23xufIHzgDebvWczvi5Ohg/tD+72vHqYPzoPulCx6uD8WP7qisdrw7GT32udLz6ae3qeOXrrYa9LB/o1ep2IrC79QYtB8arwT34HshuuQT/yHP3fPNVXctXK8WeKf+oOpJ9hTHGD/cfm1ettf9t9Zw931w3xjwLfOih+o+mI9pX1trdLT+LjTHv4f66aSX6XP3PvmoxF9jU+rPUST9XB+OH9qf/D9wPnfNzdTB+8LPXxY5XB+MH91UXO14djJ86pul49dN+bB8e9c9VV+1BXg8MMsb0a/lf3UXAotYbGGMiWx4D+DmwsuUP9o89dxFwZcv1K4H3Pfw+jobD3lctoeZ5IMVa+/B+z2k9Nuts4IBnu3YwR7KvQowxYS3bhAAn890+0efq+7+D37iY/b6u7KSfq4OxCLjCuE0BKlq+huxqx6uDccB91QWPVwfjh/ZVVzteHYwf+h38ho5XP619Ha88fRZge73gPuM0HfcZk3e03Hc9cH3L9alABpAK/BeI+rHnttwfg/ukooyWn9Hefp/e3FfANNxfj2wDtrRc5rU89m9ge8tji4Du3n6fXt5X/XGPud0KJOtz9ZO/g8FAKRCx32t21s/V67i/gm3C3cvys/32lQGebNmX24GJP7afO/nn6rD2VRc9Xh3uvuqKx6sj+R3U8er7+yqh5f5KoLzlenjLY+3meKWlpkVEREREWumqQyxERERERA5IAVlEREREpBUFZBERERGRVhSQRURERERaUUAWEREREWlFAVlEpJMxxpxtjLHGmKHerkVEpCNSQBYR6XwuBjbgnmhfREQOkeZBFhHpRIwxobgn2Z8NvG2tHeLlkkREOhz1IIuIdC5nAZ9Za7cBNcaY8V6uR0Skw1FAFhHpXC4G3mq5/lbLbREROQQaYiEi0kkYY2KAVCDRWttgjOkHrAD6WB3sRUQOmnqQRUQ6j/OAj621DQDW2mygCJjm1apERDoYX28XICIibeZiYLQxJqfVfTHAJcAqr1QkItIBaYiFiIiIiEgrGmIhIiIiItKKArKIiIiISCsKyCIiIiIirSggi4iIiIi0ooAsIiIiItKKArKIiMj/t1vHAgAAAACD/K33DqIoAhhBBgCACTOVqAFO5fFMAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ax = plot_ramsey_fringes(Δ_min=0.9, Δ_max=1.1, N=1001, η=1, label=\"η=1\")\n",
"plot_ramsey_fringes(Δ_min=0.9, Δ_max=1.1, N=1001, η=10, label=\"η=10\", ax=ax)\n",
"plot_ramsey_fringes(Δ_min=0.9, Δ_max=1.1, N=1001, η=100, label=\"η=100\", ax=ax)\n",
"plot_ramsey_fringes(Δ_min=0.9, Δ_max=1.1, N=1001, label=\"ideal\", ax=ax, func=pop_e_ideal_func);\n",
"ax.figure.suptitle(\"Probing around Δ=1\");\n",
"ax.figure.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "d27cce22",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T20:18:42.325371Z",
"start_time": "2021-12-15T20:18:42.212053Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGqCAYAAAAWf7K6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gk1ZW339tB6m6plfPkJM0wwwzDkIMBgwGTsw0Gg7ONcfZ6Wa+/3fU67HrXaR0wTphoMBlMNphgMjMww0RpclDuVmqpgzrU90epejQaSZ2qqqta9T4PDzMdqq7uXJ0659xzz09IkoSFhYWFhYWFhYWFhYwt3wOwsLCwsLCwsLCwMBKWg2xhYWFhYWFhYWExDstBtrCwsLCwsLCwsBiH5SBbWFhYWFhYWFhYjMNykC0sLCwsLCwsLCzGYTnIFhYWFhYWFhYWFuOwHGQLC4uCQgixWQhxuk73ul0I8X0Nrz8shFio1fUzGMf3hRA+IUTXFO9/QQjRPTbeaiGEJIRYPPberUKI/5fmfTSdTwsLC4t0sRxkCwsLTRFCPCuE+M9JXr9YCNElhHCoeT9JkpZLkvSSmtcEEELcIIR4Ve3rjrv+S0KIT49/TZKkUkmSdml1z3QQQswBvgEcIUlSwyTvO4GfAmePjdc//n1Jkj4vSdL3VBpL0vG2sLCw0BLLQbawsNCa24HrhBBiwuvXAfdIkhRL90JqO9MWaTEP8EuS1DPF+/WAC9is35AsLCwstMVykC0sLLTmUaAKOFV5QQhRCVwA3CmEOE4I8YYQYkAI0SmE+JUQomjcZyUhxBeFENuB7UKIXwshfjL+BkKIvwohvjr25z1CiLPG/vwfQoj7hRB3CiECY+UXx4z73tFCiPfG3ntACPGXybb4hRDLgFuBE8fKCAbGvV0phHhy7BpvCSEWjfveUiHE34QQfUKIViHEVZNNkBDiB2Pz86ux6/9q3M+ulCrcLoS4RQjx9NhnXhNCNAghfi6E6BdCbBNCrB53zSYhxENCiF4hxG4hxJen+gcSQpSPzVGvEGKvEOI7Qgjb2Dz+DWgau+ftE77XDLSO/XVACPH3Sa59SNmEEOJbY//OHUKIT0+SFZ50PoUQr4y9v2FsLB+Z6uexsLCwyBXLQbawsNAUSZJCwP3Ax8e9fBWwTZKkDUAc+BpQA5wInAncOOEylwDHA0cAdwBXCyFsAEKImrHv3DvFEC4C7gMqgMcBxfksAh5BznBXjX3/0il+hq3A54E3xsoIKsa9fTXwXaAS2AH8YOz6JcjO5Z+BurHP3SKEWD7J9f8V+Adw09j1b5riZ7kK+A7yXEWAN4B3x/7+IHKpA2Nz81dgAzBrbH6+KoQ4Z4rr/hIoBxYCpyH/W31CkqTngQ8DHWPjumHCuNsA5eepkCTpg1Ncn7FxnQt8HTgLWDx2r4lMOp+SJH1g7P1VY2P5y3T3srCwsMgFy0G2sLDQgzuAK4UQ7rG/f3zsNSRJWidJ0puSJMUkSdoD/JbDHaf/kiSpT5KkkCRJbwODyE4fwEeBlyRJ6p7i3q9KkvSUJElx4C5g1djrJwAO4BeSJEUlSXoYeDuLn+1hSZLeHisVuQc4auz1C4A9kiT9aexnexd4CLgii3soPDI2X2Fk5z4sSdKdYz/bXwAlg3wsUCtJ0n9KkjQ6Vsf8e+S5OgQhhB34CPAvkiQFxv4NfoJcAqM2VwF/kiRpsyRJQWRHeCJTzaeFhYWFblj1fBYWFpojSdKrQohe4GIhxNvIDtxlkNym/ylwDOBBtkvrJlxi/4S/3wFci5yhvRb4v2luP77zQhBwjdUyNwHtkiRJ09wnHSZev3Tsz/OA4yeUYziQnfRsGR8EhCb5+/h7N024tx05Sz2RGqAI2Dvutb3ImWe1aQLWjvv7ZPM91XxaWFhY6IblIFtYWOjFnciZ4xbguXEZ398A7wFXS5IUGKslnphllSb8/W5gkxBiFbAMuc45UzqBWUIIMc5JngPsnOLzE8eQiv3Ay5IkfSjNz2d6/VT33i1J0pI0PusDoshO9Zax1+YC7SqOR6ETmD3u73M0uIeFhYVFzlglFhYWFnpxJ3Lt6WcYK68YwwsMAcNCiKXAF1JdSJKkA8A7yNnYh8bqnDPlDeT655uEEA4hxMXAcdN8vhuYPf4AYQqeAJqFENcJIZxj/x07duBvquur1fP4bWBICPHPQgi3EMIuhFghhDh24gfHyjPuB34ghPAKIeYh1wnfrdJYxnM/8AkhxDIhhAf4twy/r+YcWVhYWEyJ5SBbWFjowlht6+tACfJhOYVvAtcAAeQ62XQPX90BHEmWJQuSJI0il3l8ChhALtV4Avnw22T8HbmVWZcQwpfG9QPA2ch1vx3IpQM/Aoqn+Mr/AVeMdaT4Rfo/yaT3jgMXItfv7kbOEv8B+SDeZHwJGAF2Aa8iHyy8LZcxTDGup4FfAC8iH8B7Y+ytqeZ8Iv8B3CHkjieTdgSxsLCwUANxaPmdhYWFhTkQQnwAOcs5X5KkhErXfAu4VZKkP6lxPYvpGcumbwKKM+mHbWFhYaE1VgbZwsLCdAhZve0rwB9ycY6FEKeN9RJ2CCGuB1YCz6g1TovDEUJcKoQoEnIv7B8Bf7WcYwsLC6NhOcgWFhamYizrOAA0Aj/P8XItyL2CB5HllK+QJKkzx2taTM/ngF7kw5Bx0qg5t7CwsNAbq8TCwsLCwsLCwsLCYhxWBtnCwsLCwsLCwsJiHJaDbGFhYWFhYWFhYTEOy0G2sLCwsLCwsLCwGIflIFtYWFhYWFhYWFiMw3KQLSwsLCwsLCwsLMZhOcgWFhYWFhYWFhYW47AcZAsLCwsLCwsLC4txWA6yhYWFhYWFhYWFxTgsB9nCwsLCwsLCwsJiHJaDbGFhYWFhYWFhYTEOy0G2sLCwsLCwsLCwGIcj3wPIlJqaGmn+/Pn5HoaFhYWFhYWFhYXJWbdunU+SpNqJr5vOQZ4/fz5r167N9zAsLCwsLCwsLCxMjhBi72SvWyUWFhYWFhYWFhYWFuOwHGQLCwsLCwsLCwuLcVgOsoWFhYWFhYWFhcU4LAfZwsLCwsLCwsLCYhyWg2xhYWFhYWFhYWExDstBtrCwsLCwsLCwsBiH5SBbWFhYWFhYWFhYjMNykC0sLCwsLCwsLCzGYTnIFhYWFhYWFhYWFuOwHGQLCwsLCwsLCwuLcVgOsoWFhYWFhYWFhcU4NHOQhRC3CSF6hBCbpnhfCCF+IYTYIYR4XwhxtFZjsbCwsLCwsLCwsEgXLTPItwPnTvP+h4ElY/99FviNhmOxsLCwsLCwsLCwSAuHVheWJOkVIcT8aT5yMXCnJEkS8KYQokII0ShJUqdWY7KwmAxJktgxsAOHzcGC8gWHvT8cidHaFSAWT7CgtoQ6rysPozQ/0USUNzvepMhexHENxyGEyPeQzEciAeEBGB2GyDCMjsBoQP5/PIqUiLOnb5C/+1spsTk5q2YxNRVlYC8CR/HYfy4oLgN3BbgrwenO909lSiLxCK+3v06Fq4Kjao+y1nOW7PWP0N4fotzjZHFdKcUO+yHvJ6QE2/q2UV5czqzSWXkapcVMRDMHOQ1mAfvH/f3A2GuHOchCiM8iZ5mZO3euLoMzAmu71vLHTX+kyFbEjUfdSEtVS76HVHBE41Fu/sfNPLf3OQAuWXwJ/3Hif2C32ekJhPnxs608ur6D0VgCACHgxIXV/MuHl3Hk7PJ8Dt1UDI8O87nnP8f7ve8DcNrs0/jp6T+lyF6U55EZiNEgDO6H/r0wsBcG9kGgC0Z6YMQHwz0Q9IGUmPISQzYb/9RQR2uxPK9vdwb5nx7f9IbeXiw7yyW14G2EskbwNsn/L5sNVQugYi7Ynar+uGbGF/Lx6Wc/zc7BnQBctOgivnfy97AJ61hPOkiSxHNbuvnZ39rY1hVIvl7hcXLt8fP44hmLcRfZGRod4ksvfIl3e95FIPjCqi/whaO+kMeRFy6vHHiFu7fcTXlxOV9a/SXmls0cX2sq8ukgTxZuS5N9UJKk3wG/AzjmmGMm/Uyh8U7XO3z2uc9S5a5iND7K9c9czz3n3cOiikX5HlpB8X/v/h/P7X2OL6z6AsFokDu23MEc7xyWey7jpj+/S3A0zpVrZnNGSx3FThvv7h3grjf3cvGvX+VfPryMT5+6wMocpcEP3voBm32b+d7J32MwMsiP1/6YW9bfwlfXfDXfQ9MXSYKRXujdBr2t0LNV/r+vTXaEx2Mvkh3WklrZQZ21Rv6zpxqKvVBcCkWlSEUl3LG2l3vWdhGa/wzDxXv4xpLP0x7q4b4D9/PBio9S0buab545lw8sLIdYCMJDciY61A+hAfnPw70Q6IDODfIYx5tjm0MeQ9UiqF4EtUuhfgXUHwFFJfrNnwGQJIlv/+PbdIx08JPTfsLWvq38YeMfWFq1lOuOuC7fwzM8o7EE//rIRh5Yd4AldaX8+4VH0FLvxT8yypPvd/KrF3fw9KZO/nD9sfzfxn/j/d73ufm4m9no28gtG25hfvl8Przgw/n+MQqK5/c+z9de+hqzSmcx6Bvk7a63uff8e2kqbcr30PJKPh3kA8CccX+fDXTkaSyGIhQL8Z1Xv8Ns72z+fP6fGYmO8JEnPsK/vfZv3HXeXVaWQiV2D+7mrq13cUXzFdx41I1IkkTHSAe3rv8twzu9LKiYxa8/djSL60qT3zl1SS03nDyfmx96nx88tZXBUJRvnmNl9qdjQ+8Gntj1BJ9b+TkuWXwJADsGdnDHlju4ovkKZntn53eAWhLogo73xv23/lBHuLgc6pZC89lQuQAq5smOaOU8KKkD2/S/65Ik8e+Pb+bOd/r50NFlvBnawdfXfJ0bVnwCgIGXh/i77UVq3Jfw8ecS/M/lc7nq2DnTXhOAeFQe++AB6NsFfTvBv1P+87435BIPAIScYa5fAQ0rYfYxsiPvKstuvkzAS/tf4o3ON/j28d/m7Pln86F5H6K1r5Vb1t/ChQsvpMJVke8hGpZoPMEX7l7HC9t6+NIHF/PlM5fgtB9c4xeuauLV7T6+fN97XP6nPxGte4GvHv1VPrbsY8QTcfYN7eN/3vkfzphzBi6HVeqmBoORQb77xndZUb2CP537JzpGOrj6iav5/pvf55azbsn38PJKPh3kx4GbhBD3AccDg1b9sczjOx6nY6SDP5z9B7xFXrxFXr625mv8v9f+Hy/tf4kPzv1gvodYENy26TaK7cXcdNRNAAghuHDOZ3luzwvUznqbv1z7Iyo8h5cAlLud/Pqao/mXhzfyqxd30Fjh4mPHz9N7+Kbhto23UVFcwSdXfDL52k1H3cSTu57knq338M/H/XMeR6ciiQT4WmHva7D3ddj7hpyRBRA2Oeu65EPQcKT859ql4G2Q63ay5A//2M2db+zl06csoMdzK1W9VVyz7Jrk+19e/WWe2/scJ67eQonjFP7lkY00Vbg5ZUnN9Be2O6FijvzfvBMPfU+S5PKP7k3QvRm6Nsr/3/r42AcE1C2TneXZx8H8k2Xnv0B2Wm7ffDtzvHO4svlKQLYbX13zVS5//HIe3fEoN6y4Ib8DNDD/79FNvLCth+9dvJzrTpw/6WdOWVLD/Z87gcse+TUiXsn58z4CgN1m52trvsYnn/0kj+54lI8u/aiOIy9c7tt2HwORAf5w9h9wOVwsLF/I51d9np+u+ynre9ZzVN1R+R5i3tDMQRZC3AucDtQIIQ4A/w44ASRJuhV4CjgP2AEEgU9oNRYzIUkS9267l2VVyziu4bjk6xcsvIBbN9zK3VvvthxkFQhGgzy751nOW3Ae1e5qAALhKP/vwQ6c5atIlL1FSfHUD3SbTfCDS1fQHQjz3ce3sGp2BStmWTXJE+kJ9vDi/hf51JGfwuP0JF+vL6nnjDln8OSuJ/n6mq/jNGN9qySBbzvsfAH2vCo7xaE++T1vI8w7CWYfC02rZadY5VKEdXv7+e9ntvHhFQ1c/4EyLnj0ZT614lMU24uTn5lTNofTZp/G03ue5OGrv8hVv32Lr9z3Hs989QPUeounufo0CCFnuCvnwdLzD74eGoD2dXBgLRx4G7Y8Bu/eKb9XPhcWfgAWnAYLPiAHBiZkz+Ae3u15l6+t+RoO28HHZ3NlM6vrVvPQ9oe4fvn1VtnVJDy07gD3vbOfG09fNKVzrGAr7kVy7STWez7fenALd3ziWIQQHNtwLC2VLZaDrBLRRJT7W+/n5KaTDznj9JGWj3Dbptu4c8udM9pB1myvXpKkqyVJapQkySlJ0mxJkv4oSdKtY84xkswXJUlaJEnSkZIkrdVqLGbina532Dm4k2uWXXOIkXXYHFy8+GLe6XqHzmEr0Z4rz+97nlAsxEWLLkq+9v0nttIxEOKm4z7CcDTA6x2vT3sNh93GT686isoSJ1+57z0isbjWwzYdf9v7NyQkLlx44WHvXbL4Evoj/bx84OU8jCxLIsOw7Sl44mvwfyvh18fCMzfLWdSWD8PFv4Yvvwdf3wpX3AYnfAHmnqC6cxwajfP1+9fTUObiR1es5K+75OztVS1XHfbZ8xeeT2+ol60D7/Gra45mOBLj5ofeR24gpCLuClh8Jpz+z3DtQ/CtPXDjW3Dej6FpFWx9Ah7+DPykBX51HDz7r3JgEY+pOw4NeWznY9iFfdL1fPmSy9kztId13evyMDJj0z4Q4t8e28RxC6r4xtmpS9Ke2f0MAsGXjr+KV9p6ueetfcn3Llp0EZv9m9k5sFPLIc8IXtj3Aj2hnkN2nQA8Tg/nLTiPl/e/TGA0MMW3Cx+rmNVgPL3naTwOD+fOP7yF9AULLgDgqd1P6T2sguPxnY8zu3Q2q+tWA/DOnj7+snY/n/3AIj6+6mzKisp4Zs8zKa9TVVLE/1yxip29I/z25V1aD9t0PLfnORZXLGZhxcLD3jup6STq3HU8uevJPIwsAwJd8Pbv4c6L4X8WwH1Xw4a/yHW35/8EvvI+fPV9uOQWWH0tVC3UvJzgd6/sYq8/yI+vXEWZy8mL+1/kqNqjaCg5PDN72uzTKHGW8OSuJ2mu9/LNs1t4YVsPz23p1nSM2GxyffVxn4GP3A3f2gWffRk+9D0onwVv/w5uPx/+dxE89GnY+KCchTYokiTxxK4nOKnpJGo9tYe9f/b8s3E73MmOOBYH+eGTW4klJH5y5Srstul/NyRJ4pk9z3BMwzF84ZTVnLqkhv9+ehs9gTAA5y08D7uw8/jOx6e9jkVqntn9DHWeOk6Zdcph752/8HxGE6M8v/f5PIzMGFgOsoFISAle2v8SJ886edIDCHPK5rCqdpXlIOfI8Ogw67rWcfb8sxFCkEhIfO+JLTSUufjymYtx2p2cNe8sXtz/IpF4JOX1Tmuu5fyVjfzqxR20D4R0+AnMQU+wh/d63uOc+edM+r7dZue0OafxRucbRBNRnUeXgsED8OZv4LZz4SdL4alvyq8d91n4+GPwz7vh6nvh2E/LpQY60j4Q4jcv7+D8lY2cuKiazuFOtvVt44w5Z0z6eZfDxZlzz+TF/S8ST8S54eT5tNR7+c+/biEc1XHXw2aHpqPg5C/DdY/IDvNVd0LLebDz7/DQp2Rn+e7LYf2fITyo39jSYOfATrpGujhz7pmTvu92uDm+4XheOfCK+tl5E/PaDh9Pbuzki2csZk6VJ+Xntw9sZ/fgbs6dfy5CCP7z4hVEYnF+9HQrADXuGo5tOJaX95to58mAhGNhXu94nTPmnDHpwf8ja45kjncOT+42eAJDQywH2UBs9m3GF/JN+aADOHPumbT1t9E9onH2p4B5q+stYlIsGTU/ur6d9w8M8s8fbsFTJNcVfnDOBxmJjrC+Z31a1/z2ectAgl++sF2rYZuO19pfQ0Katmb+5FknZzTPmjLih7d+B78/E362XC6dCA/B6TfDjW/CTWvhnB/AwtNlwY088aOntyFJ8C8fXgrAi/tfBOD0OadP+Z2Tmk5iaHSIrX1bcdpt/NuFR9A+EOK+t/dN+R3NKfbCERfDpb+Bb26HTz4HJ9wIvW3w6BfgfxfDvdfImeXRkfyNc4zXOl4D5DU7FafOPpX24XZ2D+3Wa1iGJpGQ+M+/bmFOlZvPfuDwXaTJeLX9VYDkc3BBTQmfPGUBD717gK2dQwCc3HQyOwflgMUiO97qfItQLDSlvyGE4Ky5Z7Guex3BaFDn0RkDy0E2EC/ufxG7sPOB2R+Y8jMnNsknyt/sfFOvYRUcr7e/jsfh4ajao4jGE/zkuTZWzS7n4lUHVZrW1K/BLuy81flWWtecVeHmmuPn8sC6A+zx5f9hbgTe7nqbKlcVSyqWTPmZ4xuOxyEcvNb+mo4jG0csAlselx2xnzTD0/8kv3bmv8FN6+DG12UHuW6ZIbowbO8O8PiGDj55ygJmV8rZuNc6XmN+2Xzml8+f8nsnNJ4AwBsdbwBw0qJqjltQxS0v7dQ3izwVNjvMPR7O/p5crvLpF+TsfMe7Y5nlxfDw52D3P+RuIXng1fZXWVyxeNIyFoVTZ50KwD8O/EOvYRmapzd10dod4J/OWYrLaU/9BeDtzrdZVL7okDKWL5y2iNJiB7/8u5yAOGnWSQApz4lYTM2L+1+kxFnCsQ3HTvmZE5pOIJaIsbZ7Zh4RsxxkA/FW11usqFlBefHU3RCaK5upclXxRucbOo6scJAkidc6XuO4huNw2p08vr6D9oEQXz2rGdu42rjSolJW1Kzgra70HGSAG89YhNMu+PnzbVoM3VRIksTbnW+nlJQuLSrlqLqjktk53eh8H574Ovy4Ge6/DtrXygfqPv8afOFVOPUbULNY3zGlwW9e3onbaeczp8rZuHgiznvd73FMwzHTfq/aXU1LZUsysBZC8PUPNdMTiBxyAMoQCCG3iDv3v+BrW+CGp2DlR6D1KbjjAvjlanj5f+WSF50IxUKs617HyU1TZ48BGksbWVS+yLLPyDbgl3/fzsLaEs4/sjGt70TjUd7teZfjG48/5PUKTxE3nDSfpzZ20doVYEnFEurcdfkLrAuAt7ve5tiGY6dVMz267miK7cXJwHqmYTnIBiEYDbLFt4Vj6qd/0NmEjeMbj+eNjjdITCM5azE5nSOdtA+3c0LTCSQSEre+vJOlDV5Obzn80M1xDcex2beZ4aQowvTUeV1cd8I8Ht/QwYH+mbklpbB3aC89oR6Oazwu5WePaziO1r7WtOc5a0aD8N49cgnFb0+F9ffIfYmvfUh2xM7+PjSs0HYMObC/L8hj6zu4+ri5VJXID7XtA9sJRAOsqV+T8vsnNp3Iez3vEYrJdfInLKzmxIXV/PblnUkpdcNhs8l9lC/8OXyjFS77vSyk8uL34Wcr4K5LYetfNe+Escm3iWgimtZ6Xl2/mvd73p/x9vn5rT1s6wrwxdMXpzyYp7ChdwOhWGjSef7UKQsoLXbwixe2I4TghKYTeKfrHaveOwt6gj3sD+xP6W+4HC6Orjt6xu5YWw6yQdjo20hMiqX1oDuh8QT6wn3sHrTq3DJlQ+8GAI6qO4oXtvWwvWeYL5y+aNIs5wmNJxCX4rzb827a17/hZFl6+q439qo2ZjPydtfbAIf08p6KVXWrkJB43/e+NoPpbYWnb4afLoXHboRIAM79EXxjG1z+B1h8FtjzqZmUHn98dTc2AZ/5wILka0pLsTV1qe3Gmvo1RBNRtvq3Jl/77GkL6QlEeHqTCVpHFnlg5VVw/V/hKxvgtG/J/7Z/uRZ+cRT846dyHbkGKHZjZc3KlJ9dXbeaQDTAjoEdmozFLPz25Z3MqXJz0VHpyxW/0/0OAjHptn9lSREfO2EuT2/qpH0gxKraVfRH+tkf2K/msGcE73bLz7RUDjLA8Y3Hs2NgB33hPq2HZTgsB9kgrOteh0Ck1ZT7qFr5M+/3auRQFDAbejfgsrtormzmj6/uYlaFe8rtvxU1K7AJGxt9G9O+/qwKN+cub+Det/cRHDVPf1e1eb/3fapcVcz1zk352ZU1KxEINvRsUG8AkgQ7XoC7LoNfHwfv/AEWf0jerv/iW3DC58Fdqd79NGYkEuPBdQe4cGUTjeXu5OvrutfRWNJIY2nqLewja44EDrUbpy2pZUFNCXe8vkf1MWtK5Xw449tyi72P3C3LXb/wXfjpMnjkC9CeflCbDut71rOgfEFaMtKra1cnvzNT2dIxxNq9/Vx/4vxDpKRTsbF3I4sqFlFWNLlU+bVjiqV/fmsvq2pXAQeDF4v0Wdu9Fo/Dc4g4yFQoPsnG3vSfg4WC5SAbhHXd61hatRRvkTflZ+eXz8fr9GqXcStgNvRsYHnNcvb5I7y5q49rjp+LYwoD7nF6WFyxOGPD8ImT5zMUjvHQu+1qDNmUbPJtYkXNirQUxUqLSllSuUSdB10sAu/dDb85Ce6+TJZD/uB3xoQ7/ihv1xvgsF2mPL6hg+FIjI+dcGhLuQ09G5K9vFNR7a5mVumsQ+yGzSb4+InzeHffAO8fGFBzyPpgd8CyC+Ws8o1vwdHXyQp+vz8DbvswtD6T86E+SZLY0LshmZhIxWzvbKpd1bzX815O9zUzd7+1l2KHjSvWzE77O5IksdG3MRnITcacKg9nLqvn3rf3M7tkASXOEstBzoJ13etYXbf6EDXIqTii+gjswj4j59lykA1AQkqw2b+ZlbWpt+9ArkM+svbIGRnR5UI4FmZb3zZW1a7i3rf24bAJrjxmegN+ZM2RbPRtzKjObc28So6cVc49b+6dkfVxI9ERdg3uYkVN+vW8R9UexYbeDcQTWXZUCPbBy/8j16U+9kUQNrjkVvjqRvjAP0Hp4TXmZkGSJO5+cy9LG7wcPbci+XpvsJeeUE9G87yyZuVhO09XrJlNSZGdO81eFlS3VBZu+cZWOOe/YHA/3PsR+M2Jcu15bDSry+4d2stAZCBtyV0hBKvrVs9IhwJgKBzl0ffauWhVExWeqQ+ATeTA8AEGIgMp1/P1J86nb2SUZzfLa3+mznO2BKNBdg7sTNvfcDvcNFc2z8iEnOUgG4C9Q3sZiY6wvHp52t9ZWbuS7QPbZ2x/wmzY2reVmBTjiKojefDdA5y9vJ467+GCLONZUbOCodGhjOrchBBcdewctnUF2NwxlOuwTccW/xYkJFZUp++4HVl7JMPRYfYGMnTShnvhb/8OPz8SXvyBLETx8cfg86/CUVfntV+xWrx/YJDNHUN87IR5h2Tkt/i3AHKGJ11W1q6kO9h9SP9Yr8vJRUc18dTGTkYiBVAW5CqHE2+UJb8v+z3YHHLt+f+tgtd/KdegZ4BSYjVdZnMiR1Qfwf7A/hkp0/voe+0ER+Ncd2JmAjqbfJsAUjpuJy+uZmFNCfe+vY9Vtato62+znoMZsK1vGxJSxnZjk29T9gkMk2I5yAYgqwddzcpk5tkiPZTDSd29NQwEo1xzXGoDnqzbzDB6vmhlE0UOGw+snXkHSBSHIpPM5rKqZQC09rWm94WhDvng3c+PhNf+D5rPgS+8Dh97QBbyMGEZxVT8Ze1+3E47l0w47LTFvwWBSM5dOij/JhPtxuVHzyY4GufpTQUkvGB3yof6Pv+q3KmkehE89x34+Ur5QF+ajnJrXytFtiIWlC9I/eExllXL/ybb+rZlNXQz89C6AxzRWMbK2RUZfe/93vdx2V0srpi+vaIQgsvXzOadPf3UFS0mISXYPmAJNKVLtoG1sjM4k7AcZAOwxb+FYnsxiyoWpf0dZXGPP5FuMT2t/a1UFFfwwuYIsyrcnLSoOuV3FlUsothenDQq6VLucXL2EfU8tqGDSGxmRd2bfZuZVTqLSlf6h+AWli/EYXOkdigGD8BfvypnA9/+Hay4DG56B664DerT34ExC6OxBE9t7OTs5fV4Xc5D3tvi38L88vl4nKnlexWaK5sRCNr6Du3VvWZeJfOqPTy0Tr/ewrohhNyp5IYnZAGS2cfIB/rSdJS39W9jSeWStOo1FZZWySqHM81B3tk7zIYDg1x29KzUH57A1r6tLK1amtY8X7J6FkLA9v3yYb60A2sLtvi3UOuupc5Tl/Z3jqiS/Y2Ztp4tB9kAbPFvoaWyJSMDXO2upsZdQ2u/ZRjSZVvfNhaWNfPqdj8Xrmo6RBhkKhw2B4srFrO9P/MMxZXHzGEgGOWFrT3ZDNe0tPW30VKZ+nT0eJx2J4srFk9tgId74Zl/gV+slvsXr75W3kK/5BaomVqpz+y83NbLQDDKJUcd7nBs8W/JKAsE8sHTuWVzD7MbQgguWz2bN3b5C7uH9+xj5F2GT/99Ekf58D7ckiSxrW9b0uFNlxp3DbXu2hnnUDz6Xjs2AReuSr+1G8jz3NbfllZXBZC7BZ24sJrnNkbwOr2Wg5wB2diN+eXzKbIVzbh5thzkPJOQEmzt25rcksuElsoW2vot1bZ0iCai7OjfgT3WRDwhcXEGvTmbK5uzmudTFtdQ5y3msfUzp5tFOBZmX2AfzVXNGX93adVSuT5u/MHG8CD8/Qdyn9u3bpW3zL+0Di74GVRmVuNoRh5d305VSRGnLKk55HV/yE9PqCej8gqF5srmSR90StbvsfUd2Q3WTMxec7ij/IvVcjvAeDT5se5gN4ORwYwdZJDXc6Y7T2YmkZB45L12Tl5cQ33Z9Gc7JtId7CYwGqC5Mn27cdnRs9nnD9HkWcS2/pkViGRLMBpk1+CujB1kh83B4srFMy4hZznIeaZjuIOR6EhWBrilqoWdAzuJjjPoFpOzZ3APo4lR9ndV0lLvZVnj5H02J6O5spm+cB++kC+je9ptgvOObOSl1l6GC+HwUxrsHNxJQkpk9KBTWFq1lL5wH72hXln17tWfy9m9V/5H3iK/8S24+NeyktoMIBCO8vyWbi5Y2XhYL1lFhCKbeW6pbOHA8IHDlAvnVHk4em4FT75vAtEQtVAc5U/9DaoXw5PfkPtmb34EJClZwpatg7x7cDeReETtURuSdfv6OdAf4tLVmZdXKAFbJuv53BUNFDtsxEINbO/fPuMOkGXDzoGdSEgZ7/DBwYTcTOrMZDnIeUZ50C2pzHybuKWyhWgiOuMK57NB2erc2V6ekbITHDTaE+s20+G8IxuJxBK8sLU74++aEWWOllRkt54BWtf+Dn65Bp7/d5h9LHz2ZbjqDqjN3Bk0M89v7SYSS0y626HYjVQHmiZD2cae7GDTeUc2sqVziD2+kYyva2rmHAefeAquuR8cLnjgBvj9B2nd9RyQXSDSXNVMXIqzZ3CPumM1KE9t7KTIYePs5Q0Zf1fZoctkPZcWOzi9pZb93ZWEYqHMO+DMQHLyN6paskoUmRnLQc4zyoJdVJ7+AT0F5UFnlVmkZsfADmw4SERquWBlatWx8SjGJJt5PmZeJXXeYp7aODOyctsHtuOyu5jjnZPxdxcHZJngXWtvBW+DrHp37YNy67YZyDObuqgvK2b1nMMPO+4Y2EF5cTk17ppJvjk9yUBkkjKLD4+pSj5lBulptRFC7oby+Vfhkt/AcA+7Nv+FWTjxDGTejUax6TNBclqSJJ7d1MUHltRQWpy5bHtbfxuzSmdRWlSa0ffOO7KR/gH5d2DnwM6M7zvTUOzzrNLMs/xKkDiTyiwsBznPbO/fTlNJU8aGAWBe2TyKbEVZHSCbaewa2IUzUcfShgrmVZdk9N1KVyV17rqsDINtrMzixRlSZtHW38biisXYbfb0v9S3C/5yLRX3XEVVQmLnkjPkbgPzT9ZuoAYnNBrn5bZezlneMOlh0h39O1hcsTgtpcKJNJQ0UOIsmdShmFXhZtWcCp7eWEDt3jLFZoejroEvrWNn1RwWhYNwy4lyW8FQf9qXmV82H7uwzwjH7f0Dg3QMhjl3RWbJB4W2/rasspofXFqHI1YPiBkxz7myc2AnCysWZmafx0jupM6ghJzlIOeZHQM7WFyZ+TYpyIXz88rnWSUWadDWv4OR4eqstv9AbveW7Tyfv7KR0ViCv28r/G4WOwd2pt+uMDwo96X99fGw4wU4419Z1LCGnfYE2Ga2aXpley/haIJzJlmvkiSxc2BnVuUVIHesWFi+kN2Duyd9/7wVDWxsH2Sfv4C7WaRBzO5gT2yYRSuvhaM/Lh8S/eUaWHsbpFHv6rQ7mVs2d0Y4bk9v6sJhE5y1LP3WYQrRRJR9Q/uyWs9el5NTFzchYpUzYp5zRQmss0HZsdo1MHP8jZn9FMoz0USU3YO7M+p/PJGF5QstBzkF4ViYzpEO4pE6zllen9U1FlbIDkU2BxSOnltJVUlRwdchD48O4wv5UgsqSBJs+Av88hh4/Vdw5FXwpXfhtG+xsHIJuwZ2zaiDIJPx7OYuyt1OjltQddh73cFuAtFA1g86gAXlC6a0Gx8eywL+rcDXayrah9sZTYyysHYFXPhz+NwrULsUnvga/PY02P2PlNdYXLGYnYOF7bhJksQzmzo5cVF1RtLSCu2BdmJSjPll87O6/7krGoiGa9niK/xSllwYjAzSE+rJyW5MF1gXIpaDnEf2D+0nmohmdaBJYWH5QtqH22fMSels2Du0F4kEFc7ZHJFB94rxLChbQCgWojuYudNgtwnOaKnjpdZeYvFEVvc3A3uG9gByz8wp6dkKt18Aj3wWymfDZ/4Ol/waymSnbFHFIoajw3InixlKNJ7gha09nLWs/rDuFUAyg5NLYL2gfAG9od5JpZDnVntYUlfK37fNbAc5Oc/K+ZDGlXDDk3Dl7RAegDsugAc+AYGpy1EWli9kf2B/QdvnHT3D7PEHs96dUxyuae3GNJy5rJ5EpJ724b1WJ4tpyOVgr4ISWM+UBIblIOcRxTAsLF+Y9TUWli8kISVmzEnpbNjqk2u0T5m7PKuaTZAzyEDW2fqzltUxGIqydm/6NYxmQ1nPC8omySBHAvDsv8Ktp0DPZrjg53Kd8ayjD/mY4ozM5O3Sd/f2MxiK8qEjJt/tUAKRTKSPJ6LYnKmyQR9cVsdbu/oIhGduC0kl86v87gPyQb7ll8rqjaf/C2x7En51LLz1u0nLLhZXLC54+/xiq1w6dubSzMsrYFxgnWUGuaqkiDml84kTpX145vSczxRlDeZqN2ZSAsNykPOIYhjmlWUveKAs9pm07ZEp/9i7GUkSXLR8VdbXyHWeT22upchuK+gyi71De7EJG7O9sw++KEmw6WHZiXjjV/Lhp5vWwTGfmLTOWMmKzmQH+aW2Xhw2wcmLJ5dC3zu0F4/DQ7UrtVT6VCgO8lQB35lL64klJP6xfea0dJrIroFd1HvqKXFOcqjX6YbTb4Yb34BZa+Dpf4I/nAkd6w/5WNJuDBWufX6ptZeWei9NFe6svr9naA9VrirKi8uzHsNJc2Xhi3c7LcGQqdg7tJciWxGNJdkdpITcE0Vmw3KQ88i+wD6qXdVZdbBQmF8+H5uwzZgFmw2berdDrIoTF2ZXfwxQ7arGW+TN2kEuLXZw/MKqgpad3jO0h1mlsyiyj9UhDh6Aez8KD34CSmrhU8/DRb+EkqkduypXFV6nl71DM7en6UutvRwzvxKvyznp+3sDe5lXNi/r3RCA2d7ZOG3OKe3G0XMrKHc7C3q9pmLv0N7U2/7Vi+C6R+DyP8JgO/z+DHj6nyE8BJBsd7hvaJ/Go80Pw5EY7+zp4/SW2qyvsWdwT9bZY4WLj1gNwIu7NuV0nUJmz9Ae5njnZNXBQiEZWM+Qg3qWg5xH9gzuySl7DFBsL2ZW6SzLQZ4CSZLoDrZT4Wyi2JG9YRBCsKB8QU5bpWctq2eXb6RgRRiSD7pEAt7+Pfz6BNj9CpzzQ/jsSzDn2JTXEEIwt2wu+wOZ950tBLqHwmztHOK05qm3q/cO7s3ZbjhsDuZ6504Z8DnsNk5vqeXF1h7iiZlRbziRfYF9zPOmMc9CwJFXyGUXx3wS3vqtrMa37Uk8Tg+17tqCdZBf2+EjGpc4vSW78gqQHbds648Vjp7TiIiXsqnHeg5Oxb6hfTnbjVp3LaXO0hnjb1gOch7ZF8h9wYJcolGoBjhXdvUOE7P1sqgi93leULYgp1KWDzTLWZZ/bC+8+q2ElJAzbs5y+NOH4alvwuxj5C3oE78o95ZNk7neuewLzMz1/HKbvDamyshF41E6RjpUsRtzy+ZyIHBgyvfPaKmjb2SUzR2DOd/LbAxGBhmIDDC3LANZc3cFnP8TubbeUw33XQMPfpK5JY0Fu55fau2htNjBMfMPF7NJh8HIIH3hvpwzyEIIKooa6Q4dIBKzDupNJJ6Iy/5GeW52QwjB/LL5M8bfsBzkPKG0xMrIAE/BXK+ccZspJ0sz4ZmtOxD2CMfOyl2meG7ZXHpCPYRj4ay+P7/aw+xKd0HWdfYMHSAcDzP/3XvA1wqX3CpvPVfOz/hac8rm0DHcQTQx8w6IvdzaS31ZMUsbvJO+v394PwkpoYqDPMc7hwOBAySkyTurnLxYVigrxPWaCmUHIxtFSGavgc+8CKd/G7Y8zrz969jb1ybX4xcQkiTxUmsvpyyumbTbSjqoceBUYWHFPCSHj/f2DeR8rUKjc6STaCKa3o5ICuZ45xRswDcRy0HOE8oCyzVyBtlxG44O0x8p3A4J2fLirq0ArGzIviWWgvKwnC7rNh1CCE5dUsMbO/2F1e6tayO777sKgPmNx8IX34ajrpa3nrNgrncucSlOx3CHmqM0PLF4gn9s7+W05top64uVzI1agXU4HqY3OPmORq1XdtRfnYEOcnKevVnOs6MITv9n+NzLzHWW0xcbYfi+q6dtCWc2WrsDdA6Gc6o/TrZ4U+E5eFTjYmzOQV5qszpZTERZz6oE1mVzZIc7XvgJDMtBzhPKISS1MkFQuAdBsiUcjbN5rCYt6wfdOJLznEP0fMriWgKRGBsODOQ8nrwTj8ErP4bfncGe6AAA8y/6DZRmX48IB52/mbae39s/wFA4Nm09p2I31HAolPU8Xb33qUtqWLe3n9DozNq2Vn7HD+nIkg31y5n7we/K19z7iqwaueG+gsgmv9SqlAPlUH88uAeHcDDLOyvn8SwZ2616ZVdrztcqNNTomKUw1zuXhJSgY6TwExiWg5wnlAddVlt4E0jnQTcTeWt3H3F7LzZszCrN3QCrMc8nL65GiALYtvZth9vOgb9/D5ZdwN7VH8XjkA8k5YoSzMyUbTyFV9p6sYmDpQ2TsXdoL+XF5Tm1xFKYU5Z6PZ+ypJbReIK39/TlfD8zsW9oHw0lDbgcrpyvNXesfGDfeT+E2hZ45HNw/3Uw4s/52vnktR0+ltSV0lCe/RztHdqb7KiSK4rzt71/D4Ohws9uZoLSGrLGPbVtSZeZlJCzHOQ8sXdoL40ljaoY4Fmls7AJm+UgT+DV7b04ivtoLG3Cac/dAJcXl+Mt8uY0zxWeIlbOKjevg5xIwJu/kQU/+nbCFbfBlbezN9Sdc+sxhSpXFSXOkhlhgMfz+k4/R86W26tNxd6h3DtYKDSWNOIQjmnX83Hzqyiy23i1AA+WTse+wD5Vdp1g3I4Io/CJp+Gs70LrM3DLCdD2nCr30JvRWIJ39vRNG8ylw/7AflWSRDAu2eT088ZOcwcfaqNGa0gFZT3PBH/DcpDzxL6hfarUEQIU2Yto8DTMuIxbKt7Y5aekdIB5Ks0zHDzYlAunLKlh/f4BhsymUta/F+68CJ65GRacBje+CSsuB6B9uF2VLD2MtXqbYZ0sRiIxNuwf4MSF04t/7B3aq8pBG5BbvTWVNk07z+4iO2vmVfLqjpnlcKjpuLkdbuo8dfKuoc0Op3wVPvsilNTAn6+EJ74Go+Zq/bh+/wDhaIITF2UvViNJEu3D7bmXsYxRXlxOeVE5Ra4+Xtth0gSERqjRGlKh2lWN2+G2HGQL7dgzlHtz9PHMKZvD/qHCX7DpMhiMsrljiITdp9qDDmQHOVfDcOqSWuIJiTfNlOV4/wH4zcnQ8Z4s9nHNX8DbAMgt3toD6j3oYOyk9AzKIK/d208sIXHSNA5HKBaiO9itWmANY3YjxXo+ZUkNWzuH6A1EVLuvkQmMBugL96k6z0qnoSQNR8qdLk76Eqz9k7wjc2CtavfTmtd3+hACTliQvYM8NDrEcHRYtcAa5OxmRdmg5SCPYzQ+qlprSJATGGo8B82A5SDngcHIIEOjQ6o6bjMt45aKt/f0IYkgo9KwalulIDtuHcMdxBKxrK9x9NxK3E67OYx4eAge/hw8/GmoPwK+8Boc/fFDOlT4Qj5GE6OqPujmlc2bUa3e3tjpx2kX0/aTVbp6qBrwlcqB9XQtIk9dIm+jv77TBOtVBRQ7qlamHuT1fJg6pNMFZ38frv8rxKPwx7PhxR/Kh18Nzhs7/axoKqfck33pmrITp3ZgjdPPLt8I7QMh1a5rZjqGO0hICdUDvpngb1gOch44MDxmGErVNQwDkQGGRodUu6aZeWOnH5dbPlikasbNO4eYFKNzpDPraxQ5bBwzv5K3dhv84NOBdfDbU2Hj/XDazXDDU5P2NW4fltsqqekgK/PcNVw4bbGm442dPlbNrsBT5JjyM1rM89yyuQSiAQYjU4uBLG8qp8zlmDF1ncpOnHKIUQ3mls2lL9zH8Ojw4W8uOFUOPFdeBS//CG4/DwaM63yERuO8t29g2t2OdNDiOTi3bC7DsV4gxmtmPeehMlrZ5wOBA8QThd3dxnKQ84CSCVKjtY2CkiWdCdse6fDGLj8Lm2RBD7UzyJD7PB83v4ptXQH6R0bVGJa6JOLwj5/AbWfLf77hKTjjX8A+ufOmZIJUXc9lM6eTxVA4ysb2wZT1nFo96GD6ebbbBMctqOJtowd0KpFs8aai46b8m03ZGstVDpfeCpf/Ebq3yCUXWx5X7f5qsm5vP6PxBCfk6iArdkPNgM87lwQJqsqHeXP3zAjoUqGJ3SibQzQRpSfYo9o1jYjlIOcBxUFuKm1S7ZrJlk1WHTL9I6Ns7RyivkrO1qjpuOUqFqJw/NhhrHeM1j5rsB3uvBhe+E9YegF8/h8w78Rpv6JkgtQ0wMq1FONeyLyzu4+ERMoDeh3DHRTZiqh25+aYjCfdwPq4BVXs8o3QE8hORdJMdAx3UOWqwuP0qHbNpIOcSvzmyCvg869A1UK5FdwTX4eosUoFXt/pw2ETHDu/KqfrtA+3U1FcQWlRqUojO2ifF8+KGM+25on24XYcNocqLTgVZkorTstBzgMHAgfwFnkpKypT7ZpKtqPQF2w6vDWWOXB7hqh111JsL1bt2nWeOopsRTlnkFfNKafYYTNWmUXbs3DrydD+Llz8a7jydnBPXROr0B5op85dp+o817prcQjHjFDTe2OnnyK7jaPnTT/X7cPtNJU2YRPqmW0leEztII8FdLsLX61TzY4sCo0ljclrp6RqIXzyubEDfH+E358JvcYRv3h9p59VcyooLZ66HCgdDgQOqJqlh4NJp8bqEPv7QnRYdch0DHfQWNKI3WZX7ZpqiGaZActBzgMdIx2qG2CP00OVq2pGOBSpeHNXH26nnQh+GksbVb22TdiY7Z2ds4Nc7LCzem5F0pnPK/EYPP9d+PNVUDYbPvcKrL42bano9uF2VbP0AHabnfqS+hmh1vTGLj9Hz6vA5Zz+AaaF41ZsL6bGXZOypn55UxmeIrsx1qvGdI50Jh1atahyVeGyu9K3z44i+QDfxx6C4W747Wmw7o68K/CNRGJsbB/khIW5ZY9BG7tR467BaXNSWhIADLhDlwe0sBv1nvoZkcCwHOQ80B5Qf8ECNJU0FfyCTYc3d/k5Zn4lnSMdzCrRYJ5L1Znn4xdUs6VjKL/9kIc65d7Gr/4Ujr4ePv03qFmc0SUODB/QZD3PKp1V8Ot5KBxlS+dQMkM7HR3DHaqWZSmkYzecdhtr5lUWfB1yQkrQMax+AkMIkZ3dWHKWfIBvznHw1y/LKnx57Jm8fv8A8YSUc3lFPBGnY6RD9QyyTdhoLGlkVPjxFjuMtUOXJ7RwkJMJjAK3z5aDrDOSJNExos2DrrG0MafuCoXAYDDKtq4Ax86roGukS/UMMsjbpWrM8/ELqkhIsDZfWY5dL8ldKjreg0t/Cxf9ApzujC4RjUfpHunWxEFuLGmkc7iw1/N7+waQJDh2mvZuACPREQYiA9rMc2ljWg+64xfIB0sHggY8WKoS/pCfaCKqid1oKm3KbkfE2wDXPQpnfAfev18uufBtV3186fDOnj5sAtakKAdKRU+wh1gipnoGGcbW80gHx8wv/IAuFcFokL5wnzYJOZUSRUbGcpB1pi/cRygW0iyD3DnSOW1P00Ln3X1yjeTiJoloIkpTiQYZt9ImBiIDBKPBnK6zem4lTrvQP8uRSMDL/wN3XgLuKlmwYNVHs7pU50gnEpKqvUwVZpXOoifUw2i8cB2ytWMOx+q5qeuPQd2DkAqK3UhIiWk/l6xD3lO4dchaznNOOyI2G5z2T3DdwzDSA787HTY/our40mHtnn6WNpThdWXf/xi0afGm0FTSROdwJ8ctqGZHzzD+4ZkhcDMZSiJHqwRGoZfAWQ6yziRbvGmUCYrEI/jDhV8nOBVr9/bhsAmqyuUOFppk6sfqE3PNIruL7KyaXcFbu3R0kEd8cM/l8OIP5L6rn/k71C3N+nJatGpSULJ4XSOF2wt57Z5+jmgqS3ngSYvONwqNpY1EE1H8oentxsrZ5RQ5bLy1q3Dti/I7rXYNsnLNgcgAI9EcSiQWfVA+I1C3DB64AZ6+GWL6BJCxeIJ39/Wn3O1Ih6RIiBYOcmkTvaFejpordyEp5IAuFUrAp0lpVmkTvcFeovHCFXOyHGSd0XTBjmVLC33bYzre2dPP8qYy+iJyf0atDAPk7iCD3D5rU/sgoVEdGq4fWAe//QDseQ0u/IVcVlGcW4slLTNBhd7qLRpP8N7+fo6Zl7qeU+sMMkzTo3cMl9POUXMqCrquU0v7nHart1SUz5Z7kx//BXjrN3D7+XJ7Ro3Z2hkgOBrnmBzrj0GeZ5uw0VDaoMLIDkX5t6utCFPssM3oMgtlPWuxw9dU0oSERFewcBMYloOsM5o+6ErTe9AVKqOxBBv2D7BmXlVyDrTKBIE6gciaeZXEEhLvHxjI+VrT8u5d8KdzwWaXD+KtuT7tLhXT0TnSiV3YqfPUqTDIQ1ErU29UtnQMEY4mppWXVmgfbsdld1Hlyt05mYiSqU+n3vu4+VVs6RwiOGp8OeRs6BzupKK4ghJnierXTtpnNRIYjiL48H/DFX+Cni3yWYJdL+V+3WlQOkKks15T0TnSSa27Fqctt1KNyVDsRm+4i6PnVvL2nsLd8UhFe6CdYnsx1S71eqcrJBNFBXxOxHKQdUZpjq6lAS7kBTsdmzsGicQSHDu/ko7hDiqLK1Vt9q+g9OhVw3FTak/X7dNoGzA2KosNPH4TzDsZPvsyNK5S7fKdI53Ue+pV7bGpUF9Sj03YCjaDnHQ40sggKx0shApBzUTSzSADHD2vgnhC4v0DU0tTm5n2kXZNgmo4aJ9VXc8rLpPPEJTUwl2XwRu3aNYKbu3ePmZXumksz+wg72R0j3TTUKJ+9hgOzdQfM79yLPNdmAFdKpSGAPm2G2bFcpB1RosWQgreIi9ep3fGllisHas1WzPmIGtxEh3UbXFTVVLEwpoS3t07kPvAJhLogjsukMUGTv4KfOxB8Kibgewa6dLsQee0Oan31BdswLdubz+zK900lLtSflaLVk0KpUWllBWVpbWeV8+RA7p3tQro8kzncKdm81ztqqbYXqz+jkhtM3z6eWj5MDz7L/DI51VX35MkiXf29Ofc3k1Bi17TCnWeOuzCTsdIB0fPrSSekNiwvzADulQcCBzQpFwIoKGkAYEoaH/DcpB1RlHD0oqZ3Opt7d4+5lZ5qPO6NBFjGY9ard4Ajp5Xybv7+tXtPrL/bVlcoGujvA37of8Ee27KV5OhpYMM8jwXYgZZcTiOSbNdlqKGpRVNpU1prefKZEBXeA6yJEmaBtZCCO3Wc7EXrroLzvhXeP8+uO1cGDyg2uX39QXpDURUKa+QJEluwanRenbYHNR75ATG6rkVQOEGdKno0EgLAMBpd1LrrrUcZAt10NowwFjT/wLe8pgKSZJYO+ZwSJJE57B2GQpQ10FeM6+SvpFR9vhzaxuXZO1t8KfzwOmSM0srLlPnuhOIJ+J0B7XbKoWx1lgFuJ739QXxDUfSOvAUjAYZGh3SzHGDsZZNaT7o5IBuoODaSfaF+wjHw5oG1pqK39hscNq34KP3gn+nHCDveU2VSyu7c+mUA6WiL9zHaGKU+pL6nK81FUpv7wpPEQtrCzOgS0UoFmIwMqip3Ug3sDYrloOsI4ORQcLxsKYOhdK8u9AeXqnY4w/iHxnlmPlVyQed1pn6nmAP0UTuLW6OHqtDztmIx0bhr1+BJ74GCz4g1ybWL895fFPhD/uJJWLaBiIqzrORWDf2b52O4EJ3sBuQ5V21IhO7cfRcOaDbq1ZAZxC0bPGmoMsO39Lz5PaN7gpZJfPt3+dcl7x+/wClxQ4W1+XW9QYOtm3UOlGkzPPRcyt5b3/hBXSpUOZZS7uRrsiQWbEcZB1R2qFo7SCPREcYGh3S7B5G5N1xDkeyZ6wGIiEKTSVNJKQEPcGenK+1pK4Ub7Ejt4N6wT6461JYdzuc8jX42AOq1xtPRDHAmq5nFefZSKzfP0BJkZ3mem/Kz+oxz40ljQRjwbTsxtHzKoDC27bWw0Gu99TLGVStxW9qm2UnedGZ8NQ34fEvQSx7wYz39vezcnY5dps6nW9AYwe5tInuYDfRRDQZ0Km2Q2cS9LLPXcGulCJDZsVykHUkuWA92j7ooHBbY03FhgOyw7G4rlSXQETZtlIjerbZBKvnVWafQe5thd9/EA68A5f+Ds76D7mdm8bo4lCMbcN2j3Rrdo98sGH/AEem6XDoYTcyaUG2pM5LabGj4BxkZY1paTeUa+uynl3lcPV9cOo34b274M6LZaGgDAlH42zrDHDUnApVhqVXwJeQEviCvoMB3Qwrs9DFQS5tIpaI0Rvs1ewe+cRykHVErwULM08sZP04h0OPB52SnVZL5e3ouRW0dgcIhDMsJdj+PPzhLBgdhhuegFUfUWU86aDHelacQqXMoBAIR+Ns6RxiVZoOhxLwaVqzmUFgbbcJVs+tYJ0WnVfySHewmyJbERXFFZrdQ/ld0U1cwWaDM/8fXHEbdLwnB9I92zK6xKb2QWIJSTUHuXOkE5fdpek8JwPrYHfBBnSpSNoNLUssFE2AAjwnApaDrCtdI104bA6q3eo37VZIZigKyKFIRTgaZ2vnEEeNtaDS80GnViCyZl4lkiQ7+mkhSfDmb+DPV0LFPLneeM5xqowlXbpGunA73JQVlWl2j0LMIG/pHCIal1idpsPRPdJNlauKInuRZmPK1G6snltJa9cQw5HC6S/bPdJNfUm9Jj1jFRRnRXf59BWXww1Pyu3f/vghObBOE8UmHTXWESJXOkc65RZhOs2z3SY4ak4F7+4b0Ox+RqR7pJtqV7Wh7IbZsBxkHekKdlHvkcUPtKLKVYVDOArKoUiF4nAcNacckH9Z6zx1mhpgl8NFZXGlaoZBySZuSMdBjkfhia/CMzdD84fhk89AxRxVxpEJSkcWLefZW+SlxFlSUHKmyr+xEtClQutWepC53Th6bgUJCd5PN6AzAd3Bbk2zbXDQccuLQzH7GLkuuWKeHFi/9bu0vvbe/gFmVbip86bu150OWoqEKEx03I6eW1FwAV0q9LAbhZjAGI+mDrIQ4lwhRKsQYocQ4uZJ3i8XQvxVCLFBCLFZCPEJLceTb7pGujQ3wDZho85TV7AR3WRMdDiUTJDW1HnqVDs8VuZysrC2hA2pFMomHsb7yN1QnPvJ8mxQMkFaU++pLygDvH7/AA1lrrQEQmDsQadh/TFkbjeU7fb1Wkuk60h3UHu74XF6KCsq0z+DrFAxRw6om8+Fp/8JnvyGHHBPw/p9A6plj0FbkRCFUmcpHocnOc+r51UWXECXCj0cZK/Ti9vhLlh/QzMHWQhhB34NfBg4ArhaCHHEhI99EdgiSdIq4HTgJ0II7fYD8oweCxbkqK5QF+xkTHQ49MgEAaoHIqtmV0yfQfbtkGsI978Fl/527DBe/jaBtO7prVDvKaz1vH7/AKvGdjvSoStoPLtR4SliXrWHjQUiOZ2QErrZjYaShvyu5+JSObA+6cvwzh/gnishNDDpR3sCYdoHQmmXA6UiGo/iC/k0txtCiEPW86rZFQCpExAFhB52QwhBvae+4LoMKWj5dD0O2CFJ0i5JkkaB+4CLJ3xGArxC3qMtBfqAgtwDUQywlXFTnw3jHA6lJZgeGeT6EnUNw8rZ5fQEInQNhg9/c+8b8MezIDIE1z8Bqz6q2n2zYTQ+ij/s12WeG0oa8pdxUxmlf3C65RWB0QAj0RFD2o2Vsyt4v0Acjr5wH7FETBcH2RD22WaHs78HF/8a9rwq1yX37T7sY+vH6nbVOqDXHexGQtJ9PVeVFDGnys37BbTjMR1Ju6HxzhMYZD1rhJYO8ixg/7i/Hxh7bTy/ApYBHcBG4CuSdHhDPSHEZ4UQa4UQa3t7zdlORDHAehgGJUMxExqj94/1t1Qcjv5wP9FEVLcMspo9TZN1yBON+KaH5Ib/nmpZGW/u8arcLxcUg6hLBrmkHl/IVxBiIcq/bboOhx4dWRSUTH26dmPV7HLaB0L4hrPvr2sUkmIsOgV8htkRWX0tfPxRGO6RneT2dYe8vX7/AA6bYMWs9Hc8pkPpkqLXc3D82YVCCuhSoUeHIYVC3rHW0kGe7OTORMt7DrAeaAKOAn4lhDjsSLwkSb+TJOkYSZKOqa2tVXucuqBHL1OFek89kXiEwUjhGwPF4Vg17oAe6DPPyj3UyiIf0ViGwyYOlllIErz6M3jwkzBrDXzqb1C1UJV75YqeD7p6Tz0SEr5g5j1cjcb6fQPYhLxbkA569PRWqC/JzG6sHNu2LoSsXM+I/Dusi90oaaAv3EckbpDAYv4pcuDt9MDtF8C2p5Jvrd8/wNJGLy6nOn3V9QxE6j1yYB1LyJvSSkDnL4CALhV6Osh1njp6g70FKRaipYN8ABh/tH42cqZ4PJ8AHpZkdgC7gaUajilv6B3RgY69NvPI+v0DCHHwYa04q3od0ht/z1xxOe20NHjlLEc8JktGP/8fsPwyuO5RzZXxMkEP+WMF3XvHasj6/QMsqfNSUuxI6/N6B9aQfoeFFbPKsAnYsN/8gbjejhscdMoNQc0S2UmuXQp/+Ri8/XviCYn3DwyqVl4B4+yzHqUsJfWyWEhIDqwPBnTmX6+p0DWw9tQTk2L0hfs0v5feaOkgvwMsEUIsGDt491Hg8Qmf2QecCSCEqAdagF0ajilv6Oogewq79cp41u8foHmsETwc/Jn1qiUEdVs2rZpTwY4DnUj3fhTW/QlO/ipc/kdwqtNiSS16Q3KpkxIkaEmhrGdJkthwYCAjh6NrpAubsFHjqdFuYGOMF1dIB0+RgyV13oLIIHcHu3EIB1Uu7YNQwwZ8pXWy2NCSc+CpbzL4+M2MREbTrpdPh55gDyXOEkqcJapdcyom9pxeMascISYpYStAknbDrYPdKBD7PBmaOciSJMWAm4Bnga3A/ZIkbRZCfF4I8fmxj30POEkIsRF4AfhnSZLMv486CV0jXRTbizUVr1DIa69NHZEk6ZADeiD/zHZh1+VBV1eibgYZ4PiaCH9I/Dvs/Dtc8DP40Hfz2qliKvR80CUdCpMf1NvrDzIQjGbUMqtrpIsaVw1Om1O7gY2RjYjFytnlvH9g0PTnHbpH5N7pWvaoV8ibWEg6FJXAR++BYz9N1fpb+aXzV6xuVC847wn2UOvWp0xy4nOwtNjBotrSmZFBHumi1l2Lw5beTlUuKM9BwwV8KqDp7EmS9BTw1ITXbh335w7gbC3HYBSUDhZaiioo1LhrsAu7MQ2wiuzrC9IfjB6S4egOdlPrqcVuU6dmbjqUHpCqzXP3Fs576zpGhZ83jv81Jx1ztTrX1QA9H3RKT1OzB3xK5ird+mNAt44sINsNm7BlNM8r51TwwLoDtA+EmF3p0XB02qJHD2SFTDP1umOzw3k/5tn2Yi7o+DXS09fC1X9WpcSrJ9ijy+4ejBMLGZfZXDm7nFfaepEkSZdncb7QdT0rJUMF2OrNeKmpAqUn2KPLdjSA3Wanxl1jXAOsEkpPy/EOR/eIPr1MQeUekHtfh9vOxUGC6xLf5W/RlblfU0P0fNBN7GlqVjYeGKTIYaO53pv2d3pDvbrZDYfNQY27JqP1vGrsd8/sWTlFfVMP3A435cXlxk5gCMGtsfP5WcW3ER3r4I9nQ/+enC+r53OwrKjsMBGLVbMr8A2P0jlZK80CojfYq5t9rnJV4bAVpnqv5SDrhJ4ZNzBYKyGN2Nw+SJH9UIdDr2b/Cqo4yFufgDsvgdI6xKf/hn3WqvQkp/NIT7CHWo+O69lj/l7ImzoGWdZYhtOevtntDnbrazc8DRk96JY2lFFkt5m6rlOSJF0Da8h8nvUmFk+wtXOI4cUXwscfg5Fe2Unu2pj1NRNSgt5Qr252Q0lgjLcbK5MB3YAuY8gXevobNmGjzl2Y6r2Wg6wDkiTpmgmCwm7erbCxfZCljV6KHPIyliRJ160lUEFNb+2f4P7roOFI+OSzUDGXlbMr2NwxRDRuzLY5yoNO1/VcYu71nEhIbG4f4shZh3WxnJJQLERgNKD/PGewnoscNpY1ennfxJ0shkaHCMfDujrItZ7a5EFXI7Kjd5hwNMGRs8ph3knwqefA5oA/nScLi2RBf7ifWCKm/3Nw3HpeprTSNPmOx3QEo0GGo8O6JjDUFs0yCpaDrANDo0NE4pG8POjMfnhmKiRJYlP74CEN7APRAKFYSNcHXdY9ICUJXvoRPPFVWHQmXP84lFQDcieLSCxBW3dA/QGrQD4edLXuWvxhP/FEXLd7qsneviCBSIwVTenXHyt9n3V90GUh671ydgWb2gdJJMxpa5QMo96BdW/QuA6yIiGetK+1LbKT7G2Euy6DLRMbUqVGzxZvChMDPpfTztLGwui8MhVK4KX3TqqVQbbICsUQ6v2gC8VCDI0O6XZPPdnfF2IofKjDkWzxpuODrr4kix6QiTg8+Q146Yew6mq4+l759PgYRq/r1LPFm0Kdp464FKc/0q/bPdVkY/sEhyMNekKyQ6F3xm0kOkJgNP3gbOXscgKRGLt8IxqOTDv07OmtUOuuxRf2GTbg29Q+SEmRnYU147rUlM+GTz4Djavggeth7W0ZXVNxkPUOrH0h3yEJjCNnyYp6Zg3oUqHMs57+Rp2nju6RwkvIWQ6yDiQNg1vfBx1g6CxFLigOx5GzDm3xBvqIKigoxj7t6DkahgdugLV/hJO/Apf8BuyHtvCaW+XB63KwucOYDnJeHnRjxt6s23ibJqmXT4Xyu6un3VDmORO7oQgwbGwf0GBE2pO0Gzr0qFeo89SRkBKGFVfY2D7I8qZybLYJnR48VXJN8uIPyUJGL/1I3g1Lg3wEfLWeWmKJGAORgeRrq2aXEwjH2OM3Z0CXinz5G+F4uOAScpaDrAOKYdAzolMahCv3LjQ2dQzitAuaG0qTrykZZD0NsOKMp1UfGx6Euy+HrY/DOT+ED/0nTNJqSAjBEY1lbGo3prHJhwFWDpyYNeDbNKFePh3ylQkCMqqPXVRbQrHDxmaDrtdUdI90YxM2qt3Vut3TyPY5Fk+wpXNo6t2OIo/cK3nVNfIu2FP/JO+KpaAn2INA6DrPyfU8zm4cDOiMmYDIlWRgrXNJJxi4dWGWWA6yDuRjwSr3UmQ2C41N7YM013spdhzsd9wd7EYgdD31n7bcdKAL/nQ+7H8LLvsDnPjFaT++YlY527qGiBnwoJ7ys+qh7qaQnGcDOhSpUOrll2dQfwzyPBfbiykrSv9gX64kHbcMMvUOu42ljWVs7jCpgxzs1k2MRWEyx80o7OwdkQ/ozZ5m3dmdcMkt8i7YO7+HBz8Jsci01+0J9lDtrtZ1npVnwfj1vKS+lCK7jS0mXa+p6An14Ha4dRFxUihUNT3LQdaBnmAP5cXlFNuLdbtnNg86syBJEhvbBw8prwD5QVftrsZp188AV7mqcAjH9PPcvwduOwf6dsE1f4GVV6a87opZZYSjCUPWdfYEe6hyVen6oFOyTsrBNTOxry/IUDh22HpNRU9IbtWkp6BBtoH18qYyNneYU1FPz968CpM5bkZhsvK1SRFC3gU7+/uw5VG45woIT+106t3qFA7uvoxfz067jeaGUtMGdKlQ1rOedqNQ1XstB1kH8mEYPE4PXqfXkBmKXGkfCDEQjLJ8ggHPxzzbbXZqPNOIsvRsg9vOlcsrrv8rLD4zresqhw83GXAbUE+REAWnzUmVq8qUGeS0HY4J9Ab1baUHUOIswe1wZ+y4LW8qYygc40B/SKORaUdvqFfX3RCQAz6BMGSrt40HBvAU2VlQU5r6wwAnfQku/Z0sdnTHhTDin/Rj+bAbUwUiyxvLTRvQpaI32Kv7c7DGU4NAGDLgywXLQdYBvXvGKtR4agxpgHNl0xQORz4cCpimxU37u/CnD8uHWG54CmavSfuaC2tLcTlthqxD1lskRMHorbGmYlP70GH18umQL7tR56nLIoMs/y4a9WDpdPiCPl3r6UFWLax2VxtyPcsH9MqwTzygNx2rPgIf/TP0boPbz4OhzsM+ko9MfZG9iIriisOeg8tnldEfjBakol4+5tlpc1Ltrja9mNNELAdZB/KxYEE+RGVEA5wrG9sHsdsESxsO7QjQG+pNlpboidLi5hD2vAp3XATFXvjk01B/REbXtNsEyxrL2GRAhyNvAV+GMshGYbJ6+VRIkpS3QKTWXZvxPC9t8GK3CdNtW0fjUfoj/bpnkCG7edaalAf0pqP5HLj2IRg8MFZStjv51mh8lIHIQF7sRq3n8Hle3iTXV5ttvaYiH6JkCnWeuoJLyFkOssbEE3F8IZ/uWx5gfLWmbNnUPsSSulJczoMORywRoz/cn7/M5vh5bntW7lZRPkvuG1q1MKvrrmgqZ2vHkKH6dY7GR+kL91kGOE2mqpdPxXB0mFAspHtmEw72js0El9PO4lrz1XUqP2c+7HM2mXqtSR7Qy8ZBBph/Cnz8cYgMybtnPduA/LSGVJhsPS9tKEMIc+54TIciSpYXfyMLu2F0LAdZY/oj/cSleN4MQ0+wp6DqrJSOABMNuD/kR0LKi2GocdcwEh0hGA3CxgfhvmugbplcVlHWlPV1lzeVEYjE2NcXVHG0uaEYwHw5bv6Qn1gipvu9s+VAf4jBUDTjjFw+xIUUlMA6U7uhHNQzE0rAla8EhtEyyFOVr2XE7DWy7ZMSspPc8V7eHeSJ81xS7GBhTYkhS9hyITnPJdYOnxpYDrLG5KOXqUKtp5ZoIlpQzbu7hsL4R0YPczjymQlS7ul7+1Z46NMw5wQ5i1KSW79P5Wc0UplFPh90dZ46JCTDiitMxqYsFPQgP6IKCrXuWkKxEMPR4Yy+d0RTGd1DEXzD07f7MhL5DETq3HX0hfuIJqK633sqtnYO4XLaWFibWb38YdQfIe+eFZfC7RfSs/cfQP7sxkQ1PZDr5rcYyLaqQT7EhRRqPbX0h/tNlcBIheUga4yyYPU+vQvmVx+bDCXiXzHr0B6dyUxQnmo2AXpf+W9YcjZc+yC4cu9du6S+FKddGCrLoRxGzJfjBsbsHTsVWzqHsAkOq5dPRdJxy1NmEzITC4HxB/WMs15Tke8MsoSEPzR514d8sKVziJZ6b2YH9KaiaiF84hkoa6Tn9Z8BebIbnlriUvywwHp5Uxkdg2H6R0Z1H5NW5EOUTKHWbbz1nCuWg6wxikORz8ymmRyKVGzpGEIIuYZsPEnxCr0P6UkSNe8/AEDvgpNkhSmnW5VLFzvsNNd7DbVtnQ/RGwUzBnxbO4fGOpKkf0AP8l+zCZnbjSPGDj4ZsTXhVPSGerEJG1WuKt3vbTSxEEmS2NI5lPx3VIXyWfCJp+kpraE4IVG2/QX1rp0myR2+CfWxZgzoUpFPu6E8ewupDtlykDWmN9Sru7ymgrLNYraDTdOxtXOI+dUllBQ7DnndF/LpP8+SBE//M7Xv3C6P4cjLZIUpFZHrOocMU0feE+zBaXNSUVyh+72TjpuJ1vOWjiGOaMzc4egN9VLqLMXj9GgwqunJNoNc7nYyp8ptKoUyX8hHlasKuy2zAEYNkj16DdLbu3MwzEAwmtV6nZaSGnoWnUqdcCAe+hS8e5e610/BVIH1wU4W5gnoUpEPUTKFbGTqjY7lIGtMb7CXanc1Dpsj9YdVRmldVEgLdkvn5A5Hb6iXSlelfupuiQQ88VV4+7dUHPcFHDYHvWH1t5ZWzCqnb2TUMP0686HupqCIK5glgzwQHKVjMJxVRi5fLd4gt52nFU3lpnI48iEupJAMRAySQVYCG1UzyGP4RgeprVsBC0+Hx2+Ct36r+j2mIpkomjDPlSVFNJW7CiqDnA+REAUlg1xI/oblIGtMvnogA7gdbrxOr2kcilQEwlH29QVZ1nh4PacvqGMrvUQcHrsR1t0Op34Dcc4PqHHXaLK1tNxginq+oC9vjpsirmCWLbwtnfKDd1kWGbmeYE9eDtrAQTW9bB50y5vK2OMPEggb5+DZdPhC+VvPlcWV2IXdMPZ5S6dcvtbSoIGDHPJR7amDq++DlvPh6W/B679U/T6ToThuk2Xql88yV0CXinz6G0oCwxc0h31OB8tB1ph8PuhAzlKYxaFIxbauADB5hkM3udh4FB7+DGy4F874Vzjz30AIat21mmSCljZ4EQK2dgZUv3Y2+MN+ql36lwspGFFcYSqSGblsSiyCvXlz3IQQWasWKgGdUdZrKvKZcbPb7LKankEybls7h5hX5aG0WP3dTn9ozG44iuGqO+CIS+C578ArP1b9XhNx2p1UFldOup6XN5WxyzdCcLQwOi/0hPLnIDttTipdlYYpGVIDy0HWmN5Q/h50YMxem9ly0OE4vGWWLg+62Cg8cANsegjO+i6c9q3kWzVubWS9S4odzKvysLXTGNuA/pA/L/X0CmYSv9naGaDWW0ytN7N6QEmS5FKWPNqNbNezmeo6Y4kYfeG+vKhvKhhJ7VT1A3pjjMZHGRodOmg37E64/I9w5FXw9+/Biz+Uz3NoyFR2Y3lTOZJknoBuOuKJOP6QP28BH8h2w8ogW6RFNB6lL9yX1wedkQxwrmztHKLS46S+7FCHI56I4w9rbBiiYfjLtbDtCTj3R3DKVw95W0sVoWWNZWztyr+DHE2MyfLm0aEwVQa5cyir8oqByACxRCyvD7ps7UZdmYua0mJDtSacCkVcKF8ZNxhLYBgg4xYIR9nrD6p/QA+S7dUOsRt2B1x6Kxz1MXj5R/D8f2jqJNd6Jt/hUwK6QuiHnE9RMoVat3kSGOlgOcga4h87tJXXiM5Tk5UqlhFRMhwTD4gphkEzx200CPd+FLY/Cxf8DE74/GEfqfHUMBAZIBpXv/ZyWWMZe/1BhiP53QbsD/cD5LXEos5jPHGFyRiNJdjRE8jK4cin6I1CLnbDLIp6yjznNYOcZSmL2kxXvpYrSl/cw+yGzQ4X/QrWfAJe+zk8+23NnOSpAr7GcheVHqcpArpUGGE9m2mHLx0sB1lDpjQMOlLnriOaiDIYMf4Dazpi8QStXQGWTXKAJCl/rEXkHAnAPVfC7pfhkt/AMZ+c9GNT9dpUAyUL2ZrnLHJyPee5xGL8WIzKjp5honFp0gOlqVAC63zOc527jlAsxEh0JOPvLm8qY0fPMKOxROoP55F8ioQo1LprGYgMEInnV31wuvK1XJl2PdtsctLh+M/Dm7fAU9+UOwSpTK2nFl/YRzwRP+R1IQTLm8rZ3Gnu5yMYxEF219IX6jtMtdCsWA6yhhjhQZfsAWmAbbxc2O0bIRJLTH5AbywzoLphCA/CXZfBvjfgst/DUddM+VEte/QqTla+6+QUA5zX9WwS8Rulg8XyLDJyRgislQOv2diNpY1lxBISO3szk6rWm3yqbyoYJeCbqnxNDVI6bkLAuf8NJ30Z3vkDPPEV1Z3kWnctCSlBf6T/sPeWN5XR1j1MLG5up84QdsNdQ0yKJXcbzY7lIGuIUSI6wPSF89O1zNLkQRfsgzsvho734Mrb4cgrpv24lj2nZ1W4KXM58n5QTwn4alz53cID4wd8WzuHcDltLKgpzfi7RghElM472diNZWOy2tsMUDc/HUqQlW+HAvKvPjZV+ZoapLXzJAR86D/hA/8E794pt9GckO3NhelUOJc2ehmNJdjty3y3xEgYKSFXKGUWloOsIUbakja6Q5GKLZ1DFNltLKo93OFQPYOsOMfdm+Ejd8MRF6X8iuI0ahGICCFY2liWfwfZAOtZmed8Z9xSsaVjiJZ6L3Zb5g6HP+zHYXNQVqR+PWi65JJBXlBTQpHDxjaDdwboDfVS5arCqbL6ZSYov0v5XM+xeIJtXdnVy6eDP+yn1FmaWt1NCPjgd+CM78htNB/+jNxWUwWm23laOla2t7XL2Os1Fb6QD7fDnRf1TQWz7PCli+Uga0jahkFDCmXBbu0MsLiulCLH4Uu2N9RLWVGZOvOsOMe9rfDRe6Hl3LS+pjRJ1ypyXtbgZVtXgEQif4ct/WF/3g1wlbtKHouBHWRJktjalX3LLKVnbD7UChWmUh9LB4fdRnN9qeEdDl/Ql9fdPRgXWIfzl0He5RthdIryNTXwhTKc59P+Sc4mb3oIHvqUKk6ycn//JGqni2pLcdgE2wzSSjNbkr2m84hRdkTUwnKQNSRjw6ABLocLr9Nr+gW7pWNqh8MX8qlzQO8Q5/jPsOSstL/qsDmodFVq2uotOBpnX19Qk+ungy/ky7sBdtrkpv9GXs+dg2EGgtGsM3L+cH57TcNBNb1sA5GlDfnf8UhFbyh/IiEKSsCXz/Ws5QE9kB23KldVZl86+Stwzg9hy2Pw0KdzdpKV36fJ5rnIYWNxXWmyk4dZMYLdsEosLNImK8OgAWaS552MnkAY33Bkyp6yvaHe3AORHJxjBS17QCo/ez6djr5QX94NMBh/PW/NQWIajJEJEkJQ5arKOrO5tMFLbyCCbzi/3Rmmozeogt3IESXgy+eOyNbOIYocNhbWlmhy/awdtxO/CGf/ALY8mrOTXGwvxls0daJoaYPXyiCrQLG9mLKiMtPvWCtYDrKGGCGigzF1GwM7FKlQujdMlZHzBX25ZYKCfXDnRTk5xyDXbWo1zy0NXmwivw5yvmWmFard1Xndkk6FkpFbmoODnG/HDXKzGwdbExozK6eIC+VTVEEh3wHfls4hmutLcdq1cQdy2kk96SbVnOQad82UgcjSxjI6BsMMBo3dX306jGI3tBTN0hvLQdYQI5RYgGwYFDUjM3JwC/Bwh0OSJDmD7MlynpPOcRtcnb1zDGOGQaNuIS6nnQU1JXmt6zTSejZyDfKWziHmV3soLXZk/N2ElKAvbIxMfS7zvLRBaU1ozKyc5uJCGZBPB1mSJLZ0DE3aX14NRuOjBEYDuQXWJ90EZ39/nJOcnWDSdAHfUpN0XpmKWCLGQGTAGHbDk51MvRGxHGSNUMUwqIT5M8hDzKpwU+45/LT50OgQ0UQ0uwzyROd4cfbOMcgOsj/sP6wZvVosy2Mni2giahwD7JIdN6OqQ27NUmIaYDAySFyKG8JuVLuqs3aQq0uLqfUWG7au0wgdWRTyaZ99w6P4R0azXq+pUBIzOc/zSV8a5yR/KisnudpVPekhPTiYfDHqek1Ff7gfCckQdqPWPbmstxmxHGSNUM0wqEC1u5rh6DChWCjfQ8mKLZ1DUyqSZd1rOtgHd6jnHCtjiEvxSZvRq8GyxjIO9IcYCuu/DWgEmWmFGncN4Xg4K5U3rQmOxtjbF6SlIXMFPTCe49Yf6c9a1ntpg9ewGTkjiCoo5DPga+uWHcJs12sqVNUCyNFJni4QqfUWU1VSZNgdj1QYQXNBQTmLY9QERiZYDrJGGGnBKg8BI29LT0UkFme3b2TKDEdWD7oRv+wc+9rg6ntVcY7h4AlerbJBySxHHvrLGkG8QmG6E+n5ZkfPMJJ0cMs2U5TaakPYjbF57gtlV561rNG4CmVJ0RsDzHM+Az6lRry5XhsHWfVA5KQvwYe+l5WTXO2uZiQ6QjB6eCcgIQRLG7yGb004FUYQCVGocdcQTUQZGjVnsDEey0HWCENlKKbpAWl0dvWOEE9IUxrwjA3DiF/uVpF0js9Ua6ia95xe2pi/uk5lPRvBoTCyg5yrw1FIdmPZmELZHr/xMv1GytTncz23dQeoKimiprRIk+tr4rid/OWDTvLD6dckp1rPSxvKaOsKEM9jr/lsMaTdMGFCbiKWg6wRRovowJgORSpSbQFmZBgU59i/XXXnGLR/0DWUuajwOPPjIIeNZ4CN2MmirTtAkcPGvOrsWmYVkuOmKJRtMaCinj/sp8hWRKkzcylwtcmnfW7tDtBcX6qZKI1mO0+Kk7z5kbSd5FSO29JGL6FofnvNZ4sRd/jMmJCbiOUga4QRH3RmjOi2dQVw2gXzp3A4/GE/DuGgrDjFIROlz7F/u9zKTWXnGMaVsmhkGIQQLGsoy8s2oJHWs5EzFK3dwyypK81KYhqMITOtkOs8G1mhzB+SW3DmU61QIV87fJIk0dYVoEWj8gqQ59nr9GqjJnvyl2XFvTSd5FTrWenkYcT1mgojqJwqmDkhNxHLQdYIX8innWHIkEpXJQJhygXb1hVgYc3kEtNwUIzFJqZZyqEBuOsSuaxCI+cYwOP05KQ+lg7LGsto7RrSfRvQF/IZxgBXFFdgF3ZDOsi5Ohy+kI8qV5UhHLdcAz4jK5QZpac35M+haB8IMTIap1mjA3qggxbAyV8Z5yR/ZlonWfn3nmqel9SXyr3mDbheU2EEkRAFM595mojlIGuEUURCYEytyZVftaZsae0OTGvAU85zeAjuvhy6t8BH7tbMOVbQukfv0gYv4WhC921AIzkUNmGj2mU8Nb3BYJSuoXBODoc/bIxm/yDL1Jc6S3OaZ6MqlCkZZCNQXlyOQzh0t8/J8jUNM8i+kE/7eU46yQ/DYzfCFG02k4miKUqzlF7zRlyvqTCSv1FWXIbD5jCcfc4Gy0HWCKPITCvkW60pG4YjMQ70h2ipn7pO0BfyUeWeYp4jw3DPldC5Hq66A5rP1mag45iu16YaKLXYeiuUGUVmWsGI67mtJ3eHoy/UZ5hABHLv0WtUhTIjORQ2YaPKXaX7em7tGgZgicYlFrqs55O/Amd8B97/C/z1y5A4vHOKw+ag0lU57TwvbSwz5I5HKoyiogdj69lVZdUgW0yNUVTHFKpdxpbnnYzt3ak7AkxpgEeDcO9H4cA7cPkfYen5Wg3zEKrd2YsrpMOS+lKE0N9BNtp6NqL4TbKDRS4ZZANlNiH3QMSICmUJKUF/uL+gApFsaOsO0FTuotx9uACTWugaiJz2T/CBb8F7d8NT34BJ+vCm2uE7orGMfX1BhiPZqfXlCyOVWACG3OHLBstB1ggjZSjA+PK8k5Gqg4UkSfSF+w533KJhuO9q2PMqXPpbWH6JxiM9SI27RtPI2VPkYG6VJzk3emGkEgsYC0QMlqFo6w5QWuygqdyV1feTMtMGmudc7cYyAyqUDUQGZLVCg9ln/TPI05ev5UokHtFfTfaMb8vZ5LW3wTM3H+Ykp1rPS5M7dMYJ6FJhJJVTBTP6G5NhOcgaYCSZaQXFAJtJ3aa1axiX08acyskPhiky04fMcywCf7kWdr0Ml9wCK6/UabQy1a5qBiIDWauPpUNLvb4KZUY1wH2hPhKScUQoWrtya5k1GBkkJsUMlanPRW4aoM5bTKXHaagMspFaYinkOs+ZEosn2NE7rGn9sSIwo+t6FgLO+i4c/wV461b4278d4iSnCkSWjgV0Ww3YmnAqFJlpQ9kNAyYwssFykDXASKIKCjXuGiLxiCHleaeirTtAc70X2xQtsw7rNR0bhQdugB1/gwt/Dkddo89Ax5Gr+lg6tDR42eMPEo5OfhhFbZSfxWgBX0yKMRgZzPdQgLGWWd0BWhqyb89mpFZ6CjXuGgLRAJF4JKvvCyFY1lhmqF7IRhJVUFB2nvQK+Pb2BRmNJTRT0IM8agEIAef+FxzzKXj9F/DiD5JvKVv/UyWKmspdeF0OQwV0qTDqejZaAiMbLAdZA4wkEqKgHBg0U11Q65iDPBWHOBTxmCw92voUnPdjWHODTqM8FD2apLc0eIknJHb2Dmt2j/EYSZZXwWhqer3DEfqD0WkPlKbCSGIsCmr0nDaaQpkR7XO1u5q4FGcgMqDL/ZR6+anK19QgmanPx3oWQn4OrL4OXvlfePl/5bG4qxlNjBKITh6wKb3mtxkooEuFIdezq5qYFGMoYp5AYzIsB1kDjBrRgXEcilT0jYzSG4hMuwWYNAxFlfDI52Dr43DOD+G4z+g1zMNI1WtTDZbq3MnCkJlNl7HWc9tYR4BcD+iBseZZjUBkaYOxFMos+yzbDiFgcZ12SoJ530m12eDC/4OVH4UXvw+v/jyteV7a6GVbV8A05YhGXM9GS2Bki+Uga4CyKIyUcTOyPO9kKIfQpu2BrBiGl/4HNj0IZ/0HnPhFPYY3JXqoFs6rLqHIbtPPQTZyZtMgdW6tKvSUNaLdUONBp2Qp9T5YOhX+sB+nzWkItUIFvR3ktu4A86tLcDntmt1D+d2csg2nHtjscPGvYfll8Py/U7P7NXls0x7UK0u2GDUDRqypN5p9zhbLQdYAQxiGCRhZnncy0mli7w/6sAMVGx+EM/4VTvmaTqObGq3lpgGcdhuL6kqTTpnWGNEAG00+va0rQE1pEdWl2StnGklmWkHJ1OeynpeMlZ3o3ZpwKpQe9UZQK1TQ2z7L5WvaZY/BQGqydgdc9jtYegE1b/4WmH6eWxrkeTFKQJcKI8lMKxSKmp7lIGuApvrzWZIvtaZsae0KUO52Ul82xRxKEv7tT1MZi2M79Ztw2rf0HeAUeJwePA6P5vO8tMGra4mF0QxwqbOUYnuxYbbwUtXLp4MRHTclyM9lnpXWhHoFdKkwWgtO0NdBDkfj7PGNaNrBAgzW09vuhCv+RM38MwDwbX96yo8qwilGWa+pMFoPZLBKLCymwYgGWFG3McuCbesO0FLvndxZkCR49tv4+3dQ7aqED35H/wFOg9ZiISCLp3TqpFBmtB7IIB+mMYpYSCIhsV0NB9mA8+y0Oakorsh5PTfXe2kzSAbZaGqFAB6HB7fDrct63tk7TELKrV4+HQz3HHQUUXblXTgA39ZHYcN9k36szOWkqdxlmPWaCiOp6CmUFZXhtDmtEguLw9FFfz4LjCjPOxmSJLGtK0BzwxRbgC/+AN68BX9ZAzV1K+QTywZCa7lpOHhQT5E31hIjGmAwznpuHwgxMhrPuSOAoTJu41AjEGlpKGW3b4RITJ/WhNNhxPUshNBN7TSd8jU1MGJmUxS5qfbU4atogke/AJsemvRzzQ1eWrv16RKUK4YLRJDXs5kSclNhOcgaYETDANqrvKlF11CYQDg2uQF/9edy256jP46/2EO1wR50oI+KUEtSwlcfB9loBhjk+lgjrOe2NCTR08GIjhuosyPSXO8llpDY7ctvH/akWqER17NOOyKtXcM47YL5NSWa3seo67nGXYuvcQXMOR4e/iy0Hl5u0VLvZWfPMLG48fv4Wv6GdlgOsgYYMaKD/MiZZoNSW3uYw/HOH+H5f4fllyGd/zPDGoZqt/aZoMaxhvZ6bAMacesfjCNn2pp0kLM/9GREmWkFRVwhF1p0bk04FYpaoRHnWa/13NYdYFFtKU67do//SDxCIBow7HOwLzII1/wFGo6E+6+HnS8e8pnmei+j8QR7/MZoTTgV0USU/ki/IQMRPUoNtcZykFVG0Z836oI1g7rNpBm59++HJ78BzefCZb9jOB5iNDFqSANc7apmMDKoqdy0EIKWeu0P6hlRZlqh2l1Nf7hf03lOh7auALMq3HhdzqyvMRQZkh03A86zGpmghTWlOGwi750BjNhrWkGvkiFZEl378gowVmtIhWSiyFUO1z4M1Yvgvmtg35vJzxitNeFU9If7AWOuZ6MkMHJBUwdZCHGuEKJVCLFDCHHzFJ85XQixXgixWQjxspbj0QMjyvIqGE2edypau4ap8xZTWVIkv7DtSXjk8zD/FLjydrA7k794ikKgkdBDbhpkI76ta0jThvbKz2DEgK/GXYOElHxI5IvW7uGcW2YZsde0Qo27hlAsRDCafTatyGFjQU0JrV35res08jxXu6sZiAwQjWsX8AXCUdoHQpoq6IEBREKmodpdTV+4j3giDp4quO5R8DbCPVdCx3uALKBiE/nf8UiFkQORapc8z0ZPyE2HZg6yEMIO/Br4MHAEcLUQ4ogJn6kAbgEukiRpOXClVuPRCyPKPioYrXfsVLR1Bw4a8J0vwgM3QNNquPpecLoBk8yzxvVXLQ1ehsIxuocimt3D6A4F5LeVUCyeYGfPcM4dAYwoEqKglohFc4M37xk5I2eQ9RBX2N4jByiaH9Azsn12TZD19tbD9Y+DqwLuuhS6t+By2plfXZL39ZoKQ8+zzvLpWqBlBvk4YIckSbskSRoF7gMunvCZa4CHJUnaByBJUo+G49EFQz/oXMZX04snJLb3jG0B7ntL3vqqaYaPPQDFB416UrzCiI6bDnLTcPAht61LO717MzgU+XSQ9/iDjMYTOTscRp5ntdZzS72XfX1BgqMxNYaVFYYO+HQQGVLOLGidQTayfZ7UbpTPhusfA3sx3HUJ+HfSXO81fC9kI4o4KZglITcdWjrIs4D94/5+YOy18TQDlUKIl4QQ64QQH5/sQkKIzwoh1goh1vb29mo0XHUw9JaHATJuqdjfFyQcTXC864C85eVthOsekbfCxmFkh0Kvpv96HHwytAE2gFqTah0sjOy4qWQ3lDnansf2Wf6QH4dwUFZsHLVCBT0citbuAJ4iO7Mq3JrdA0xqn6sWwscfg0QM7riINRXD7PGNEI7mvzXhVBja39ApUaQlWjrIkzWnnVgs6QDWAOcD5wD/TwjRfNiXJOl3kiQdI0nSMbW1teqPVEWMKDOtYAa56dbuAItEOx9c+zk5Y/zxx6C07rDP+cN+bMJGZXFlHkY5PXqVWFR4iqgvK9Y0y2EGxy2frYRauwLYhFyzmAtGdtzU2vpPBnR5zMr5w7JaoU0Y73y6Hva5rTvAknovNpu2veP9YT/eIi9F9iJN75MN09qNuqVyQiYS4JptX6Ja6mdnr3H7IRtRZlpBj5IhrdHSShwA5oz7+2ygY5LPPCNJ0ogkST7gFWCVhmPSHF/Ih7fIWDLTCkaT552Mzj2t3F30X9jsDrkurGLOpJ/zh/xUFFdgt9l1HmFq3A63LnLTAC0NZZpmkI0oM63gdrgpcZbkPYM8v7oElzO3degL+QzruFUUV2ATtpztxtwqD8UOW14Vyoza0xv0KbFo7RqmJccDpengC/kMGVRDGjtPjavg2gdxR3q5u+i/2LNvn46jywxfyGfIck6wSixS8Q6wRAixQAhRBHwUeHzCZx4DThVCOIQQHuB4YKuGY9Ico/bmhYNqTYZdsEOdnL/+85SIUWzXPSK335kCf9iYTegV9Gpx01JfynYNG9obtdm/Qr7Xc6sKEtNg3N7pAHabncriypzn2W4TLKkvzXsG2ajz7HK4NA34/MMRfMMRzVu8gbHtRomzhGJ78fSByJzjSFx9H/NEN2te+RSEjdn5yYiy6Qpep5ciW5Fx/Y000MxBliQpBtwEPIvs9N4vSdJmIcTnhRCfH/vMVuAZ4H3gbeAPkiRt0mpMemBkAwxjzbuNuOUx4oe7LqEk2s8vG/8LGlZM+3EjGwbQb55bGsoYjSXY26dNQ3ujioQo5HM9h6Nx9vhGcu5gAcbObIJ6AV9zfX47WRg5gQHaijkpgYnWB/QAw6oVgpwoSmeeHYtO4wel36YmuFM+DzOaXxXIyTCyvyGEMK6/kSaa7udJkvSUJEnNkiQtkiTpB2Ov3SpJ0q3jPvO/kiQdIUnSCkmSfq7lePTA6AZYr2b0GREegrsvQ+rfw2ei38Q577iUXzGyYQD9MptLNT6oZwbHLV/reWfvMAlJnZZZMyUQaan30j0UYSA4qsKoMkOSJHPYDY0cimQHCx0yyEYusYD07fPQnDP4d+fX4MA7cO/VEA3rMLr0McM8G87fyADjFbyZHCNvLUH+t6QPYzQIf/4IdG+i/UO/5bX4spQZDkmSzBGI6NBOT+uG9r6wsQ1wlasqbxmKtmRGLreazqTMtNEdNzUyyEmFMv0PPg2NDhFLGFNmWkFLed7W7mEqPE5qvdqej4nEIwxHhw39HKxyp2c3muu93BNYTei8X8Lul+GB60FDIZdMUFROjTzPZlfTsxxkFTGy/rxCtbua/ki/rCKUb2IR+Mu1sP9NuOz3rCs+Fki9BTgSHSEcDxt+nrWWmwaSDe21cJCjiSiDkUFDG+DkPOfhodXaNUyR3ca86pKcrjMUkR03o8+zP+zPWbVRyV7mow7ZyK3HFDTNII/VywuhcQcLs8xzGo6bsl631p8P5/8E2p6Bhz8DBnh+GllmWsGQO9YZYDnIKmJkmWmFGncNCSmRf3WbeAwe+jTsfAEu/AWsuIy27gAOm2BhzfQZOSOrBykoa0BruWmQAwot6jqT69nA85zPVkJt3QEW1pbgtOdmRo3cSk+hxl2TzAzmQmO5C2+xIy+dLExhNzQK+CRJoq0roFt5BRh/PaeTKDqk1/yxn4YPfQ82PwKPfwkS+ZVQNnIPZAVDJeSywHKQVcTIKnoKhmjenUjIBmbr43DOf8HR1wFyRm5BTQlFjumXpVkMA+jjuDXXe9njV7+hvRkcNz1aY01Fa1dAlQNPZsi4Vbnkvu65bpcKIWhuyI9C2Uy2G52DYQKRmCoHSlOhzLOhn4PuahJSgv5I/7Sfm1XhxlNkP7hDd/KX4bSbYf098Mw/Q447KrlgZBEnhWpXevNsVCwHWUXMkqGAPDbvliTZsGz4M5z+bTjxxuRbbd2BtAy4GeZZTxnklgYvCQl29Khb12kKA5ynXpuBcJT2gZBqLd5g5jhuSieLXMs1MsUMdkOrgC/ZwUKPFm9mmucUdsNmEyyZ2Hnl9JvhxJvg7d/B37+n5TCnxRTzbPJeyJaDrCKmyFDkW57379+XDcuJN8Fp30q+HByNsa8vmJYBt+b5UBQnTe0yCzNkNvOlDrl9LBhRw+Ew086TGvPcUl/KQDBKbyCS87UywR/yYxd2KoordL1vJmi1nvXuYAEHdx2MSCYBX0t96aG2VQg4+/tw9PXwj5/Aqz/XaJTTY4bnoNnV9CwHWUXMkHHLq9z0qz+Df/xYNixnf182NGNsHzvVnk5Gzh/2IxBUuownM62gZ6Z+frWHIrtN9W1rU2Q281RikXQ4VCqxMKrMtIKaOyLNeZKcNrLMtIJWGbfW7gANZS7KPU5VrzsZ/pCfsqIyQ8pMK2TyHGyu9+IbHsU3PC6gEwIu+Bksvwye/3dYe5tWQ50SX8iHx+ExpMqpQt4TcjliXEthQoysP6+QloqQFrz9e3j+P2DFFbJhmXCSOpMm9v6Qn0pXJQ6bQ4uRqoKeMsgOu41FdaWqH3zyh/yGN8Baq49NRWt3AE+RnVkV7pyvZQbHTZGbVqsXMmjXmnAqjN7TG7QL+NItX1MDo/eahswct5aGKXbobHa47Hew5Bx44uuw8UHVxzkdZpjnvCbkVMC4FtmEGL03L+RJbnrDffDUN6H5w3DprbJhmUBbV4Bih425VamdMX/Ib+jtOwU951neBlS3BtkMDgXkRyykrTvAknovNlvuLbPMMM9qyU0DVJcWU1NanB8H2eD22eVwUeosVXU9xxMS27uHaanPrV93uphhnjNJFCUd5MnWq90JV90B806Ghz8LrU+rPdQpMbqaLBycZ7O2erMcZBXxhXyGriNU0NWh2PpXePRGWPABuPJ22aBMQmt3gCX1pdjTcDjMEDmDvjLIzQ1e2gdCBMLqtYcyurqbgpa9Y6eitUs9h8Mf9lPlNkHAp+J6bmko1V1y2lR2Q8XAel9fkEgsocqB0nQwwzxnkiiqLS2m0uOkdaoEhNMNV98Ljavg/uth9ysqj3ZyTDXPVg2yhdHVsBTSVRHKmR0vwIOfhFlHw0fvBadryo8qTezTwejymgp6qgi1JA/qqZdFNkNmE7RVH5sM/3AE33BENYfDF/JR4zJHYK3WPMudLIZJJPTpZCFJkmnshtoORauK9fLpYHQ1WYV0E0VCiGTnlSlxlcG1D0HVQlmS+sBaFUc6OWZKyFklFham2FoCnbb+970J930MalrgYw9A8dTZtoHgKN1DkbRPWJsmEHFV6SI3Ddp0svCFzWGAq136qjUpQYgaDockSaZZz2rajZZ6L6FonAP9IVWul4pANEA0ETXHPKsc8LV1BxBClqXXmnAszHB02BTPwUwSRS0NXtq6UrQm9FTBxx+Fkhq4+3Lo3qLOQCdBkZk2yzzr9RxUG8tBVglFZtoMDkW6KkJZ07Ee7rkSymfBdY+Ae/puE4rDkc4hkmA0SCgWMoVh0EtuGuSG9iXjG9rniCIzbZZ5Hhod0k1uuk3FnrJDo7LMtFnmWQ25adC/k4XicJrl7IKaAV9rV4C5VR48RdofajZDb16FTAK+5novgUiMzsHw9B/0NsDHH5PLLu66BPw7cx/oJJhBZlpB9zNPKmI5yCphhp6xCumqCGVFbyvcfRm4ymVDUVqb8iuZNLE31TzrKDc9aUP7HDCDzLSC3uI3rd0BKjxOar3FOV/LbOs5Eo8wEh3J+VpLxrKZrV1DOV8rHUw1zyoHfK0ZlK/lihlU9BQykUFuySSgq5wP1z0K8SjceQkMtuc0zskwQ0tZhWp3NQORAVPKTVsOskqYoWm3gma9Cfv3wJ0Xg80hO8fls9P6WltXAG+xg8byqWuUFczQm1dBb8etRUUHWdkSM4MBVup39Zrnti7Z4RAi9w4WZhAJUVDWghrZTa/LyawKt+qdV6ZCWRtmmmc11nMkFme3b0QXgRAY57iZwD7XuGvSThQ112XYmrBuKVz3MIQH5EzyiLolBmbzN8wqN205yCphqq0lLRy3oQ644yKIheXouXpR2l9t7ZJ7dKbjcJgqE6Rzk/Tmhkka2meJqQywjnKmkiTR2h1QzeGYyQFf80SFMg0x03pOBnwqrOddvSPEE5KuPZCh8OxzucdJQ5krs/XatBqu+QsM7IO7LoXwYLZDPQxTzbOJ5aYtB1klzJQJUr1594hf3koK+uWTvPVHpP3VpMORpgGfqZmgdGhR8aCeqQIRHQ1w11CYQDimmsNhqnlWOeBrbvCyq3eEaDyhyvWmwx/2YxM2Q8tMK6hpN9Ssl08HU9V6ZzjPzQ1Z7NDNOwk+cjf0bIU/fwRGg5kOc1LMlqkHc8pNWw6ySpjKMKj5oAsPwt2XwsBeOVqetSajr/cEIgyGomkbcGXMRpaZVtA/gyzXdaqhqGeqzKaOctPJllkqZpDtwk55cbkq19MStQO+lnovo/EEe/251zSnwh/yU1lciX0SkSKjoWbA19oVwGETLKgpyfla6eAL+QwvM62QqX1uqS9le/cw8UxbEy75EFz+e9j/FvzlWoips8NndJVTBTPLTVsOskqYQWZaQTW56dGgHBV3b5Gj5PmnZHwJxeHIpAdyRXEFTtvkgiNGwuP04HF4dGtBlrKhfQaYyQBroT42FUoGqVktkZCQ8WWmFSqLK7EJm2rz3JyUnNa+DtkMogoKikOhxjy3dQdYWFtCkUOf9WWWloWQ+U5qc72XSCzBvr4sssDLL4ULfwE7X4CHPg3xWObXGIep1rNVYmFhlqbdIDc+z1lNLxaBv3xMjoov/70cJWdBpg6HWdTdFPRU00uroX2amEUkREEvsZDWrmHqy4qp8KgTCJvJbqgpNw1yX16b0KfVmxlkeRWUgE8Nu6FnBwswj0gIZJ4oSnayyHaH7ujr4JwfwtbH4a9fgUT2pUVmWs+lzlKKbEVWicVMxiwiIQo59SaMx+ChT8HOv8NFv5Sj4yxp7QpQU1pMdWl6LbNM57i5qnVp86aQVkP7NDBdIKKTnGkmio/pYBaZaQU1Az6X08686hJVSoJS4Qv5zGU3VAj4RiIx9veFdKs/BvOonEJmctMgB3RC5HjG48Qvwmk3w/q74dlvQ5Z22kyBtRBCd7VTtbAcZJUw09YS5CA3nUjA4zfB1r/Cuf8Nq6/NaRxt3QFaGtLfrjad46ZjBhkyaGifAjMZYJDnWesSi3hCYnuPeh0swJyBtZoBX3N9KW092jrIkiSZz26oEPBt71FP8TFdzLT1D5nZZ0+RgzmVntx3PE6/GU64Ed76Dbz031ldwnTzrFMCQ20sB1klzOZQZFViIUnw9Ldgw71wxnfghC/kNIZEQqKtezijjJwZM8h6Rs4ZNbSfBlMaYI3neX9fkHA0oVoHi6TjZqJ5zrk0awIt9V72+EYIR7UTERiJjhCJR0w1z2oEfEpmXi8HORQLMRIdMdVzMNN5bq735r7jIYRcarH6Wnj5v+GNX2f0dTPJTCtYGeQZTCQeMY3+vEK1Kwt1mxf+E975PZz0ZfjAN3Mew4H+EKFoPO2MXCgWIhgLmu5BNxAZIJbI7VBGuigN7XMx4tG4eWSmFRT1sdH4qGb3yETxMR0UmWml760ZUFNuGuTWWQkJdvZqd1DPTK0hFdQI+Fq7A7icNuZU6nPQ1ky9phUyneeWhlJ2+0YYjeXYmlAI+dDeERfLpRbv3pn2V82kcqpQ466ZGRlkIcQNQohvCSHO1mJAZsRMvUwVMpab/sdP4NWfwjGfhA/9p/wLniOKw5FuRs6sBlhCoj+sj4qQ0tA+64MkmKsJvYLi/PSFtav3VoKOJSp2sABzzbOactOgbu/uqTCl3VAh4FPq5W223G11OpjRbmQiNw1yBjmWkNjtU2H92+xw2R9g8Vnw+Jdh08Npfc2M81zlqqIv3Gc6uelsMsi1QDeQvlRagWMm/XmFjFrcvP17OXt85FVw3k9UcY7h4ENxSV36HSzAXIZBb7EQkAOOXEosTDnPOvTabO0OMLfKg6fIocr1TDnPKq/n+TUlOO1C01ZvZpxnNQK+1i79O1iAueZZkUEeiAyk9Xm1StiSOIrgqrtg7gnw8Gdh+99SfsWsAV8m82wUsnGQ5wMrgIXqDsW4DEdibGqfWibSTKo2Cmk7FOvvhae+CS3nwyW3gE29qpzWrgCzKtx4Xen1NDajAVYedHr1QoaxhvY9WTS0H8OsBhi0DURU72Bh4nlWaz077TYW1pSyXY8MsonsRq4BX//IKD2BiO4dLMBc6zlT+7ywphSHTajbeaXII4ts1R8hC4nseW3aj5sx4Etln8PROJvaBzU9i5ANaXk7QgiXEOLrQoiHgWVAD/B/mo7MQPz25Z1c/OvXiMQm/8crxAULwJbH4bEbYeHpcMVtYFdXnKMtA4lpMKcBzoeKUHO9l9FY9gplZt4R0SoQGY0l2NU7klHHlVSYSZ5eQYv1nOuORyr8YT8CYQqZaYVcA762DMvX1MBM6psKmc5zkcPGgpoS9derqxyufRgq5sriWx3vTfnRQnwObu0c4oJfvsorbb16Disl6aYD7wSWA78EvgcsAX6m1aCMRnO9l3hCYmfP5A6HmWSmFVI+6HY8Dw9+EmYdAx/9Mzhdqt4/Gk+wszfDDhYzwACrgRJ0ZFvXaeqAT6NAZLdvhFhCUr0HsllkphW0WM8t9aUc6A8xHNHmIKs/5KfSVYnDpk5pjB5kqvI2EbUPlKaDP+SnvLgcp8qJFC3JJuBrblBHjOkwSmrg44+BpxLuugx6tk36MTOpnCqkshvKfOrZkjAd0nWQWyRJ+pQkSS+O/fdZoFnLgRmJVA6HmfTnFUqcJbjsrskzbnvfgPuuhbql8LEHoKhE9fvv8Y0QjUuZ9UAO+SkrKjOVAfY4Pbgdbl0zyEpD+2zrOhUD7Ha4VR6ZdhTbi1VTH5uMVg0MuJlkphUUuWlVM8hjTpxWZRbKPJuJXEtZWrsClLkc1JelJ8CkBmbr6Q0H5zmTWu+Wei/7+oIERzUI6Mqa4LpH5d3auy6B/j2HfcRsrSEhdcDX1j2sa8eVdEnXMr8nhDhB+YsQ4nhg+kKZAmKBcpBkCgNuxgWbVLeZ6FB0vAd/vgrKZ8O1j4C7QpP7b+tSJKbTdzjMJsaiUOXKUpQlSzxFDuZWebLPIJtILnY8avfoHU9bVwCHTbCwRr0SCzPaDUVuWtVeyDnueKTCFzaXih7kHvAp5WtCpQPV6WDG9ZyUQc4kg1zvRZJgR49GB0urF8lOciwMd14MQ52HvG1G++x1enHanNNmkJfU6ddxJV3SdZCPB14XQuwRQuwB3gBOE0JsFEK8r9noDILTbmNRbemUhflmjJxhkh6QPdvkrR1XhbzVU1qr2b3bugPYbYJFtZllkE05z3lokt5cn31dpxkdChgLRDSa59buAAtqSihyqJftNfV6VjHgm1PpweW00datjcNh6nnOYj1LkqR7BwsYc9xM1NMb5ERRpoF1spOFlhLp9UfAtQ/BiA/uuhSCBzPcZlzPqeSm87Fe0yFda38usAA4bey/BcB5wAXAhdoMzVg013uTWc+J+MPmi+hgTEUoPGYY+nbL0aq9CK5/DMpnaXrv1q4A86s9uJz2tL9jxgwF5Edms6Xey27fyJQHS6fDjAYYtJX1busOqH7gyRcyZyCitty0zSZYUqdRXSfyzpMp7bMrOzW97qEIQ+GY7vWcpl3PGdqNuVUeih02TXt3AzBrDVx9H/Ttgrsvg/AQYPLn4CQO8kBwrOOKigeg1SItB1mSpL3T/af1II1AS4OX9oEQgXD0sPfMJn+skIzohjpk5zgegY8/ClXad/DLtIMFmNxx0zuD3CAfLN3Vm3knC7MaYK1KLIKjMfb1BVU98CRJkmlLhrQIRJrrvZpk5ILRIKFYaEbNc1KASceMnBlVThUyVdOz2wRL6ktp1WjH4xAWnApX3QldG+Heq4lGArLMtBnneYr1rOwcLTFxBnnGkzxIMqHuKBwLm05mWqHaVc1AeID4nRfLWzjXPgx1yzS/b2g0zt6+YEYGPDnPZjQM2ch650i2CmVJmWmTznNgNKC63PSOnmEkSV2HY2h0iGgiakq7oQQiaslNgyzh2xOI0D+i7r+dGXtNK2QrN92WxfmOXDH1PGcRiDTXedXthTwdLefCpb+Fva/Rd/+1gEnneYr1nI+OK+liOchpknQ4JvxSKL9YZtzCq3GUkCBB/9AB+Nj9MOtoXe6rOByZ/EKYep7dNZnJeqvAgpoSHDaRcVbOjK30FLI5kZ4Oyhyq2sHChK30FNSWm4aDzpza29Zmnucad01WctOt3QFqvcVUlejXVSnZm9eE81ztrs5YBrm5wUvXUJjB4OE7yppw5BVw4f/h3y/3RqgurtTnvipS466hL9xHQkoc8npbVwBvsYPGcnVbyaqB5SCnyexKN54i+2EHn8yo0gTA6AjV7/wJAP95/w3zTtLt1q1ZNLE3e4YC9BULKXLYWFhbkrHDYXaHAtQXC2nrDlDssDG3Sr0WRGYUY1HQoheyZg5yAdiNTAO+tu4AS3WuPzaz3chUbhrGJcx6dMoiA6y5Hv9xnwKgeu0dkEik+IKxqHZXE5fiDEYOVSVuHTvfoWfHlXSxHOQ0sdkESyapkzOlAY5F4L6PUd3TCoC/domut2/rDlDksDEvA4fDtIEI+VHTg+w6WZjacdNonlu7h1lSX4pdxRZEprQbY2gxz43lLrzFDtU7WZjdcYPM5jmRkFSXRE8HU6/nLAK+Zj06WUyCb57cbbdm21PwzM2gYpmT1ky2niVJYnse1mu6WA5yBrTUlx6W4TCdAY5HZYW8XS9Sffp3AH1V3kA2KotrS3HY019+hbD1n49OFvv7QoxkoFA20x506dCmQQsi09mNceQqYjEZQghNJKeV9VzpMt+WdDbreX9/kHA0oXs9p6ntRhaBSFO5i9Jih/adLCaQtBvHfAbe/i38/fu63j8XknYjfNBu9A5H6A9Gaa43XgcLsBzkjGiu9+IbHsU3HEm+Zipd9EQCHr0Rtj0BH/5fatZ8ElB/SzoV2XawAKhym0sRC/KYQW6Y/GDpdFiO26EMBqN0DYVVdzj8IVlmuqK4QtXr6oFWgUhzvdzqTc3Df/6wn4riCpw286hvKmRTMqRkNNVuSZgKf9h8MtMK2cyzEILm+lLdM8hJldNz/hvW3AD/+DG8+jNdx5Atkz0H28bUXo14QA8sBzkjJlN8Mo38sSTBk1+HjffDmf8Gx38Wj8ODy+7S1XEbDEXpHAxnnJHzh/14nV6K7fpJp6pFibOEYntxXjLIcPjB0unwh/yUOEtMJTOtUGwvxuv0qrqelRpDtR0Of9hPpavSVDLTClrITYO8QzcQjNIbiKT+cJqYtTUkZHd2QXk2LanTNyNXCPOcaa13S4P6AV0qkip6QsD5P4Ujr4Tn/wPe/r1uY8iWydZzNueR9MR81jmPJB3kcQ6HKXrGShI89x1Y9yc45etw6jeAaeSmNWS70tIlw6bgZu01DWPznGXLplyYUyUrlGWybe0L+Uz7oAP1e/QmO1ionOHwhXymrPMGWW66orhC/QyyUtep4ra1WcUrIDu56dbuYeZUuSkpdmg4ssMx83rORm4a5B2P/mAU37C6rQmn4xB/w2aHS34DLefDU9+E9ffqNo5sKCsqw2FzHLKet3cHqC4poqbUmIkvy0HOgNrSYio9zkMMuCl00V/+H3jjV3Dc5+Ts8Tiq3dmpNWVLtk3sTRGITIPegQjIDe2Vbet0KYh5VjOD3K1NCyIzZ9xAG1GWg50s1DuoZ/b1nOk8t3UF8rJd7Q+bdz1nmyjKttd8LhxmN+xOuOI2WHg6PHYjbHlMt7FkymSJotbuAEsMWn8MloOcEXLd0aGdLAxvGN74Nbz0QzjqY3Duf8tbM+PQWwa5rStASZGdWRWZbeGb3aHQOxBRyFShzPTznKU871S0dmnTgsjsjpvactMANaXFVJcUqSrAYPb1XOWqSjvgG40l2Nk7nJeOAGbe4YPsAr58dLKY1G44XfDRP8PsY+HBT8GO53UbT6aMD0QkScpbQJculoOcIXLd0XCy7sjQhmHd7fDst+GIi+HCX4Dt8H9uvWWQt2XpcBh6ntMgHyUWIGc5MlEoM/OWNKibqZckbVpmSZJkesdNqx2RbFoTTkUwGiQYCxp/h28aMpnn3b4RYglJVUGbdFDm2dR2Iwv7nAzodMogRxPRqWWmi0rgmvtlJdz7roU9r+kypkwZP8/tAyFGRuOGrT8Gy0HOmOZ6L8ORGB2D4aT8sSEN8PsPwF+/CkvOhsv+APbJa9Jq3DX0h/uJJdJvBZYtisORacQYiUcIRAPGnOc0qXZX0x/p11VuGg5mOdIx4tF4lKHRIdM/6NSSm1ZaELWovAWYlJk2+Tz7Q37VDyi1NHjZ3h0gkcj9umbuyKKQSWYz2/K1XDFzC06FbAM+NQO6VCg7NlPOs7sCrnsEKubAnz8C7e/qMq5MGJ+Q295t7A4WYDnIGdOS3FYZMq5h2PYkPPI5mH8KXHUnOKaWHK12VSMhZaQilC0Hex5m1+LNcPOcAdmoNalBJnVyhl3PGaAEUWpk65UWRFp0sADzO27heFhVuWmQHY6R0TjtA6Gcr1UodiPdgK+tK4DdJlhYW6LDyA5iZhEnhSpXFf3hzBMYLQ1e2rr06WSRlt0oqYGPPwaeKrj7Mujeovm4MqHaVZ2Um1YCiyWWg1w4KM5da9ewMQ3Dzr/DAzdA02q4+l5wTl/rq6cMsuJwZCqDash5zpB8iYXUlxVT5nKkleUws4qegprzrMyZFj2QweSOm2a9kOVs/XYVJHwLIRDJpAVZa3eABTUlFDvsWg/rEJR5NrPdqHHXEJfiGScw1AzoUqHsJKSc57Im2Ul2uOCuS8C/U/OxpUu1u5qYFGMoMkRbV4CGMhflbuO2yLUc5AwpdztpLHfR1h04KBJiFAO89w2472NQ0wzXPgjFqR/sambcUpFtz8NCMMD5EgsRQoxlOVJ3BigIh0LFeW7rClBTWkS1yi2IrHmemiXjEhC5UhABXwbznE35mhrM5IBPCej0qEPOaJ6rFsB1j0IiBndeAoMHNB1buiT9jbCftp6AoeuPwXKQs0LpDGCoLemO9fDnq+To8bpHwJ2etKoy9vHyj1rR1pVdz0NTqRVOQb4yyHCwTi7VNmAhPOiyUcWaim3dAZbUqW/AC8Jx02g9j09A5IqZZaYV0l3PwdEY+/qCeetgAeZUOVXINuBTM6BLRcaBdd1SuPZhCA/AnRfDcI92g0sTZZ57gz62dw+rfr5DbSwHOQtaGrzs6B2md8QgjlvPNrjrUnBVyFsrpXVpf1XPEottWfY8LAgDrOM8T6SlwctgKEpPCoWyQshsKmskV8ctkZDYnoUkejqYWWZaQQtZb4VMWxNOhZllphXSDUR29AwjSejewQJm1jxPRM2ALhVZqZw2HQUfewCGOmQfIdSv2fjSQZnnVl8nkVgiLwFdJlgOchY013sZjSXYM9Cdf/35vl1ydGh3wscfhfLZGX1dL7lpxeFY2lCW8Xf9YT/eInPKTCt4nV6cNmfeMsiQul+nL+Qzrcy0glpy0wf6QwRH4xnXy6eDmWWmFbSSm4aDCYh4jp0szN5KD9IPrJXf7eY8ZOTMrr4JuZUaqhXQpSLr9Tz3BPjoPeBrg7uvgIh+fZsnooy/rbcD0L/jSqaY10LnEeWhuX+oO7+GYbAd7rgY4qNy5rh6UcaXUFSEtC6xUByObDIchWCAhRDUuGvykkFuTrOTRSE4FKCOKEu29fLpUAjzrJXcNBxMQOz159Yhw8zyxwpKwJdqPbd2BXA5bcyr1reDBZi/Rz1kLzcNBwO6WDyhwcgOkpO40KIPwpW3Q8d7cO/VENX+UOFklBWX4RAO9g52IwSGVtEDy0HOisV1pQgBvcE8GobhXjlzHB6A6x6WG4RniR5iIdu6hoDstgALwQBD/sRCqkqKqPUWp8xymF3dTUENEYvWsfWqRYajYNazRnZDrYNP/rDf1GVZCums59axenm7TV3Fx3QoBLuRrdw0jAvo+oIajOwgOQfWS8+HS2+FPa/C/ddDPKre4NLEJmxUuaroGu5lbpUHT9Hk+gxGwXKQs8DltDO/uoTB0T5qXHnIUIT65XqiwQOyek7T6pwup4fcdFsOTez7wn2mzwSBdupj6dBS703pcBRCxg3UCURau4eZU+WmtFh9A+4LF8Y817i02RFREhC5HnwqhEw9pCc33dqlvuJjuhTCDh9kbzeSveY1LrPwhVVQOV15FVzwM9j+LDz8WdBZuAoU0Sy/oQVCFDR1kIUQ5wohWoUQO4QQN0/zuWOFEHEhxBVajkdNmutLiSQG9Y+cIwG5jsjXKtcVzTsx50vqsfW/rSvA7MrsHI6CMcA6y3qPp7lelkifTqHMH/JT5TJ/xk2N9dzaNaSJAS8EmWkFrQI+T5GDuVWenDLIhSAzrZBKTa9/ZJSeQESTevlUBKNBQrGQ6TPIkJlq4XiUgK6tW7tOFtFElMGISv7GMZ+As78Pmx+Gx78ECW1LQyZSWVxFKDGYl/WaKZo5yEIIO/Br4MPAEcDVQogjpvjcj4BntRqLFiyqK0KyhSkr0rGF0OgI3HOVXEd0xZ9g8ZmqXLbaXa253HRrVyCrX4hIPGJcOe8MGa8ipDctDaWEonEO9E9eezYaHzW9zLRCtbuaQDRAJD59146pGI0l2NU7oklHgEA0YHqZaQWt5KYhdwnfQujIopAqENk2lrnMVwcLMHfLQoVsAz53kZ15OQZ0qUgpM50pJ30JTv82rL8HnvoG6KAEqOCkHGEfpiWLA/t6o2UG+ThghyRJuyRJGgXuAy6e5HNfAh4C8t+kLwMaq+StidioTociomG47xrY/yZc/ntYdoFql9ZabjoSi7PbN5LVFmAhqOgpVLuriUtxBiODut872cliCiOuKHUVxINu7CGiPFQyZZdvmFhC0qz+GCiITH21u5pwPEwwpn7tZUu9lz2+ESKx7LaAC6Gnt0IquenWHM535EohzbMiN51NAiPXgC4VyiF6Ve3zad+CU74Oa2+DZ/5FNyc5Fi1BOIbz0nElU7R0kGcB+8f9/cDYa0mEELOAS4Fbp7uQEOKzQoi1Qoi1vb29qg80G6rKwgAEQx7tbxYbhfuvg10vw8W3wIrLVb28muIKk7Grd4RYQsq6gwUUhgHOl5oeHGxoP1WWo5AedLmuZ+UwYzYtCVOhjKnWU6v6tfVGS7uxpL6UWEJity+7ThaFlkGGqeWmW7uHqfA4qfPq3wazEBMY2SSKWhq87M4hoEuFJuJCQsCZ/wYn3Ahv/Qae/w9dnORgyI0Qcaq82u1Yq4WWDvJkx2knzv7PgX+WJGnaVSVJ0u8kSTpGkqRjamuN8WBxFsuG2zeosVGKR+HBT8D25+Ti+qOuVv0WWotY5OJwFILqmEI+1fRKix3MrnRP2cmiEB2KbOe5tSuAwyZYUKP+7lAhBSJaBnxKMJ1tf9lCshupAhGlXl4I/TtYKGOaCfM8Hc31XuIJiV29ubUmnArN1rMQcM4P4ZhPwWs/h5d/pO71J6FvSPaZBkfzK1qSDlo6yAeAOeP+PhvomPCZY4D7hBB7gCuAW4QQl2g4JtUYiMjRfLvfrt1NEnF45HOw7Qk490dycb0GJB90Gjlurd0BnPbsHI6CctwUWW+NMvWpmK6TRSE96HJ13Fq7AiyqLaXIob55LKh51jDgW1hTisMmsq7rLASZaYXp1rMkSbR1D+elvALkf3uBKPh5ToUy/1rVISd3UrV4DgoB5/0YjroWXvovePVn6t9jHJ198kH9fHV0ygQtm9C9AywRQiwA2oGPAteM/4AkSQuUPwshbgeekCTpUQ3HpBryghXs7tIoak8k4LGbYNNDcNZ34YTPa3Mf9MkgL6zJzuFQDEOh1GxCfkosQBa9eGV7L9F4Aqf90H+LgiplyVEGubU7wOq52jzw/WE/DuGgvLhck+vriZbruchhY0FNSdat3gpB/lhhukDkQH+I4Ugsbw6yL+Sj0lVZ8POcivnVJTjtQjNFPV/Ih9epoZqszQYX/QJiYbnUwuGCE76g+m36R0bpH3JRUpu/52AmaJZBliQpBtyE3J1iK3C/JEmbhRCfF0Jo5+3phC/kw2Xz0jkYZSiscsNtSYInvw4b/iyfND3lq+pefwIehwe3w61ZZrO1K5C1AfeH/JQVlVFkL1J5VPpTVlSWN7lpkDPI0bjEnknqOv0hP16nF5fDlYeRqUuRvQhvkTereR6OxDjQH9KsBZEv5KPKXWVqmWkFRW5aK7vR3JC6d/dUFEorPZg+4FPmJ18ts3whFXrzGoRcAj4loNMyg6z5PNvscOlvYdmF8MzN8uE9ldnWFUCKy4fzzJBB1tRKS5L0lCRJzZIkLZIk6Qdjr90qSdJhh/IkSbpBkqQHtRyPmvhDfir/f3tvHt/Gdd57/w4WYgdBEgDBfRMlkdRCS7IsW5adON4d27GTJrGzOXaaum2ub902dfqmb2/avL1p7k2um7RJc9vYiZMmcezESmwn8b7Ji3ZTK0VK4iLuBLgAIPZl3j+GA0EkCAyAGQAzON/Phx+RwCwHRwfPPOc5z3l+GnbAnhXyS8Ew7I7SIz9id5he+zfCXXsNCCFsMXoRBqwnGMHEYiB3B1kGKk0ciX4uYi1kIHUlCzk96IDci/7nI2jDB7nU9AbElZsG2And2IIf/nD2m3nkInoDXJSbTjWeuRJvxRIJmQvMFUcsSwRMahMbwMjRPotZyaJg41mpAj76ONB5E/D8w0DfzwW9/MC0B0xMBwVRlncEWe64gi44DOyGwXwVnxIwDLu8ceDf2Z2lH/p7Nj+oAIglYsFNHnIVXZBTJAgorppeu80ApYKkVHySk0MB5F70/+KGUnEcjrnAnKz6WUzxm/W1RjAMcG42e/sqF5lpjrXsxsC0Fw0WHUza4qQ4yMluEEJYkaEc7fOGWhPG5gPwhYSvzlBQNVlVBfDxnwDtHwR+++fACeHilgMzXlj0GtSIFJATGuog58hcYA4NZjsMFcpEHcq8efOb7E7SHQ+wO0sLuCvZqs3NochEvkXs54IycygEkEHOFVYiXZ8yyiG7ftbVrFkWKx0D017oK5RosOhEaJUMHWQRx3NixSOHvE65TazXWnkanMk9fS1fGIahK09JrF/+fzibw4QuEwXvZ7UW+OTPgearWEnq/ucEueyZaS821JpQo6sp2mb1bKAOcg5whsGms6FTqGWVtx9ld5D2fprdUVrgkj25OhSZGJj2JkqM5cJcQD4pFkBxI8gAO1FJJYkqp0gQkPuDbmDai/W1JigUwn//4kxcdhORfCJumWipMaBCpcg6r1NOMtMcqVZEIrE4zjuLV8HCG/EiHA/Lqp/zsc/cKmmqFbp8CEQDxVGTrdAD9z4JNGwHnv48MJif2HE8zmBwWVG3mIGibKAOcg4sRZYQioVQo6vBhloTBqa9+cmt7l8u0r3pY+xOUkXh/1vEkptmHQ5jTjU6g9EgliJLsooEFVNuGmCjciNzPgQjF0uP+yN++CI+2U1EcpGbHpzx5pwOlInF0CJiTExe/Syi3LRSQdBpN2IgxYQuHXIqDcmRynEbcvoQiTGijddMyEkkhCOfyGZTtR5atULwPOSi1k7XmIBP/wqo7QF++Rng/Os5X2piMQBfOIYNDnPRA0V8oQ5yDiTXJNzgMGHBH4FrKbUMaEYOP87uGO26g91BqhCxrnIarForGDBYCApXvJthGAzksQTIfYHkFqGIxqPwhARKy8mSDbWmVXmdcuxn7rNkE6VwekOY84VFi8iJWsu0SIgpNw2w4zXbTdByEmPhSCU3faaIEtOAvGp6c9Roa3KWm2YndLlXXlmLovezthL4zF7A2gn84h5g5J2cLpOcbsntXRBjYi0k1EHOgeQBm1eB8Pf/i90puv5m4KOPsTtIi4QYRf9nvSEs+iN5bdBLbpscSDhuRZo9r0+hUCZXhwLIzkEeyDNfPhMJNSyZ7PoH8q85nYnOWhOm3EG4A/xLacoxgpxqwjc4wyo+dtiMRWmTXMdzrnLTwHIlC4FTLEpCFVJfDXzmN4ClGfj5x4Gxg1lfYiBpQlejrUEkHoE3Ik7VD6GgDnIOJCJuWmtiI8mZbL8UfT9nhUA6rgP+6Al252gREaPo/0WHI3uJaUBe4hUcYsrz8qGlWr8qr7MkDLDA5DLh45ZGxY4gy6mfOedIrPG8wcE6f9lEkctlPA9Me9FuM4ii+MgHOY7nfJ+DGxzG5cBQjivKKSiZCZ/RBnz2t4DRDvzXR4Hxw1mdfmbai8YqHYwaVdFFs/hCHeQcSDbAVmMFqg0V2SXmH3sS+M2fAe0fYHeKqosvziCGDHK+EbmSMQwCIqY8Lx9USgXW2YyX5MnJ8UHHfZZsxvPAtAdWYwWsRnHUqsrFcROSdLW710JOMtMcqSbWZ5Y3lBYLV8AFlUIFsya3AEgpku9zkPv/SLUROldcAVfpyHmb64DPPQ/oa4Cf3gWMH+F96sDyBj2g+IEivlAHOQeSDQMhBOtrjTjD14AffwrY+yDQdg1wzy8AtTjlpLJFjKX/M9Ne2EwaVBtyi47TpX9x2OAwXTKhcwVLyAALBCdNnlWKxcySqA6HK+CCRqmBQW0Q7R6FRuxIUINFB0OFMqsAhJxkpjlWTvjEVnzkgyvgQrVWHqqQHPk+B7lgkJAb9UpOzruyAbjveTbt4qd3ARNHM54SisYw5PIl+ieRmhUs7VJv8hnZBWSlYdjoMGNw2otYPEPC+YlfAXv/BGi9GrjnyZJxjgFAr2blpoV80A3OePMy4K6Ai5VnVpaIYRAAs8YMFVEVdQfv+loTJt3BhEQ6Z4BViuLlwAtNtnLT8TiDsyLXlOVKvOVS0aVUsWgsICCi5SATQrDekV0pTbnVQAaQED3hxvNgIh2oeNFbuZUsBPKf8DnMWpi0KkFLvZVkrenKRjaSrLMAP/0IMPl+2sPPz/oQizOJ8ZrLJupiQB3kHFhZM7arzoRAJIYL82l2cp/8NfDMHwMtu4F7f8nWGCwxhJSbjsUZDM7ktwRYUPWgAqEgiqLKTQMX8zo5Iy63Gsgc2ajpjS8E4A/HRC2ZVZIPujxRKVSo0laJOuHb6DDhTBalNOU4nlfKTSfS14qYYiE30RsgSW46x/FMCMGGWlOiwogQlOyEz9LERpK1lcBPPgJM9q156MAM2x9cwMyisUApAblp6iDnwErD0FXHzor6p9b4UpzaC/z6j4HmK5ed49JcYs1VnjcVo3M+hKLxvCJychMJ4Sh2DciVeZ1yfNAB2YmFFKJklivgktWOfw4x5aYB1r4u+iOY9gR5HS83mWmOZLvBKT7mKsAkBHKciBBC8h7PG+uym9BloqQj9ZZmNpKsMQE/uROYOpbysDPTXqiVBG1W1vdREAWqtFWiiJMJCXWQc2ClYVhfa4KCrOEgn/4t8KsHgKadwL1PlaxzDAgrG8stAeabYiFHh6JaV9wI8sq8Tjk+6IDs1CG58dopYkRO1hMRESd8XADizBS/ZeuSjbjlSbKIhZiKj3yIxWOYD87Lsp+tWmte9rmrzgxvkM0RzxdOtbek7UZVCxtJrjAuO8nHVx0yMO1Fh80ItfKiyykFNT3qIGdJnImvMgxatRLtNiP6Vxrw/ueAX90PNO4APvU0oClOvUq+CCk3fWbaC0KATnseEeSgTCPI2uLq0CfndXIGWI79nM2KSP+0F03VbAkiMYjEI1gMLcqyn8WOIHNR/dNrrdAlIUeZaY5k1cIBERUf+cCpQsqyn/Nc4cu4opwFnGpvyfdzVSvrJKv1wE/uAKZPXPJ2cgULjmKvpPKBOshZspZh2OgwXfqFOPM74On7gPptwKd+xS5BlDhWnVUwuen+KQ/aagzQVeSmDBiIBmQnf8xh1VkxH5wvqooQJ5HuCXsQiUdkGamv0dYkHjCZ6J/yoEvEDU8LwQUwYEr/QZcDXMRNrPFs1qrRWKXj5XDIsTQkB+dQOJdCmBdR8ZEPciwNyZHvhG9DrQmE5KCNkAJJqW9Wt7FOskoHPHEHMH0SAOD2RzDlDq7aUEojyDJkLcPQVWfGxGKAVXwa+APw1OeAul5Wx1wrjTqRNdoaweSm+6e8iZl0LsixxBsHpyLkCRdHbhpg04IW/BGcm5tm2yQFA5wlfHekB8IxjLh8eY3XTEjqQZclYstNA2ylID4Oh5zthlVnhTfsxYkJ9jMWs8SbrCciWnYlNRe5aQAwaFRoqdYLEkGWnFhWdfuyk6xhI8kzpxN7XVJFkF0BV0nLTVMHOUvWetB1Lz9cpw/tBX75GcCxGfjMM+wOT4kgVNF/bzCCC/P+vAy4rA1wkcVCgIvL1semxgDIMxLEVyxkYMaLOIOCOMhy7OdCqGJ115kw5FxCMBJLe5ys7cayk/T+BPudFXO8ZkKOojcc+cpNA+z/jRAOsiT7uaYDuO93gEINPHE7ps6ydZJXjlerzopwPIyliHCiKkJDHeQsWWvAbqwz4QbFYax7/U8BxybgM3sl5RwDuamPpYIrQZSPAZd7xA0obg3IRCWL2QkAEjPAPOErynJm+UHWLaLDIefIphgqnCvpqjMjzgBnMyiUufxsG2w6m2htKRac3Tg9MwGHWYuqHAWYhIBO+NLTVWfG6LwfvlB+6YrchE9y/VzTwUaSFSpcd+AL2K6bRq35UoXSXMScCg11kLNkLcPgmHgJ36/4Dia0ncBnfsMW0JYYQqm8cTPnrvo8HGQ5P+i0xY8gcxLpw4tsioXkDDAP+Ebq+6c8MIhcMkvOkU0xVDhXspHnxidnwJmoNS43uH4+Pz+N7jxsqxC4Ai7oVDroVaVXzz9fhLDPGx0mMEz+inqugAsqokKlRlrBNgCAtRO473lE4sDj5B9AZvsvebsUVlIzQR3kLJkLzK02DCefAXn68xhWr8cjun+QpHMMCDdgT095YdaqUF+pzfkazoATBESWD7pSiCATQtBVZ8Kkd5aVTa+QRp58NnBjJ1Nks3/Ki411ZlFLZrkCLhjVRuhUpaOeKRSFGM8t1Xro1Er0ZxBg4FROlYrcNgeXMpzjNu1zoquuuJu+XQEXarQ1slKF5BAqggzkX8nCFXChWiddOe9oVQfujfy/IEo18OPbLqluIdSKtZhIs9eLiCu4wjAcfxr49QNA0xV4pudf8b4znllyukQRSm66f8qDrjpzXsaTe9DJSf6Yo1RUhLocZsyH5mDVykv+mKNCWQFzhTltPzMMg/5pj+gOR8nXMs0DTm5azEiQQkGwYWWloBQ4A05ZrjoBF+WmGUV+G6CFQK41vQFhHLfGKh1MWpUgDrKU07KGXT6ciTrw7p6fAGod8MTtCcU97nvq9DuL2ML0UAc5Sy550PX9Atj7RVY++tO/QnujA8FIHCNzvuI2Mg/yrdEbizMYmM7fgDsDTtj08nzQKYii6LWQAaC73gxG4YVRXVXUdohJplqb4wsBeINR0R2OucCcLFdDgIty02KPZ3bjU3qFMqffKVvHTaPUQKMwgKiWiu8gl7K6W57kKzcNLK/QOcyrtRGyROoTEa52eUvnZnbjXoWRrW4xcQQWjQUqhQrOAHWQZUNC/vjoT4Hf/CnQuiehkNctYIHwYpFv8e7ROR8CkVjeG56cfvlGggDAqrdiNjBb1DZ015tBVF6oGPmlV3BYdelVsbjSYRtFrIEMyDuCDIgvFgKwlSzcgfSS066AS7YTawCoQCVU6iW01hRXkVWu4kKAMHLTANBVx9aaj+exoix1B7l/ipWY7rAZ2TrJn/89oLUAP/kIyPgh2HS2ogeK0kEd5CxxBVywel3As18COq4D7v0lUMHmI6+zG6FUEGk7yHkW7z4jQAULQP4POrvOntiIWCw6bEYoVEuIhEtb4TEfMskg9095QIj4NWWl/qDLhNhy00DmjXqxeEzWkU0AiEUN0OsDUBZJYhoAIjH5qkJyCDGeN9aZsRTKXXI6zsQlP55PT3nQaTehQrXsalqaWSfZYAV+ehdsCi1NsZALCcMw9CbQeSPwyZ+zeTXLaNVKdNgMeS+rFJNMEbdM9E95oFQQdNbm7nSVw4POqrcWfWlJQRgQ5RKW/PLbOMaRKRLUP+VBS7UeBpEkpgEgFAvBG/HKejwXIoLM1e5ey74uhBYQZ+KyXXliGAb+gB5KdXHrxkq29FgW5PscBC4GifhIpKeCU+2V8kSE2490CZWNbLqFqQ7W2QE4PaPFaRwPqIOcBXPvfgcAYLV2A5/4L0C9ukrDRoc5UVdVitToarAYWsxZbrp/yoN2qwFade67yOX+oAPYDQrzwXlE4pGitWEhtAAQBnNuTeaDJYpVZ8VSZAnBaOpl+ZQGXGDkXNObg1t5ElMVK5PkNBeJkqvdmHIHEQ4ZEEVxny8JLQAZytNzCDHh21BrgoLknnLJjWep2g2nNwSnN5R6A7S5Hrjvd7Cp9HB6xoGhNwrePj5QB5kv7/4rnPu+CQCwX/1lVkoxBV11Zky6g1j0hwvZOsHIV246X4lpQP4POgCJ9JFiVrLg7u31aTHrXTuvU8qkq2nqC0UxOu8X3UEuh/Fs1VlFl5sGWPu6luQ0tyJj1cvTceuf8oCJGhGK+xCKhYrWjnKZ8OUjNw0AugolWq2GnB1krp/tOnvObSgm3Odes2a3qRbWrZ+BW6lA+OefAM69UsDW8YM6yHx47/vAS3+H2barAAA2U/2ah3KzJammWeRT4sbtj2BiMSBIBQtAvg864KKzVMwNCty9mahJsuM1E+lqmg7MeMEw4ucfc+PZrpfmg44Phart3eVYW3KaG89ynYj0T3nAxNjUtfnAfNHaUS7jOcbE4A6587pOl2PtCV0mZv3sJm6p7sXp56FQaqtsAQC4bB3AL+4puUgydZD50LwL2H4fXL2fAJDeAHOD4UyGgvalSj5iIVwR/3xrysr9QQdc/GycESwG3IMuHjXh9KQ0x2sm0skgJxQfRY4gS/1Bx4dCqUNyktODKRTKuEi9XHNj+6e8BZH1zoTUl/75wH22fPu5q86EC/N+eIPZp9Jx9lmqz8H+KQ/qKrWw6NeWROdsovPWbwJdtwO2jYVqHi+og8yHhm3A7d/BbHAuo4ypzaRBtaFCspUs8pGb5jNj5IPcH3TARcNQCg+6OoNdsuM1E+kmfP1THpi0KlElpoGLcrEWjUXU+xQToRyKTHCTmTMpVjycAScqNZWoUK79QJYy/VMetFc7ABRXnnc2MItqbTXUCnXR2iA2Qk34uPE6kEMU2el3wlxhhlaVuyJtMTk95cnoCyRWUuNh4GOPAyZHIZrGG+ogZ4HT74RVa00rY8pJ+Ep1yTqfB13/lAc1hgrYTPlt+pL7gw5gZZAJSFErWcz6Z2GuMKO7zprzTutSJ92E78yUF12O/BQf+TDrn4VVb5WsXCwfuMms2CkWzdV66CuUKcerK+CSbLQtE/5wFMNzPnTbGwAUd++Cyy/ffuYQSuUtH8lpKatCBiMxnHf6Mq7OcYGiYmsCrIV8LbYIzAZmeS2TdjnMGJjxIhrLPcG/WHBy07k5yN68JaYB+YuEAKz6WLW2uqg1IJ0BJ+x6O7rr1s7rlDpqpTql3HQ8zuDMtBcbRZaYBtjxLNWNNnzh5KbFjiBzktOpUticAadsl/3PTLP58r0NTQCKH0GWc7oQkLT0n2cAo65Si0qdGv05RpCl2s/nZpcQizMZHeQqTRUURFGytZCpg5wFfB237nozwtE4hlzSlJyu1ddmbRiisTgGZrx55x8D8lcd47DpbUWNIHPjubuezevMZRlQClh11lUOxfhCAEsh8SWmAfYhK/fxrFKoUKMrjHz6RkdqyWk5Rza5COTWBitMFaaip2bJeYMeABjUBhjUhrwdN0IINjpMOUWQZwOzku3n05kqWCyjVChRoy2M3cgF6iBnAV91t00NlQCAkxP57YAtFja9LWvDMOzyIRyNC+JwSHlpKRtsuuz7WUi4SFA+y4BSIFVN01OT7HezJ4MBFwJnQLqRoGyw6WwF2XTaU2+GO8BWzOFgGEbWdqN/ygOThs2Xz1ftNB+i8SjmgnOy7edkhBrPXXVmnJnyIpaF5HSciUs6UHR60gN9hRIt1fqMxxY7UJQO6iDzJBKLYD44z+tBxwplKHByQpoORy6G4eSyw8FNDnKFYRjWMMi4xBuHTV88Hfo4E4fL74Jdb0dTlR5GjUrWecgrI8gnJ91QKgjW14qbYhGKheAOuSUbCcqGWn1tQRzkiwGIi+PVE/YgEo9I1qHIRP8Umw5ECCmq3eBqA5fDeLbr7YI4bpsaKhGIxDCcxYoyJ9Yl1X7un/Jgg8MEBQ9JdJuueOM5E9RB5kk2RbtVSgW66swJp1Fq2PV2zPpns1LFOjnhgVatQLvVkNe93SE3IvFIWUQouKX/WLzwub8LwQVEmShsOhsUityXAaWAVWddFak/NelBp92Yl+IjH8pBJISjUJGgjQ4TlAqSWAUAkvpZhpH6WJxB/5QHPfXsxMCms2HGP1OUtpTbeBZiwrc5hxVlKfdzPM7g9GTmChYcqexzqUAdZJ5wuyz5GuBN9ZU4PelBPItllVLBrrcjHA/DE+bvMJ2ccKOrzgyVMr8hJfXaj9lg19kRZ+KYDxa+6P/KYv/d9WxepxTHaybsejv8UT98ETaCwzAMTk64817t4EOiprcMHbeV2PTL8ukxceXTtWolOu3GSxyOhLiQDCPIwy4f/OFYIh2oVl8Lp98pqqz3WpRDTW8Ou94uSD932AzQqBTZOcgSFmMZW/DDG4omJgaZ4OxGNB4VuWXZQx1knrj82YlXbGowY2lZylZqJEqv8Jw9czNGIfI55fygWwmXRlKM/KuVD7quOna8ji1Ib7xmgnvIcFG3WW8IrqVwQfKPE/1cJhM+oDC1vXvqK3EySdxGzuJCp1akr3EBjHxV3nKh3AIYQvRzLivKUtYC4FKf+AYgbDobGDBFLV24FtRB5km2EWRuOUyKG/W4Bx1fB5mbMW6qzz8iV1YRN4FqbeYCd0/u/5pzFk/JUFGPc5C58bzS4RATKUeCsmXlRERMNjWY4fSGMOsJAkhy3GRoN05OuFGhUmCdnZWZLmbtWGfACQIi23J6yQjZz5sazDg1wX9FWcqR+hMTbqiVBJ21Rl7Hc5OAUsxDpg4yT5x+J5REmVZFL5n1tSaolUSSecgrHYpMZDtjTIeUc6+yJeEgFyOCvGz0OeO0wWGCSkFwQoITukysHM8nJzwgRHyJaYAdzyqFvFX0OLh+LsR4TmzUW7avTr8TOpUOBnV+eyBKkZMTHnQ5TFAvp6/V6msBFEem3ulna02rFKqC37vQJMazAAGMTfWV8GaxQseJZWmU+YluFYNTk25scJigUfHb31FIu5Et1EHmyax/FlYdfzWsCpUCGxwmnJJgJYtsi6SfnMxuxpgOV8AFvUoPvTpzeRipwzmnxTAMTr+TlYtVsnKxGpUS62tNklzxyAQ3EbnoILvRVmOAUSP+Q54rPSa2Wl8pkG1qVj6wgkQXJ+dyVdFjGAYnJ93oSQo+JOxzEVaeZv2zsuznVKy0G/mQqvJKOqQqlpXY35HFanIxn4OZoA4yT3IxwJvqK3Fy0l2UzRT5oFFqUKmpzCKC7Mb6Wv4zxnSUS81YgFV5q9JUFS3FYmV+2+aGSpyckN54zYRerYdJbUpKsfBc4nCIyaxf/qpjHFWaKqgUqoI4yEaNCm01hkS6DBfAkBtj8wF4g5emr3HPoWJUsuDUN8sBodT0AKCz1pjVirJUa3pPuoNY8Eeysq81uhoQkJKsZEEdZJ7kIq/Z01CJRf+lBe2lAlfqLRMMI9wGPaC8IhQAu1GvKBHkFBORTY2VWJDoeM0EN54XfGFMLAYKskEPkG4kKBcIIbDr7AV70PU0VCYicrP+WdQaagty30Jysb78xfFaoaxAlaaqKCkW5TThyzZQlPZaWa7QSbWfT4wvj9cs7KtaoUaVtopGkKVMLvKa3CCRomAI3wfdtCeIOV9YsA1Ps/5ZOAwOQa4lBew6e6JCSiFx+p2ranpLebxmgivZxImhCLGhlA9SjQTlik1vK9jmsU31ZkwsBjC/FGLthl5+duPkhBuqFII23HguJJH4slhWOY1nAdVON9XzW6GLM3HMBeYkGak/tSzAlO3+jmKryq4FdZB5EI6FsRhazNowdNWZVxW0lwp8i6RzzlSPAA5HnIljxj8jScOQK1adteC70WPxGFzB1bLp3HiVYx6yXW/HjH8m8dkKEUEORoPwhD1lNZ4L6bhxk/KDF8YRjodl2c8nJz3orDWtErSx6QsvFsKV4ZJiZDNX+K6k8oFboZt0B9Mex4k4STFl6OSEOycBJqFEWYSGOsg8yLX0mFatxDqbUZIOh11vhyvoyqjydnLCDQUBuuryl+xdCC4gGo8mdmmXA3a9HXOBwqrpJeRiV0SQOQEGuVaycAVcODGxiAaLDlWGCtHvWU41vTmEdCgywU1yDk8MA4DsUiwYhsGpCXfK5epafW3Bl6RXloYsB+x6u2ABjIsrdOntq5RLQ56c9OQULCuUTH22UAeZB/kU++9pMF9S0F4q8FV5OzXpRofNCH1F/hUBuIhIOTnIDoMDMSaGuWDhiqSnq+m9SaYb9ex6O2JMDCenJ9BdoPzjhDy9BB90uWLT2bAUWYI/Ir7gjEVfgcYqHU7NXAAgv35Ol77GTawjcXFVC5PJVgtADth0NsECGIkV5UwOskRLnc54gnB6Q5fky/PFrrezKpwFHM98oA4yD/KZ0W2qr7ykoL1U4Fuy6ZTAG/QA+UWC0sFNBmZ8hVsuTUSCUoznzQ2VmPOFMS2x8ZoJ7rOOeaYKln8s5WL/uVLomqab6isxsjgFQH4T64v15VfbV5u+8Opj6eyGXOEm1guhhbyvlVhRzhAwk2oEmYuM85WYTqYY45kP1EHmQT4PupUF7aUCn2L0rqUQptxBwTbocU6i1AxDPnCTgULmE6ZbEeH+L7ndyHIhMaZUnpwiHLlQrkvSQOFELDY1mDEXdEJBFLJTdzs54V5T0KYYYiGz/lkoiRJVmqqC3bPYCF3bu6fBnDHFgruX1FKz8hFgSgSKilC6MB3UQeZBOBaGUW3MSQ2LW86VmmAInxqQiZIuQjnI/hkoiRI1Wnk96NJRDMOQTi62u84MBYEk04LSwTluCpUHWxotBbnnbGAWaoUalZrCRKxLgUKKhQBsqTeidsOkroJaoS7IPQtFuvS1YsjUOwNO1GhroFTkX+9eKnCTWyErWcxmWFF2+p2waCyoUIq/T0JITk660W41wJCDAJNdb4dRbcRSeEmEluWO/PUiBeDzmz6P+3ruy0kNy6hRod1qwHGJbXyq1lZDQRRpHbdj44tQkNyWVFIx45+BVWctKwNs0VhQoagoeIrFWnKxugol1tmlubE0HeykSwGz0Q+bqTDyrTO+GdTqa8tCRY9DaIciEz31ZihUHmhJdUHuV0iOj7txVUfqYAE34SvoxNpfPiJOHIkJn1Ab9ZaflacmPbCbtSmPmfZPS7LU6YlxN65oz+17uKFqA9679z2BW5Q/NILMk3weclsaK3F8fFG4xhQAlUIFq9aa9kF3bGwR6+zGnGaMqZBrsf90EEJQa6jFtH+6YPfMJMbCbdSTE0qFEiRmgsVUOBGUGf9M2Y1nY4URepW+YKUL7SYt1BoP4pHCpM0Uiml3ELPeELY2WVK+X6VlVQsLWclixj8juzzvTAit8tZdz0qkp6sUxE2spcSMJ4hpTxBbc1ydK9UgAnWQC8DWJgtmPCFMZ6h/WGqkK/rPMAyOj7tz/kKkohwNMMCmWRQygjztn07ruPFZBpQaC74womETNNrCLeFJ8UEnBIUs9QYACrUHXp+hYPcrBH1jiwCwpoOsIArYdIWtHTvjK78Jn1qhRrW2WrB+NmpU6LAZ0wbMpPgcPJZhvEoV6iAXAG7QcEZPKqQr3j2+EMCcL4wtAn4hytmhKORSaaZ+3tLILgMek9FGveMTbsSjZsQUiwW5H8MwZRlBBli7UagUC3/Ejxj8cHv1cPtLq0RUPhwbX4RKQdCdZsNTIe2GL+KDN+KV5NJ/vgjdz1sbLegbS11KMxgNYjG0KLl+5sZrIQSYCgl1kAtAd50ZKgXBMYmlWaQr3n182XnqFSiCvBRegj/qL0sHudbA9nOciYt+L3/ED0/Yk9YA99RXQqkgiaiAHDg+tggmUglvtDBlhLianuU4ngvpuHH2KR6pxPGJxYLcsxAcH1/ExrrVCnrJFFK1kFvhKsfxXGuoFXQ89zZVwrUUwsTi6nQvqZY6PTbmzjhepQh1kAuAVq1EV51Zcg6HXW+HO+RGILr6i3x8fBEVSgU2OPJX0AMubjYppxJvHLX6WkTiESwE86+1mQk+Yiy6CiU2OkySW/FIx7FxNyyaGnjDHgSj4qeOcP3s0EsrEiQEnONWCLEZzqFgotKzr2sRjzM4PpY5fa2QqSzcHolydJAdegemfcLtEeFWlI+NrV6h4+4jpX6OxxkcG18UNN2yVBDVQSaE3EwIGSCEnCOEfCXF+58ihBxf/nmXELJVzPYUk61NlTg+7kY8Lh2FsjpDHYDUIhZ9Y4voqjejQiXMEEo4bhKbOQsB50QVIurGGeBMS3hbmyw4NrYoqfGajuPji2i11AMoTIUF7jsjtaVSIXDoHQjHwxlVOIWA+840mhzoS+FwSJEhlw/eUDRjPmchVQvLejwbHPCGvYL180YH+9xMtaIsRTXZ4TkfvMHM41WKiOYgE0KUAL4H4BYA3QDuIYR0rzhsGMC1DMNsAfB1AP8hVnuKzdZGC5ZCUQy5SqvOXzo4Y7iywkIszuDkhBu9jcLVdy1HkRCOhFhIATbq8Y1s9jZZ4A1FMeTyid4mseEqAnTZGgEUZiJS1hM+zm4IGHVbC66fe+ub0Te2KAuJdC4S3pvB4eDGViEq4HD3KGf7LNR4rlAp0FNvRt+FxVXvSXElle94lSJiRpB3AjjHMMwQwzBhAE8CuDP5AIZh3mUYhltX3g+gUcT2FJXLmi0AIKkoB+dErTQM551L8IVjggoucEuFUjIMQlFIVSzu/9JuSN/Pl0l0Y2kquM+wvaEVQOEcZBVRoVorv/q8mSiog+ybganChO3NjoSyp9Q5Pr4IfYUSHTZj2uPWss9iMOObQY22RnLiFUIgRj9vbbTgxIQb0dil+06mfdMwV5ihV+sFu5fYHBtbhIHHeJUiYjrIDQDGkv4eX35tLR4A8IdUbxBCvkgIOUwIOex0Fq7uo5C0W40walSSypNba+YsRkmXGf8MqjRV0CgLI+JQSlRrq6EiqoI5btXa6oz93G6T3nhdi+PLO6x3t64DUDiHwq63Q0HKb5vHWitPYjDrn0WtvjaR/yiH8do37sbmBnajbDrqjGunwAlNptKQckaM8dzbZEEgEsPZ2UtXlGf8M5JLY+kbd2NzY+bxKkXEtN6peivl+hch5INgHeRHUr3PMMx/MAyzg2GYHTabNJV8FAqCLY2VkqpkUaGsQLW2epVDcXzcDdOyQqBQlKNICIdSoYRNbyuMg8yzlJ5yebzKIYJ8fNyN9bUmVOtNMFeYMeWbEv2e5VriDUBioluIiQjnIG+sM6FCqUCfhOxrKsLROPonPbyWq+16OwhIYcZzmZbgBNgVPgIi6HjuXWOFTmr9HIrG0D/pkWX+MSCugzwOoCnp70YAkysPIoRsAfBDAHcyDFOYGkxFYmuTBf1THgQjsWI3hTcOg2PVzPnY+CI2NVRCIeCMUYrF0YWkUGIh2USCpDheV8IK2ixiaxObL19nqCtMP/umy3Y8E0JQq68tWA5yraEWGpUSXfXSr2RxZtqDcCzOy+FQK9Sw6WwF62epRTaFQq1Uo0ZXI2g/t9ToUalTrxqvUptYn5nyIhyLC1butdQQ00E+BKCTENJGCKkA8EkAzyYfQAhpBvAMgM8wDDMoYltKgq2NFkRiDPqnPMVuCm8cesclDkUoGkP/lPAzxln/bFnmH3MIXWtzLWZ8M7xLj/U2WRCNMzg1KZ3xupKROT88wWgiX77OUCd6xI0TCSlXhwJYnliL7LhF4hG4Aq6E3ehtrMSJcTdiEq68wjlMW3hugHYYHKKPZ3/ED2/YW7YTPmD5OSigfSaEYGuT5ZIIcigWwnxwXlL9zK2I0whyljAMEwXwJQAvAugH8BTDMKcIIQ8SQh5cPuzvAdQA+D4hpI8Qclis9pQCvYn6h4tFbUc2rDTApyc9iMQY9DYJV8EiHAtLzjAITa2edZDF3IXPiYTwjVCstQwoJY6OsnuAuU2ytYZa0R0Kd8iNUCxU1uM51cqT0MwF5sCASTjIW5ss8IVjOO+UTqWglfSNuWE1VqDBouN1fCEmItz/YzlP+GoNwq+I9DZZMDjjhT8cBZAkEiIhu9E3tgibSYO6Sm2xmyIKou4gYRjm9wzDrGcYpoNhmH9afu0HDMP8YPn3LzAMU8UwTO/yzw4x21NsHJVa1Jo1knI4HAYHKzMa9gIAjiw7HNuaqwS7RzmXeOOo1dciEA3AExYvWpso8cbzQVdr1qKuUiupCd1Kjl5YgEmjQqedFbSpM9TBE/aIWju2nEu8cdTqa+H0OxGLi5eew010uHrtW2UwoTs2vogtjRYQwi99jXOQxZxYl7OKHocY/dzbVIk4A5xYVqVN9LOE7Ebf2CK2NlbyHq9So/y2WBeZy5qqcOSC+IppQrGyZNPRCwtorNLBbhZuxjjpY1PT6431gl1TaiRqIYuYZpGLSlPvimVAqXFkdAG9zZbEDmvOmRIz6ibFWqZCU2esQ4yJwRkQr+rQ5NKy3TCwdqOtxgCTVoX3U9SXlQKL/jDOzS5hewv/4IPD4EAwFoQ7JF750ITdkJDjJjQOvQP+qB/eiFewa3JpX5x9TUTqJaK+ueALY8jpw2UCBstKDeogF5gdrVUYmw9g1iONep3JDjLDMDgyupCVAefDygddOcI5rYVw3LJZKt3aZMGFeT/mfWGxmiUa3mAEgzPeS1Y7uNJYYqZZ0PFcmBq93P8hN54VCoLLmqvwvoQCEMlwjn02q3PchE/M8SxFdTehEaO2t9WoQXO1HkeXx+vU0qXjudTh2r1DYH+glKAOcoHZtjyYuFSFUicRcfNPY9IdxIwnJLiDPOWbAgGRjGEQg0KIKyREQrKIbHKCIVJ0Oo6NuRFnLn7ngIuOm6gOsm8SagW7871cKcR4nlyaRJWm6hJRhR0tVRiY8cIdiIh2X7E4PDoPpYJkpUhWKLtRriIhHGL1846WKhwZXQDDMJhYmkC1tloyIiGHRxegUhBBBcNKDeogF5hN9ZWoUCkk4yBbdVYoiALTvmlR8o8B9kFn09mgVqoFva6UsOlsUClUieijGEz5pmDVWbMSY9nSaIFaSXBYIuM1maMXFkDIpRKoNr0tMZ7FYnJpEvXG+rIUCeEoiIPsm0ysCHBsb6kCw0hzQndkdAE99WboKpS8z+H6WcwJ38TSBBqM6TS+5I9Y43l7axVcS2FcmPdjyjeVCEhJgSOjC+hpqMxqvEqN8rXgRaJCpcDWxkrJOBwqhSpRa/Po6AL0FUpsdJgEvceUb2rVg67cUCqUqDPUieogTyxNZJ3nratQoqe+EodH5kVqlXgcGV1Ap92ISt3FiZdKoYJdbxfVoZhaktaDTgxMFSYY1AZRK1mk6ufeJjbf/KhE7CtHJBbHsTF31sGHam011Aq1qP3MTfjKGavOCiVRCu8gL69uHR5ZkFQ/h6NxHBtbxHYZ5x8D1EEuCttbqnFq0i0ZAQZuB++R0QX0NlmgUgo7bCaXJss6X5Oj3lCf2LAoBpNLk2gwZB8J2tFShWPjboSi0hivABCPM3j/Qup8eYde3NJYkz7pPOjERMx+ZhgmZcTNoFGhq84kmQAEx5kpLwKRWNbpawqiYO3zkjj9HGfiNIABdmJdq68V3D6vt5tg0qpwaGReUhHk01MehKJx7GilDjJFYLa3VCESY3B8XLydx0JSb6zHxNIkTk95BE+viDNxTPuny94AA2w/ixVB5h50uThuO1qrEY7GcXJCGuMVAM47l+AJRlPusBZTLCQUC8EVcEnmQScmdUbxVkTcITcC0UDK8by9uQp9Y4uIxuKi3FsMjoyyKzS57O8Qs+a0K+BCJB7JaWItN8SwzwoFwbbmKhwaG0UoFpLMxJpbURR6P1KpQR3kIrBtWbRAKnnIDcYGTPumEItnH+HIhNPvRDQepRFksA6FM+BEKBYS/NqJfs7BACcvA0oFbod1ygiykVWHjDPCO1DcTvRyz9kE2D6YWJoQ5dqJ0pAp7Mb21mr4wzGcmRauJJfYHB5dQF2lFvU8BUKSEXPCxzmENICxPJ69wo/nHS1VGF5kryuV5+DRCwtosOhQK2C511KEOshFoMaoQbvVkIgalDoNxgbEmBiIyp1QJBOKRLF/aoATTpUYy9L51Jq2mTRosxoktWx9eGQBFr0a7VbDqvccegfCcVa9UWi4fqYRZHY8e8KehMiQkHATkVR24+KEThr2FWAVH3MNPtQZ6jDrn0UkLnzlDs5BphM+tg9mA7MIx4Qtebm9tQoKNWtbpRBBZhgGh0cWZJ9eAVAHuWhsSyrvUupwxrHZHoRFL2ypH1oz9iJcH4gRdeOumasB3i6h8QoAB0fmcXlrdUqFJ248i9HPifEsgQed2HD9LEaaRbqJSINFh7pKLY5IRDBkyh3ApDuYs4PcaGpkU9VEyEOmE76LcN9poaP1vU0WKCsWAUgjUDS+EMCsV/hyr6UIdZCLxOWtVVjwR3BudqnYTclIrZ790rY4hBc3oSp6F+H6QBSHIs+JyI6WKsz7whhy+YRslihMu4MYnfPjirbqlO83mhoBQJTl0smlSSiJsqxV9DgaTKyDPL40Lvi1J5cmoVPpYNFYUr6/vaUKRyQSQT44zLZzR0vq8ZoJbiIytjQmWJs4JpYmVtWaLlfEmljrK1SosfigYHQwV5gFvbYYHCqT/GOAOshF44o2VkRg/3DpG/EFtwEMQ1BlFt6Zn1qaQqWmkhpgsAIeSqIUzUGu0dZAq8otZ2xHK/vwlsKy9YHhOQAXv2Mr4SYiojhuvknU6muhUqgEv7bU4DZ2iTER4Xb8p1ohAIDLW6sx6Q5ibN4v+L2FZv/QPEwaFbrrc3OOGo3LEz4RVkSmlnLb2CtHxFx5Mhq8iIYtkqgUtH9oDpU6Nbocpe/M5wt1kItES40eDrMWB4bmit2UjBwZ9YCJmqHULAp+7UkfLfHGoVKo4DA4RCn1lksN5GQ6bAZU6dU4JIGNegeH52FcLveVCp1KB6vOKppDIYVl0kJQqamEQW0QZTxPLq0WCUlmV/tyAEIC9vXA8Bwub6uGUpHa2c+EXW+HSqESZSKSr92QE3a9HSoikpiTagHxsEUSla0ODM9jZ1s1FDmOVylBHeQiQQjBrvZq7B+aL/m8zgND89AwVswFhd8pTUUVLkUssZBcS7xxEEKws60a750vfYfj4PA8drRWpa3X3WBswLhXnAgy3dDEQghhS0SKFEFON7HutBtRbajA/qHSXvGY9QQx5PStmQ7EB05kSOgJH1drmgYwWJQKJRwGhyj97I7MIh6pKnn7OrkYwOicPzEBlTvUQS4iV7TXwLUUKum8zlicwcGRedj19aIYBiqqcCli1NqMM3FBVJqubK/BxGKgpJet55ZCODu7hJ0ZHI5GU6Pg4zkSj2DWP0snfEk0GBsw4RO2n5fCS1gMLSZyyVOhUBBc0VZd8hHkA8spdvk6HI1G4cfzXHBOUrV5C0GDsUFw++wJe+CP+mDTOSQwXrn0tdwndFKCOshFRArLgGemPfAGo+isbmJLCcWEKyXkCrgQiAbQbG4W7JpSp95YL0o/C1Hs/8oOKwCUdJSD20CyVv4xR4OxAVO+KUFLY037phFn4tShSKLR2IgJ74Sgq2RjXnYzWpOpKe1xuyQwoTswPAejRoWeHPOPORpMwq+I0IosqxEjgMFdr9vWiiOjCyWdh7z//DzMWhW66uSffwxQB7motNboUWvWlPQy4IHltm1vWAcGjKAlbi54LwDI/KArJ+oN9YL3s1APuvW1RtQYKvBeCU/o9g/NQ6tWYHNDZdrjGo3LpbEErDnN13ErJ+qN9fBH/VgMLQp2zWwcZKC0AxD7hzKnA/GhwdiAhdAC/BHhJgMJkRC6IpKgwdgAZ8CJYFS4ik7cc/Cq5vUIRePoK+HyhAeG57CzrSbnfHmpQR3kIsLmIdfgwNBcyeYhHxieQ1O1Dj32VgDC7vynDsVquL7g+kYIuGvlmxvLjdf3zpfueD04PI9tzVWoUKU3bdzyvJBRtzEP28/NJroiwiFGLWS+E+tSz0N2LYVwbnYp42oHH7hKFkLaZxrAWI0YtZA5+3zThk0gBCU7XqfcAYzM+bGrvTzSKwDqIBedK9pqMOsNYbgE85DjcQYHh+exs7VGlAfdmHcMSqKkm0CSaDG3ALj4cBKCMe8YCEiiLm0+7OqowbQniJG50lu2XvSH0T/t4eVwiFEa64L3AjRKDWx6m2DXlDqc3RDScRv3jqNaWw2DerVKYjIKBcHO1tLNQz6YyD/O3+FIlCATcEPkBc8F2HV2WoIzCTFKvV3wXIBVZ0WduRLddWa8N+QS7NpCwq0ml8sGPYA6yEWHM46luGx9esqDBX8EV3fWsLVdiUrwiJvD4IBaqRbsmlLHqrNCp9Lhgkc4B3nUM4o6Qx00Sk3e17py2TiWYh7yO+fmwDDA1Z2ZDThXGkvQ8ewdQ5OpCQpCzSqHGA7FmHcs7Qa9ZHa1V5dsHvL+oTnoK5TYlCEdiA/c5Ffofm4y0+hxMtx+GSHt8wXvhcSq0672Ghy9sIhgpPTykPcPzcFURvnHAHWQi06b1YC6Si3eOVd6s8a3zjoBALvXWaFUKNFgahA8skmXoy+FEIImU5Pw/SzQRsgOmwE2k6YkJ3Rvn3PCpFFha6Ml47FKBbtyIbhDQZejL8FYYUSVpkrwlCG+/byrY3lCV4rj9awLV7RVQ51n/jEAVu1OpRd0PI96RhMrWhSWGm0N9Cq94PaZG8+72msQjsbxfonlITMMg31nXdjVXj75xwB1kIsOIQR7Oq14+6wL0Vi82M25hLfPurDRYYLdxKqvtZhbBJ05jy1RhyIVQvfzqGdUsIkIIQRXlmAeMsMweGvQhSs7anhveBKyFnKcidMJ3xq0mFsw6hkV5FrhWBjTvmne/bzeboLVqMG+s6UVgBib92PI5cOeTmHScQhhU6iEmoj4Ij7MBeeofV4BIQQt5haMeEYEuV4gGsCsfzYRwLiinRWMefucU5DrC8WQy4eJxQCuWV9e6WNUD7UEuGa9DU8dHsexcXfJ6Jv7w1EcHlnA5666GEFoNjXj0PQhxJl43svI7pAb7pCbGuAUNJma8PrY64jFY1AqlHldazG4CE/YI2gpvavXWfHssUkMzHixsUTkRkfm/JhYDODBa9t5n9NoasTLoy8Lcv9Z/yxCsdAl/RyJRDA+Po5gULgd71JAq9WisbERajWbOtVibsF7k+8Jcu2JpQkwYHjbDYWC4Jr1Vrx+ZhaxOFMy0S/OYRfS4WgxteDc4jlBrsU52nTCt5oWcwtOzZ0S5FrcBJ0bz2atGpc1WfDWoAtfvkmQWwjCvkHWYb9WoAmdVKAOcgmwu8MKQoB9Z50l4yAfGJ5HOBa/JMLRam5NzHgdBkde108YBprjtopmUzOi8SimfFO8cy3XglsKFPJBxz3U3xxwloyD/PZyOtDVWRjwFnMLFkOLcIfcqNTklweaqiLL+Pg4TCYTWltbQUhpOGZiwzAM5ubmMD4+jra2NgBsP//2/G/hj/jz3vCVS+Wba9fb8MzRCZyccGNrkyWv+wvFvrNO1Fdq0WFLv9EwG1orW/HG2BuIxqNQKfJ7tHMRf5pisZpmczNeHn0ZkXgEakV++2dS2edr19vw7ZcH4VoKwWrMf9+IELx11oWWGj2aa8prwyZNsSgBqgwV2NJowVuDpbOs8vZZFypUiksUyVoqWWMpxHIpLSG0NomNIALkuYnxoHNUarHRYcKbJTRe9511ocGiQ2sWBrytknXght3Ded+fS4lJHs/BYBA1NTVl4xwD7BJ0TU3NJVFzISuzcA5yNhPHq9exAYhSsa/RWBxvn3NhT6dN0LHRYm5BlIkKkodMS3CuTYu5BTEmJkjFEK40ZPJ45gIQb5dIWlAoGsN75+dwTZlFjwHqIJcM13Ra0Te2CLdfOGWvfNh31omdrdXQqi8u8beaWwEI4yAnHnTG/CKkcoSLJnDGMx+ELPGWzLXrbTg0Mo+lUFTQ6+ZCNBbHe+fnsKfTmpXDwY1nQRxk7wWoFKpVKyvl5BxzrPzMnIMsRN7mmHcMOpUONVr+paZqjBpsqq9MbDouNsfG3fAGo4Lnc3LjecQ9kve1uNJjtMTbajj7LFSgyKKxXLKCtbmhEtWGipIJQBwZXUAgEiu7/GOAOsglwzXrbYgzwLvniz9rnPEEMTizhKs7rZe8btfboVVqBXOQbTobNcApsOltbD978+9nIUu8JXPtBhsiMaYkyr0dG3fDG4quGq+ZqDfWQ6VQCea4NRob817aliPcisioWxi70WRqynricc16K45eWIQnWPwAxL6zThAC7F4nbD1ZbkVEiPEs5MZeuSF0oGhlPysUBFevs2LfWSfi8eJvhN531gWVgpSVQAgHdZBLhN4mC0waVUlEObilyKvXXepwKIgCzeZmQQzDqGeULt+tgYIo0GhqFCSCfMFzQdANehw7Wqqhr1DizcFZwa+dLW8OOqEgbC5/NqgUKjSbmgWJuMmtxNvTTz+Nnp4eKBQKHD58+JL3vvGNb2DdunXYsGEDXnzxxYzX0ql0cBgcgtiNEfdIwkHJhms6bYjFGbx7rvgTurcGndjSaIFFXyHodSs1lbBoLIJN+MSwG3LAorXAXGEWLGUo1T6ca9fb4FoK4/SUJ+975Mtbg05sa6mCSVt+egXUQS4R1EoFruyowZsDzqKXz3q1fxa1Zg166ldvwBKqZNOwexjtFv4VB8qNFnOLIAY4uQi9kFSoFLiqw4o3SmK8zmBbcxWqDNk7HK3m1rwdCoZh2IibjByKTZs24ZlnnsE111xzyeunT5/Gk08+iVOnTuGFF17An/3ZnyEWyyxqIITdCMfCGF8aT0RKs2FbSxWMJRCAWPSH0Te2iGuyXO3gS6u5Ne8Jnz/ihzPgpBv00iBEqbdgNIjJpUm0mFb385717PgodprFrDeIU5Me0cZrqUPXA0uI67tr8dLpGZya9AiirpQLwUgMb5114iOXNaRcxmwxt+D1C6/ntVN6PjiPxdAi2szZP+jKhWZzM94afyuvfhajxFsyH9hgwyv9Mxhy+dBhM4pyj0xMuQM4NenBIzdvzOn8tso2vDWRXz9P+6YRiAbQXrn2hO8fnjuF05PCRoO66834H7f3pD3m0UcfxRNPPIHp6WkolUrYbDbcf//9eOihh9Ke19XVlfL13/72t/jkJz8JjUaDtrY2rFu3DgcPHsSVV16Z9notpha8OJo52pyOUc8o4kw8bT+vhVqpwFUdNXjjzCwYhilabvgbA07EGeBDXbWiXL+1shVvT7yd1zXoBurMNJubcXTmaF7XGPWMggGDNsvq56DdpEV3nRlvDjjx5x9cl9d98uG1fnaFUKzxWurQCHIJ8aGNdigI8NLpmaK1Yf/QHPzhGK7vsqd8n9spPbk0mfM9hhaHAIBGkNPQUdmBSDySl5DFkJvt51wibny4dnnTxutnipdm8dryvdcar5lorWxFNJ7fzn+un3Nx3MTm4YcfRl9fHx588MHE7w899BD27NmD3t7eVT+vvPJK2utNTEygqemi49TY2IiJicx912JugTvkxmJwMefPwm2mzHU8X99di0k3GxErFi+fnoHNpMEWkQIgLeYWuAIuLIWXcr7G+cXzAIB1luI5ZqVOi7kF075phGKhnK+RyW5c32XH4dF5zPvCOd8jX17pn0GDRYeNDlPR2lBMaAS5hKgxarCjpRovnZrGX96wvihteLV/Fjq1Eletkc+Z2CntGck5MjnsYR90pehQlAodlg4AwHn3ebRWtuZ0jfPu85dcS2iaqvXY6DDhpVMz+MKe4vxfvto/i6ZqHdbZc4tgJ+/8z3VJmXMo0k34MkV6C82+fftyOi9VOg2faCw3hkc8I+jV9uZ0b85BzvX7kByAKMYKXSgaw5uDTty+tQ4KkQRLuFW5Uc8oeqy5jbnzi+ehIiq6SS8NbeY2MGAw4h7BhuoNOV3j/OJ5KIhizZz6G3sc+O5r5/Bq/wz+aEfho/n+cBT7zrpwz87msqzGA9AIcslxY08tzkx7MTbvL/i9GYbBq/0zuLrTekl5t2S46A0XBc6FocWhxMYdSmqE7Oc6Q51QzVrFjT0OHBqdh2sp90hKrgTCMbxzzoUPbazN2YALsfN/yD2EKk0VqrWlu8t7Zf/kGkFubGzE2NjFzaPj4+Oor6/PeH8hSuoNuYdQb6iHTqXL6fwaowbbW6rwcpFW6A4MsWURrxdxuZqbPHBBiFwYcg+h2dwMtbL8NmXxhQs65KNcOOQeQpOpCRXK1HsneurNqK/UFm1F+e2zLoSicdzQXZ7pFQB1kEsObjAW40txatKDSXcw7XJ1paYSNp0NZxfP5nyfYfcwWs2tectVyxmD2oA6Q10iCpwL5xbPob2yXdR+vqmnFgwDvFKE8frmoDNvA16pqUS1tjovx23YPSxaGotQ2Gw2LCwsJP7et28f+vr6Vv1cf/31aa9zxx134Mknn0QoFMLw8DDOnj2LnTt3Zrx/g7EBWqU2b7uRbz/f2O1A/5SnKAGIV/pnoFUrsHudeBuemkxNUBBFXuP5/OJ50Vad5EKruRUqokqsHuVCpvFMCMEN3bXYd9aJQDjzRlihefn0DExa1SViYeUG9VBKjJYaw/Ky9XTB7/37E1NQKghu6E4f2V1nWZf3zLnUHYpSoN3SnncEWewHXXedGY1VOrxYpPFabajAFXka8FZzayIfMFsYhsF59/mSz6e/++678eKLL+KBBx7gdfzevXvR2NiI9957D7fddhtuuukmAEBPTw8+/vGPo7u7GzfffDO+973vQalMvdqUjFKhRLulHecWcrMbsXgMI56RvO0GN5l6pb+wE7p4nMFLp2awp9O25uqcEFQoK9Bsas65n8OxMMa8YzT9LQNqpRot5pacJ3zReBQjnpGM/XxjjwPBSLzg1VeisThePTOLD26wQ60sXzexfD95CXNjdy0OjRQ2OZ9hGPz+xBSu6qhBdYZyWeuq1mFocQixePazWm/YiynfFDqrOnNtatnQUdmBIXdu/ewJezAbmBXdQSaE4KYeB945N1dQVb1gJIZX+2dwU08tVHka8M6qTpxdOJtTubr54DzcIXfJOxQOhwOHDx/GY489xuv4u+66C+Pj4wiFQpiZmbmk3vFXv/pVnD9/HgMDA7jlllt4t6HT0pnzxHp8aRyBaADrq/Lbm9FqNWBDrQl/OFHYCd2RCwuY9gRx22bx0p041letz9lxG/WMIsbEaASZB+uq1uUcQR7zjiEaj2a0GzvbqlGpU+OFk4Udr++en8O8L4zbtog/XksZ6iCXIDf2OBBnUNCo3KlJD0bm/LwMeKelE8FYMKed/4MLgwCQ94OuHOiwdCAUC+XUz1zkuRA70W/e5EA4Fi9omsWbg074wjHcKoDDsb5qPZYiS5jyTWV9Lh3P/Oms6oQz4MypkkWin6vz7+cPb6nDwZF5TC4G8r4WX54/NgmNSoHrC5DP2VnViTHvGPyR7NNIEhtOS3zCVwp0WDow7mUnbtkysDAAILPdUCsVuLnHgZdOTRc0zeL545MwaVSJSkXlCnWQS5CeejPabQb8ti/30lPZwqVX3NiTeeMcF/09u5B9lIJ70G2oym3nbznB9RFnTLOB6+dCRIK2N1ehvlJb8PFapVfjyvb85Xq5hxTXZ9kwMM/+39DxnBluspZLdHNwYRAKohBkwnf7VnZT4e+OZz8hyoVYnMHvT07jgxvsMGrELxzFjedcovVn5s9ApVBRB5kHnZZOMGBySs8amB+Aiqh42ec7euvhC8fw+kBhymmGo3G8cHIaN/TUipoOJAWog1yCEEJw59YGHBiex5Rb/CgHwzD4Hc/0CuBidGFwMTeHolJTCbs+t7q15cS6qnVQEiX65/qzPrd/vh/mCjPqDZkrDOSLQkFwR28D3jrrwlwBqlkEwjG82j+LG7sdeadXABcnfJyzmw1nFs6gVl8Li9aSdzvkDtfPuThuA/MDaDW3QqPU5N2OVqsBWxor8eyx3Gu5Z8OB4Tk4vSF8eGthlqu5fs5lwndm/gzWWdbRChY8SPTzfG7PwXZL+5oVLJLZ1V4Dm0mDZ/sKM173nXXCE4zi9i3iPztKHeoglyh39taDYVCQL8XRCwsYnfMnIiuZ0Kv1aDY15+RQDC4MYkPVhrKtq5gNGqUGbZVtODN/Jutz++f60VXdVbB+vrO3PhEpE5uXTk9jKRTFRy5rEOR6BrUBTaamnCPIG6tzU/ErN2w6GywaS07jeXBhUNA0ltu31OPEhBvDLp9g11yL545NQadW4rqNhQkKNBgboFfps17hYxgG/fP9dDWEJ02mJhjUBpyeO531uQPzA7z7WakguG1zHV4bmIUnGMn6Xtny7LFJVOrUolZbkQrUQS5RWq0G9DZZ8JsCOMhPHx6HvkKZ1QaSnpqerA1DLB7DucVzNF8zC7qqu7KeiETiEZxdOFtQx62rzowNtSb89n3x0yx+dWQcDRZd3tUrkllftT5rBzkUC2HYPZyzUEC5QQhBd0131nZjKbyEiaUJQfv5ti11IATYezR3pUo+BMIxPH9sEjdvckBfURhdLgVRoLOqM+uJiCvgwnxwHl01qWXGKZeiIApsrN6I/vnsVvjmg/OYDcxmNZ7v6K1nUx9E3lzqDkTwwslp3L61DhUq6h7SHihhPtJbj/4pD05NukW7RyAcw/PHp3Dr5joYssiP667pxpRvCvPBed7njHpHBdmJXk5sqN6A2cAs5gJzvM8Zdg8jHA9jY01hI5t3XlaPw6MLokblJhcDePucCx/d3iioGtmG6g0Y9YxmJdF7bvEcYkyMRtyyoKemB+cWzmUl0cs5IEL2c71Fhz2dNjx9ZByxePbVS/jywqkpeENRfLzASmibrJvQP9+PaJx/ZRkx+lnudNd0Y2B+IKt+TuxbyMJBvqzJgg6bAU8eupB1G7Ph2WOTCEXj+MQOqqIIUAe5pLnrskZoVAr8/IB4X4oXTk1hKRTFx7Y3ZnUeJ2OaTTTohPMEAGCLbUtW9ypnuqrZaE420SDuWO7cQvGxbY1QKQiePCjeeN37/gQYBvjoNmHSKzi2WLeAAYNTc6d4n8ON/UL3cyF4+umn0dPTA4VCgcOHDwt23e6abkSZaFZ5mydcrN3YZN0kWDsA4JOXN2HKHRS1xuwvD42hpUaPXe2FFVvoqelBIBrIagMZZzdoyhB/uqq7EIwFsxJm4WxMNnaDEIJPXt6MoxcWMTDtzbqdfHnq0Bi66szY1GAW7R5SgjrIJUylXo0Pb6nHb96fEK3G7C8PjaG5Wo+drdkZcM6InnLxdyiOO4/DqDZSkZAs6KrpAgFJOAl8OOU6BZ1Kl5D3LRR2sxbXd9Xi6SPjCEWFL0kUjzN46vAYdrZWo6XGIOi1Oecrm34+NnsMVZoqNJqym1xKgU2bNuGZZ57BNddcI+h1e2rYiXU2E5ETzhNoMjWhSlslaFuu76pFtaECvzw4lvngHBid82H/0Dz+aHtjwfdcbLZuBgCcdJ3kfc4J1wm0mlthrDCK1SzZwY3nbNIsjjmPodXcikpNZVb3untbA9RKgl+IFIA4PenBiQk3Pr6j8OO1VClMUhQlZ+69ohm/PjqOZ/smce8Vwi579E95sH9oHo/cvDHr5WpThQmt5tbsHnSuE+ix9lCJ6SwwVZiwrmod+px9vM95f/Z9bLZuhlJR+BI9917RjBdOTeOFk9O4s1fYKO/rA7MYnfPjr24Ufgm4UlOJFnNLYpWDD8ecx7DVtpXfw+QPXwGm+V+bF47NwC3/nPaQRx99FE888QSmp6ehVCphs9lw//3346GHHkp7XleXOFFxh8GBam11Vo7bcddxbK/dLnhbKlQKfHRbA370zghmvUHYTVpBr//zgxegIMBHs1ydE4JmczNMahNOuk7i7s67Mx7PMAyOzR7DtU3XFqB18qHF3AK9So/jzuO4o+OOjMczDIPjzuO4uuHqrO9VY9Tgxh4H9r4/ga/cslHwEmw/OzCKCpUCHxHYbksZ6qmUONuaLdjoMOGn+0dzUvpKx4/eGYZWrcA9O3PLj9ti24JjzmO82hWIBjC4MIgtVppekS29tl4cnz2OOBPPeKw/4sfgwiB67b3iNywFV6+zorlaj5/tFz7K8eN3R1Br1uCWTZlrdefCZutm3o6bO+TGiGek5NOFHn74YfT19eHBBx9M/P7QQw9hz5496O3tXfXzyiuviNoeQgg2WTfhmPMYr+NnfDOY9c+KZjfu2dmMGMPgp++NCnpdXyiKnx+4gFs216GuUifotfmgIAr0WHt4r4hc8F7AQmgBvbZecRsmM5QKJbbatuLo7FFex08sTWA+OI+ttq053e9TVzTDHYhgr8Cboed9Yfz66DjuvqwBVTxKvZYLNIJc4hBC8PndrXjk1yew76wL1wikbDO3FMJv+ibxR9sbYdHn9oXYXrsdz55/FsPuYbRb0heW75/rR4yJlbxDUYr02nvx9ODTGFocwrqq9EIJx13HEWNiRXvQKRQEn72yBf/f7/rx/oUFXNYszLL42Rkv9p114a9vXA+1ALWPU7HJugnPDz2PqaUp1BnTV3Q57jwOAPwfdBkivYVm3759Rbv39trteGv8LbgCLlh16UtJiZV/zNFuM+L6rlr8dP8o/vQDHYJVmnjq8Bi8wSi+cHXx0sm22LbgsROPYSm8lDFtom+2DwCKNrGWMttqt+H7fd+HO+TOmDbBTQxzdZCvbK/BpgYz/vOtIXxiR5NgG5V/fmAUwUgc9xdxvJYiNIIsAT5yWQNqzRp8/43sC+yvxX/tv4BwNI7P727N+Ro7ancAAA7PZN7Ec2j6EAhIzoahnOGcXT5pFu/Pvs/2s714/XzPzmZY9Gp8/43zgl3z8XeGUaFS4J6d4u2u5sbzwemDGY/tc/YlonRSYGUaSLEiyMDFfj4ycyTjsQemDkCn0iVyPcXgT65px6I/gqcPC1PyLRZn8Pg7w9jeUiXYBDEXdjp2IsbEeEU3+5x9MFWY6P6QHNheux0MGF6rIu/Pvg+9Sp+zwikhBF+8pgNDLh9e7p/J6RorCUVjeOK9UVy73ob1tSZBrikXqIMsATQqJf54Tzv2D83j6IWFvK/n9kfww7eHcH1XLdbZc/9CNJmaYNPZeDnI+6f2Y2P1RsE32pQDTaYm1GhreDluR2eOosPSAXNF8XYhGzQqfO7KVrx8egaDM/nvuL4w58fTh8fxiR1NqDHmr6S2Fp1VnajWVuPA1IGMx+6f3I9NNZtgUAu7WVAsbDYbFhYu2o59+/ahr69v1c/1118velu6arqgU+lweDqz3TgwfQDbareJquzGOrIW/PDtIURimdOYMvH88UmMzQeKGj0G2CilWqHmNZ4PTR9Cr62X7g/Jgc3WzVApVLwmfPun9uNyx+VQKXJfqbh1kwONVTr83zfPC5J2+fThcTi9IXxhD50crYR+GyQCF5X77qvZqSOl4odvD8EbjOIvb8ivHjEhBDtqd+DI9JG0X1R/xI8+Zx921e/K637lCiEEuxt2473J9xCLr10dwh/x48jMEVxVf1UBW5ea+65qhU6txL++lv+qx3dfOwulguBL16VPL8kXBVFgp2MnDkwdSDue3SE3Ts6dxFUNxe9nvtx999148cUX8cADD/A6fu/evWhsbMR7772H2267DTfddJNgbVEr1LjMflnGifWMbwbD7mHscohrNwgh+NIH12FsPoAnD+VX0SIcjePbLw2iq86Mm3rEyZXni1alRa+9F4emD6U9bswzhlHPKHY37C5Qy+SFVqXFZuvmjBORce84Rj2juLL+yrzup1Iq8CfXduDohUW8dmY2r2v5w1F859WzuLy1CldT5bxVUAdZIhg0KvzZBzrwxoATbw7mXrdzbimEx98exm1b6tBdn3+U8cr6KzEbmE1bp/fo7FFE41HsqqMOcq7srt+NxdBi2qohh6YPIRKPYE/jngK2LDVVhgp8YU8bnjs2iSOjua96DDmX8MzRcXx6VwtqzcJWGUjFFXVXYDYwi2HP2nVN90/tR5yJY3e9dBwKh8OBw4cP47HHHuN1/F133YXx8XGEQiHMzMzgxRdfFLQ9u+p24dziOUwtTa15DLdickXdFYLeOxXXbbRjZ1s1vvPKYF4lNX956AIuzPvxNzdvEFTIJld2OnbizPwZLATX/g6+Pfk2AORUWYHCsqdhD07NncKsf22H9b2p9wAgbwcZYGt4t1sN+J+/70c0j1WPH70zAqc3hEdu3khLu6WAOsgS4r6r2tBao8fXnz+d85fiWy8NIhiN4+HrhVGzu7bpWiiIAq+NvbbmMfvG96FCUYHL7JcJcs9y5Kr6q0BA8M7EO2ses29iH/QqPbbZtxWwZWvz4LUdsJs0+PrzpxHPQa2MYRh8/fnT0KmVePDa3HL2soV7eL059uaax7w7+S5MapNoG8fKgeuarwOAtHbjzfE3Ua2tLoiUNyEE/8+tXXAthfEfb/EX10jGE4zgO6+ew862anxAoM3U+bKncQ8YMHhj7I01j3ln4h00mZrQYm4pWLvkBlce763xt9Y85t2Jd+EwONBmzj+VQa1U4G9u3ojzTl/Oqx6upRB+8OZ5XN9lx44sdRDKBeogS4gKlQL/z61dODe7hB+/O5L1+UcvLOAXBy/g81e1Yp1dmGLw1dpq9Np68dqF1A+6aDyKF0dexLVN10KnKny5I7lg0Vqw2bZ5TYcizsTx1vhbuKLuClQoS6NMj0Gjwt/cvBF9Y4v49dHsN0C9eGoGrw848fAN62EziZd7nEyDsQGbajbhhZEXUr4fiUXw2oXXsLthd155hOVOi7kFHZUda9oNf8SPN8fexA0tNxQsL7a3yYIPb6nDD948j/NO/pLjHP/rhTOY94Xw1Vu7SiYa113djQZjA14cSb0C4Iv4cGDqgKRWQ0qRTksn6g31a06svWEv9k3sw7WN1wo2Nm7qqcXO1mp866UBzHqDWZ//j8+dRigSx1dukZ8SqFBQB1li3NBdi+s22vG/XxzAuVn+G6B8oSj++qljqKvU4i/yzD1eyXXN12FwYRAj7pFV7x2aPoS54BxuabtF0HuWI7e23Yoz82dSprMcnD6IKd8UbmoVLldUCO6+rAGXt1bhH587jYnFAO/znN4Q/u43J9BVZ8bnrmoVr4EpuKXtFpyeO41Rz+rauPsm9mExtIjbO24vaJvkyHXN1+HIzBHMBeZWvffG2BsIxoIFtxt/f3s39BVKfPnpY1mt0r1zzoX/2n8B913Vhq1NFvEamCWEENzYeiMOTB2AO+Re9f6LIy8iGAvitvbbitA6+UAIwXXN1+HdyXdTprO8MvoKQrGQoHaDEIL/efcm+MMxfHXvyaw27L1wcgrPHpvEn39wnWDBMjlCHWSJQQjBP390M/QVSvz5z96HNxjJeA7DMPi735zE8JwPj36iF0aNsJGvW9tuhUqhwpMDT65673dDv4NBbcCehuLnxUqd29pug1qhxm/O/WbVe78e/DUqNZW4vkX8KgTZoFAQfPuPehFnGHzp50cRjGSWoI7E4vjLp/rgDUbxnU/2ilb3eC1uar0JBAS/G/rdqveeH3oe1dpqQfIIy50Pd3wYMSaGpwefXvXe74Z/B7veXvC0LLtJi3+4owdHLyzimy+sva8imRlPEP/9yfexzm7EX90obPBBCG5qvQlRJornzj+36r29Z/eirbKNlt8UgI92fhTheBh7z+1d9d5zQ8+hxdwiuODNOrsJf33jerx8egY/3Lf2volkRud8+PKvjmNrYyX+9AOFSV2TKtRBliB2kxb/es82nHMu4c9//n5ap4NhGHzrpQHsfX8Cf3n9euxqrxG8PTa9DTe33oy9Z/fCG74Y1XYFXPjD8B9wa9ut0KrE32AldyxaC65rvg7PnX8Ovogv8bor4MKrF17F7e23Q6MsTCpCNjTX6PGtP9qK9y8s4q8yRObicQZf3cuK4nz9zk1FqctZa6jF7obdeGrgKQSjF5cuJ5cm8frY67itnZ2oUPKjvbIdVzdcjSfPPIlwLJx4fdg9jH3j+3DXuruKUnbszt4GfO7KFvznvmH85L2RtMe6/RF87vGD8IVi+P6ntsEgcPBBCHpqerDNvg0/PvVjRGIXAyoD8wPoc/bhI+s+UjIpIVJmXdU67KjdgacGnrqk2tDA/AAOTR/CHR13iNLPf7ynHTf3OPCNP/Tj+eOTaY+d9QTx2ccPQkEI/u3ebahQURcwHaL2DiHkZkLIACHkHCHkKyneJ4SQ7y6/f5wQUhq7iyTA1Z1W/M+7NuGtQSfu+9HBlDlIoWgMf//bU/je6+dxz84mUctkfbr70/BH/fjxqR8nXvu39/8NcSaO+3ruE+2+5cZ9PffBE/bgsRMXqxF8r+97YBgGn9z4ySK2LD23bK7DV2/twu+OT+HB/zoCt3/1yocvFMV/e/J9PHV4HP/tunX4+OW5SaALwQObHsBccA4/Of2TxGv/9v6/AQA+2/3ZYjVLdny2+7OYC87hqYGnALAT+n858i/QqrRFHc9/9+Fu3NBdi7//7Sl855WziKXYZDo658PH/+97GHL68J+f3VHSIgt/vOWPMeOfwTNnnwHA9vOjRx+FSW3CRzs/WuTWyYdPd30aE0sTeObcxX7+l6P/AoPagE9s+IQo9ySE4Nsf34rtLVX470/24Yl3R1KmW5yZ9uBjP3gPTm8IP/r85Wiq1ovSHjkh2nSXEKIE8D0ANwAYB3CIEPIswzCnkw67BUDn8s8VAP59+V8KDz5xeTM0KiX+5tfHcdOjb+H+3W24doMNGpUSR0YX8MN9Qxhy+fDFa9rxFZHLuPTU9ODD7R/GYyceQ5OpCUvhJfz67K/xue7PodksnvpZubHJugm3t9+Ox08+jiZTE3wRH341+Ct8rvtzJb8L/Y+vaYdWrcA/PHcaNzz6Jr6wpw1XdVihIAQHhufwn28NYdIdxFdu2Yg/uSa9dLnY7HDswA0tN+Df+/4d9cZ6OP1OPDf0HL645YtwGIpb37YQfPnLX8Zzzz2HiooKdHR04Ec/+hEsFgsA4Bvf+AYee+wxKJVKfPe7382rRvKuul3Y3bAb/3L0X2DX23Fu8RxeG3sNf7HtLzLKUIuJWqnA9+7dhq/8+jgefWUQr/TP4P6rW7GpvhKeYBQvnZ7GE++OQKtW4vH7LsfVnaVdQ3Z3/W5c7rgc3z7ybVj1Vpx0ncQ7E+/gkcsfySiPTOHPdc3X4XLH5fjfh/43qrXVOOk6ibcn3sbfXP43ovazQaPCjz+/E//tF+/jfzx7Cr87MYX7rmrF+loj5n0R/P7EFH52YBRV+gr81xeuwLYiKjxKCSKEEkvKCxNyJYCvMQxz0/LffwsADMN8I+mY/wvgDYZhfrH89wCADzAMs2ZxzB07djCHD2dWYConzs168Y/P9+OtFfWRO+1GfPW2Lnxgg70g7fBFfPjiy1/EcedxAMDuht341w/+q6gqWOXIUngJD77yYELadHf9bnz3uu+WTPWKTJyccOMfnzuNgyPzl7y+tbESf397D7a3lIbx9oQ9+OJLX0zUnv5g0wfx7Q98m3d6RX9/P7q6pLlD/KWXXsJ1110HlUqFRx55BADwzW9+E6dPn8Y999yDgwcPYnJyEtdffz0GBwehVCovOT+bzz4fnMcDLz6Ac4usqMwtbbfgn/f8c0moujEMg9/2TeL/vDyIC/P+xOuEAB/eUo9Hbt6AxippROJmfDP4wktfwIhnBABwZ8ed+Mfd/1gS/SwnnH4n7n/x/kQ/39FxB76+++sF6ed4nMHPDl7Av712FjOeUOJ1pYLgY9sa8Vc3rYfdRNMdV0IIOcIwzI5Vr4voIH8MwM0Mw3xh+e/PALiCYZgvJR3zPIB/Zhjm7eW/XwXwCMMwh1dc64sAvggAzc3N20dHV+8upwBj836cmnQjEmPQYTOiq85U8NyySDyCdyfehVqpxhWOK6BUKDOfRMmaaDyKdyffhYqocEWdNPt52OVD/5QHALC+1piX7LlYhGNhvDf5HjQqDa5wXJHV9ynZSfzmwW+mFdPJhY3VG/HIzkfSHvPoo4/iiSeewPT0NJRKJWw2G+6//3489NBDvO+zd+9e/OpXv8LPfvYzfOMbbHzjb//2bwEAN910E772ta/hyisv3bSY7eQgFAvhnYl3YKowYUftjpLLiY3FGZye9GDItQStWokdLVWiyp6LRTAaxDsT76BKW4XL7JeVXD/LhUA0gHcn30WVpjj9HI7GcWrSjdE5P4waFS5vrUalngaq1mItB1nMHQWpRsRKb5zPMWAY5j8A/AfARpDzb5o8aarWFz2vSK1QJ4qmU8RDpVDhmsZrit2MvGizGtBmNRS7GWmpUFZIejw//PDDePjhh/G1r30NRqMRf/3Xfw0A2LNnD7ze1WUiv/Wtb+H66y+thPL444/jE59g8ycnJiawa9dFRczGxkZMTEzk3U6NUpMQDylFlAqCzY2V2Nwo7XQErUqLD7V8qNjNkD06lQ4fai5eP1eoFLisuQqX0VSKvBDTQR4HkLzLphHAyi2WfI6hUCgUSZMp0lto9u3bx+u4f/qnf4JKpcKnPvUpAEi5+YdGISkUihwR00E+BKCTENIGYALAJwHcu+KYZwF8iRDyJNjNee50+ccUCoVCyZ6VTiyfCPITTzyB559/Hq+++mri/MbGRoyNXZS2HR8fR319vYgtp1AolOIgmoPMMEyUEPIlAC8CUAJ4nGGYU4SQB5ff/wGA3wO4FcA5AH4AnxerPRQKhVKu2Gy2S1IhMkWQX3jhBXzzm9/Em2++Cb3+YtrWHXfcgXvvvRd/+Zd/icnJSZw9exY7d+4Urd0UCoVSLEStas4wzO/BOsHJr/0g6XcGwJ+L2QYKhUIpd+6++258+MMfxvT0NB577LGMx3/pS19CKBTCDTfcAADYtWsXfvCDH6Cnpwcf//jH0d3dDZVKhe9973urKlhQKBSKHBCtioVY0DJvFApFCki5zFu+lPNnp1Ao0mKtKha0ACKFQqFQKBQKhZIEdZApFAqFQqFQKJQkqINMoVAoIiG1FDYhKMfPTKFQ5Ad1kCkUCkUEtFot5ubmysphZBgGc3Nz0GqpnC2FQpE2olaxoFAolHKlsbER4+PjcDqdxW5KQdFqtWhsbCx2MygUCiUvqINMoVAoIqBWq9HW1lbsZlAoFAolB2iKBYVCoVAoFAqFkgR1kCkUCoVCoVAolCSog0yhUCgUCoVCoSQhOSU9QogTwGgRbm0F4CrCfaUI7avsoP3FH9pX/KF9xR/aV/yhfcUf2lfZUaz+amEYxrbyRck5yMWCEHI4lRQhZTW0r7KD9hd/aF/xh/YVf2hf8Yf2FX9oX2VHqfUXTbGgUCgUCoVCoVCSoA4yhUKhUCgUCoWSBHWQ+fMfxW6AhKB9lR20v/hD+4o/tK/4Q/uKP7Sv+EP7KjtKqr9oDjKFQqFQKBQKhZIEjSBTKBQKhUKhUChJUAeZQqFQKBQKhUJJgjrISRBC/ogQcooQEieErFlqhBByMyFkgBByjhDylaTXqwkhLxNCzi7/W1WYlhcePp+VELKBENKX9OMhhPzF8ntfI4RMJL13a8E/RIHgOy4IISOEkBPL/XE42/PlAM9x1UQIeZ0Q0r/8ff3vSe/JflytZX+S3ieEkO8uv3+cELKN77lyg0dffWq5j44TQt4lhGxNei/l91HO8OivDxBC3Enfr7/ne67c4NFXX07qp5OEkBghpHr5vbIZW4SQxwkhs4SQk2u8X7r2imEY+rP8A6ALwAYAbwDYscYxSgDnAbQDqABwDED38nv/C8BXln//CoBvFvszidhXWX3W5X6bBluQGwC+BuCvi/05SqmvAIwAsObb11L+4fNZAdQB2Lb8uwnAYNJ3UNbjKp39STrmVgB/AEAA7AJwgO+5cvrh2VdXAaha/v0Wrq+W/075fZTrD8/++gCA53M5V04/2X5eALcDeK0cxxaAawBsA3ByjfdL1l7RCHISDMP0MwwzkOGwnQDOMQwzxDBMGMCTAO5cfu9OAE8s//4EgI+I0tDSINvP+iEA5xmGKYYKYrHJd1zQcZUEwzBTDMMcXf7dC6AfQEOhGlhk0tkfjjsB/IRh2Q/AQgip43munMj4eRmGeZdhmIXlP/cDaCxwG0uJfMYHHVvpP+89AH5RkJaVGAzDvAVgPs0hJWuvqIOcPQ0AxpL+HsfFh3MtwzBTAPsQB2AvcNsKSbaf9ZNYbSC+tLyk8ric0wbAv68YAC8RQo4QQr6Yw/lyIKvPSghpBXAZgANJL8t5XKWzP5mO4XOunMj28z4ANpLFsdb3Ua7w7a8rCSHHCCF/IIT0ZHmuXOD9eQkhegA3A/h10svlNrbSUbL2SlXIm5UChJBXADhSvPVVhmF+y+cSKV6TZa28dH2VuKVvdgAABBZJREFU5XUqANwB4G+TXv53AF8H23dfB/BtAPfn1tLiI1Bf7WYYZpIQYgfwMiHkzPLsW1YIOK6MYB86f8EwjGf5ZVmNqxTwsT9rHVM2tmsZ3p+XEPJBsA7y1Ukvl8X3MQk+/XUUbJrc0nJ+/28AdPI8V05k83lvB/AOwzDJUdRyG1vpKFl7VXYOMsMw1+d5iXEATUl/NwKYXP59hhBSxzDM1PISwWye9yoq6fqKEJLNZ70FwFGGYWaSrp34nRDynwCeF6LNxUKIvmIYZnL531lCyF6wS0xvgY6rVMepwTrHP2MY5pmka8tqXKUgnf3JdEwFj3PlBJ++AiFkC4AfAriFYZg57vU030e5krG/kiaiYBjm94SQ7xNCrHzOlRnZfN5Vq6dlOLbSUbL2iqZYZM8hAJ2EkLblyOgnATy7/N6zAD63/PvnAPCJSEuVbD7rqvyrZeeH4y4AKXe4yoSMfUUIMRBCTNzvAG7ExT6h4yoJQggB8BiAfoZh/s+K9+Q+rtLZH45nAXx2eXf4LgDu5XQVPufKiYyflxDSDOAZAJ9hGGYw6fV030e5wqe/HMvfPxBCdoL1Ieb4nCszeH1eQkglgGuRZMfKdGylo3TtVSF3BJb6D9gH6jiAEIAZAC8uv14P4PdJx90Kduf8ebCpGdzrNQBeBXB2+d/qYn8mEfsq5WdN0Vd6sAa0csX5PwVwAsBxsIO+rtifqZh9BXan7rHln1N0XKXtq6vBLrUdB9C3/HNruYyrVPYHwIMAHlz+nQD43vL7J5BUkWct2yXXHx599UMAC0nj6PDy62t+H+X8w6O/vrTcH8fAbmq8io6t1H21/Pd9AJ5ccV5ZjS2wwbEpABGw/tUDUrFXVGqaQqFQKBQKhUJJgqZYUCgUCoVCoVAoSVAHmUKhUCgUCoVCSYI6yBQKhUKhUCgUShLUQaZQKBQKhUKhUJKgDjKFQqFQKBQKhZIEdZApFApFZhBC7iKEMISQjcVuC4VCoUgR6iBTKBSK/LgHwGGwxfUpFAqFkiW0DjKFQqHICEKIEWxh/RsAPM0wzIYiN4lCoVAkB40gUygUirz4CIBXGIY5DsBHCNlW5PZQKBSK5KAOMoVCociLewA8tfz7U8t/UygUCiULaIoFhUKhyARCSA2AMwAaGYYJEULaALwJoIWhxp5CoVB4QyPIFAqFIh8+BuD3DMOEAIBhmGEA0wCuLmqrKBQKRWKoit0ACoVCoQjGPQC2EEJGkl6rAXAvgH1FaRGFQqFIEJpiQaFQKBQKhUKhJEFTLCgUCoVCoVAolCSog0yhUCgUCoVCoSRBHWQKhUKhUCgUCiUJ6iBTKBQKhUKhUChJUAeZQqFQKBQKhUJJgjrIFAqFQqFQKBRKEtRBplAoFAqFQqFQkvj/AciiiRt92v6hAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ax = plot_ramsey_fringes(Δ_min=-1, Δ_max=1, N=1001, τ=10, label=\"τ=10\");\n",
"plot_ramsey_fringes(Δ_min=-1, Δ_max=1, N=1001, τ=1, label=\"τ=1\", ax=ax);\n",
"plot_ramsey_fringes(Δ_min=-1, Δ_max=1, N=1001, τ=20, label=\"τ=20\", ax=ax);\n",
"ax.figure.suptitle(\"Varying the time of flight\");\n",
"ax.figure.tight_layout()"
]
},
{
"cell_type": "markdown",
"id": "c644290b",
"metadata": {
"ExecuteTime": {
"end_time": "2021-12-15T19:36:32.478902Z",
"start_time": "2021-12-15T19:36:32.466810Z"
}
},
"source": [
"Conclusions:\n",
"\n",
"* The more $η > Δ$, that is, the faster/stronger the Rabi pulses, the better the fringes are described by the \"ideal\" expression $\\cos(\\Delta\\cdot\\tau/2)^2$\n",
"* The width of the fringes is determined by the time of flight $\\tau$"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.0"
manifest_format = "2.0"
[[deps.AbstractFFTs]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "485ee0867925449198280d4af84bdb46a2a404d0"
uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c"
version = "1.0.1"
[[deps.Adapt]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "84918055d15b3114ede17ac6a7182f68870c16f7"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "3.3.1"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[deps.ArnoldiMethod]]
deps = ["LinearAlgebra", "Random", "StaticArrays"]
git-tree-sha1 = "62e51b39331de8911e4a7ff6f5aaf38a5f4cc0ae"
uuid = "ec485272-7323-5ecc-a04f-4719b315124d"
version = "0.2.0"
[[deps.Arpack]]
deps = ["Arpack_jll", "Libdl", "LinearAlgebra", "Logging"]
git-tree-sha1 = "91ca22c4b8437da89b030f08d71db55a379ce958"
uuid = "7d9fca2a-8960-54d3-9f78-7d1dccf2cb97"
version = "0.5.3"
[[deps.Arpack_jll]]
deps = ["Libdl", "OpenBLAS_jll", "Pkg"]
git-tree-sha1 = "e214a9b9bd1b4e1b4f15b22c0994862b66af7ff7"
uuid = "68821587-b530-5797-8361-c406ea357684"
version = "3.5.0+3"
[[deps.ArrayInterface]]
deps = ["Compat", "IfElse", "LinearAlgebra", "Requires", "SparseArrays", "Static"]
git-tree-sha1 = "265b06e2b1f6a216e0e8f183d28e4d354eab3220"
uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
version = "3.2.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BitTwiddlingConvenienceFunctions]]
deps = ["Static"]
git-tree-sha1 = "bc1317f71de8dce26ea67fcdf7eccc0d0693b75b"
uuid = "62783981-4cbd-42fc-bca8-16325de8dc4b"
version = "0.1.1"
[[deps.CPUSummary]]
deps = ["Hwloc", "IfElse", "Static"]
git-tree-sha1 = "87b0c9c6ee0124d6c1f4ce8cb035dcaf9f90b803"
uuid = "2a0fbf3d-bb9c-48f3-b0a9-814d99fd7ab9"
version = "0.1.6"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "4c26b4e9e91ca528ea212927326ece5918a04b47"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.11.2"
[[deps.ChangesOfVariables]]
deps = ["LinearAlgebra", "Test"]
git-tree-sha1 = "9a1d594397670492219635b35a3d830b04730d62"
uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
version = "0.1.1"
[[deps.CloseOpenIntervals]]
deps = ["ArrayInterface", "Static"]
git-tree-sha1 = "7b8f09d58294dc8aa13d91a8544b37c8a1dcbc06"
uuid = "fb6a15b2-703c-40df-9091-08a04967cfa9"
version = "0.1.4"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "024fe24d83e4a5bf5fc80501a314ce0d1aa35597"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.0"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.8"
[[deps.CommonSolve]]
git-tree-sha1 = "68a0743f578349ada8bc911a5cbd5a2ef6ed6d1f"
uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2"
version = "0.2.0"
[[deps.CommonSubexpressions]]
deps = ["MacroTools", "Test"]
git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7"
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
version = "0.3.0"
[[deps.Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "dce3e3fea680869eaa0b774b2e8343e9ff442313"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.40.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[deps.Conda]]
deps = ["Downloads", "JSON", "VersionParsing"]
git-tree-sha1 = "6cdc8832ba11c7695f494c9d9a1c31e90959ce0f"
uuid = "8f4d0f93-b110-5947-807f-2305c1781a2d"
version = "1.6.0"
[[deps.ConstructionBase]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "f74e9d5388b8620b4cee35d4c5a618dd4dc547f4"
uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
version = "1.3.0"
[[deps.DEDataArrays]]
deps = ["ArrayInterface", "DocStringExtensions", "LinearAlgebra", "RecursiveArrayTools", "SciMLBase", "StaticArrays"]
git-tree-sha1 = "31186e61936fbbccb41d809ad4338c9f7addf7ae"
uuid = "754358af-613d-5f8d-9788-280bf1605d4c"
version = "0.2.0"
[[deps.DataAPI]]
git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.9.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "3daef5523dd2e769dad2365274f760ff5f282c7d"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.11"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.DensityInterface]]
deps = ["InverseFunctions", "Test"]
git-tree-sha1 = "80c3e8639e3353e5d2912fb3a1916b8455e2494b"
uuid = "b429d917-457f-4dbc-8f4c-0cc954292b1d"
version = "0.4.0"
[[deps.DiffEqBase]]
deps = ["ArrayInterface", "ChainRulesCore", "DEDataArrays", "DataStructures", "Distributions", "DocStringExtensions", "FastBroadcast", "ForwardDiff", "FunctionWrappers", "IterativeSolvers", "LabelledArrays", "LinearAlgebra", "Logging", "MuladdMacro", "NonlinearSolve", "Parameters", "PreallocationTools", "Printf", "RecursiveArrayTools", "RecursiveFactorization", "Reexport", "Requires", "SciMLBase", "Setfield", "SparseArrays", "StaticArrays", "Statistics", "SuiteSparse", "ZygoteRules"]
git-tree-sha1 = "5c3d877ddfc2da61ce5cc1f5ce330ff97789c57c"
uuid = "2b5f629d-d688-5b77-993f-72d75c75574e"
version = "6.76.0"
[[deps.DiffEqCallbacks]]
deps = ["DataStructures", "DiffEqBase", "ForwardDiff", "LinearAlgebra", "NLsolve", "OrdinaryDiffEq", "Parameters", "RecipesBase", "RecursiveArrayTools", "StaticArrays"]
git-tree-sha1 = "35bc7f8be9dd2155336fe999b11a8f5e44c0d602"
uuid = "459566f4-90b8-5000-8ac3-15dfb0a30def"
version = "2.17.0"
[[deps.DiffEqJump]]
deps = ["ArrayInterface", "Compat", "DataStructures", "DiffEqBase", "FunctionWrappers", "Graphs", "LinearAlgebra", "PoissonRandom", "Random", "RandomNumbers", "RecursiveArrayTools", "Reexport", "StaticArrays", "TreeViews", "UnPack"]
git-tree-sha1 = "0aa2d003ec9efe2a93f93ae722de05a870ffc0b2"
uuid = "c894b116-72e5-5b58-be3c-e6d8d4ac2b12"
version = "8.0.0"
[[deps.DiffEqNoiseProcess]]
deps = ["DiffEqBase", "Distributions", "LinearAlgebra", "Optim", "PoissonRandom", "QuadGK", "Random", "Random123", "RandomNumbers", "RecipesBase", "RecursiveArrayTools", "Requires", "ResettableStacks", "SciMLBase", "StaticArrays", "Statistics"]
git-tree-sha1 = "d6839a44a268c69ef0ed927b22a6f43c8a4c2e73"
uuid = "77a26b50-5914-5dd7-bc55-306e6241c503"
version = "5.9.0"
[[deps.DiffResults]]
deps = ["StaticArrays"]
git-tree-sha1 = "c18e98cba888c6c25d1c3b048e4b3380ca956805"
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
version = "1.0.3"
[[deps.DiffRules]]
deps = ["LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"]
git-tree-sha1 = "d8f468c5cd4d94e86816603f7d18ece910b4aaf1"
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
version = "1.5.0"
[[deps.Distances]]
deps = ["LinearAlgebra", "SparseArrays", "Statistics", "StatsAPI"]
git-tree-sha1 = "3258d0659f812acde79e8a74b11f17ac06d0ca04"
uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
version = "0.10.7"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.Distributions]]
deps = ["ChainRulesCore", "DensityInterface", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "Test"]
git-tree-sha1 = "d6cc7abd52ebae5815fd75f6004a44abcf7a6b00"
uuid = "31c24e10-a181-5473-b8eb-7969acd0382f"
version = "0.25.35"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.8.6"
[[deps.Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[deps.ExponentialUtilities]]
deps = ["ArrayInterface", "LinearAlgebra", "Printf", "Requires", "SparseArrays"]
git-tree-sha1 = "1b873816d2cfc8c0fcb1edcb08e67fdf630a70b7"
uuid = "d4d017d3-3776-5f7e-afef-a10c40355c18"
version = "1.10.2"
[[deps.FFTW]]
deps = ["AbstractFFTs", "FFTW_jll", "LinearAlgebra", "MKL_jll", "Preferences", "Reexport"]
git-tree-sha1 = "463cb335fa22c4ebacfd1faba5fde14edb80d96c"
uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
version = "1.4.5"
[[deps.FFTW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "c6033cc3892d0ef5bb9cd29b7f2f0331ea5184ea"
uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a"
version = "3.3.10+0"
[[deps.FastBroadcast]]
deps = ["LinearAlgebra", "Polyester", "Static"]
git-tree-sha1 = "e32a81c505ab234c992ca978f31ed8b0dabbc327"
uuid = "7034ab61-46d4-4ed7-9d0f-46aef9175898"
version = "0.1.11"
[[deps.FastClosures]]
git-tree-sha1 = "acebe244d53ee1b461970f8910c235b259e772ef"
uuid = "9aa1b823-49e4-5ca5-8b0f-3971ec8bab6a"
version = "0.3.2"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.FillArrays]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"]
git-tree-sha1 = "8756f9935b7ccc9064c6eef0bff0ad643df733a3"
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
version = "0.12.7"
[[deps.FiniteDiff]]
deps = ["ArrayInterface", "LinearAlgebra", "Requires", "SparseArrays", "StaticArrays"]
git-tree-sha1 = "8b3c09b56acaf3c0e581c66638b85c8650ee9dca"
uuid = "6a86dc24-6348-571c-b903-95158fe2bd41"
version = "2.8.1"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.4"
[[deps.ForwardDiff]]
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions", "StaticArrays"]
git-tree-sha1 = "6406b5112809c08b1baa5703ad274e1dded0652f"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.23"
[[deps.FunctionWrappers]]
git-tree-sha1 = "241552bc2209f0fa068b6415b1942cc0aa486bcc"
uuid = "069b7b12-0de2-55c6-9aab-29f3d0a68a2e"
version = "1.1.2"
[[deps.Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[deps.Graphs]]
deps = ["ArnoldiMethod", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"]
git-tree-sha1 = "92243c07e786ea3458532e199eb3feee0e7e08eb"
uuid = "86223c79-3864-5bf0-83f7-82e725a168b6"
version = "1.4.1"
[[deps.HalfIntegers]]
git-tree-sha1 = "dc0ce9efc3d88c6cefc4e1f9c29b397be8734cfc"
uuid = "f0d1745a-41c9-11e9-1dd9-e5d34d218721"
version = "1.4.2"
[[deps.HostCPUFeatures]]
deps = ["BitTwiddlingConvenienceFunctions", "IfElse", "Libdl", "Static"]
git-tree-sha1 = "8f0dc80088981ab55702b04bba38097a44a1a3a9"
uuid = "3e5b6fbb-0976-4d2c-9146-d79de83f2fb0"
version = "0.1.5"
[[deps.Hwloc]]
deps = ["Hwloc_jll"]
git-tree-sha1 = "92d99146066c5c6888d5a3abc871e6a214388b91"
uuid = "0e44f5e4-bd66-52a0-8798-143a42290a1d"
version = "2.0.0"
[[deps.Hwloc_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "3395d4d4aeb3c9d31f5929d32760d8baeee88aaf"
uuid = "e33a78d0-f292-5ffc-b300-72abe9b543c8"
version = "2.5.0+0"
[[deps.IJulia]]
deps = ["Base64", "Conda", "Dates", "InteractiveUtils", "JSON", "Libdl", "Markdown", "MbedTLS", "Pkg", "Printf", "REPL", "Random", "SoftGlobalScope", "Test", "UUIDs", "ZMQ"]
git-tree-sha1 = "d8b9c31196e1dd92181cd0f5760ca2d2ffb4ac0f"
uuid = "7073ff75-c697-5162-941a-fcdaad2a7d2a"
version = "1.23.2"
[[deps.IfElse]]
git-tree-sha1 = "debdd00ffef04665ccbb3e150747a77560e8fad1"
uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173"
version = "0.1.1"
[[deps.Inflate]]
git-tree-sha1 = "f5fc07d4e706b84f72d54eedcc1c13d92fb0871c"
uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9"
version = "0.1.2"
[[deps.IntelOpenMP_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "d979e54b71da82f3a65b62553da4fc3d18c9004c"
uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0"
version = "2018.0.3+2"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.InverseFunctions]]
deps = ["Test"]
git-tree-sha1 = "a7254c0acd8e62f1ac75ad24d5db43f5f19f3c65"
uuid = "3587e190-3f89-42d0-90ee-14403ec27112"
version = "0.1.2"
[[deps.IrrationalConstants]]
git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.1.1"
[[deps.IterativeSolvers]]
deps = ["LinearAlgebra", "Printf", "Random", "RecipesBase", "SparseArrays"]
git-tree-sha1 = "1169632f425f79429f245113b775a0e3d121457c"
uuid = "42fd0dbc-a981-5370-80f2-aaf504508153"
version = "0.9.2"
[[deps.IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[deps.JLLWrappers]]
deps = ["Preferences"]
git-tree-sha1 = "642a199af8b68253517b80bd3bfd17eb4e84df6e"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.3.0"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.2"
[[deps.LRUCache]]
git-tree-sha1 = "d64a0aff6691612ab9fb0117b0995270871c5dfc"
uuid = "8ac3fa9e-de4c-5943-b1dc-09c6b5f20637"
version = "1.3.0"
[[deps.LaTeXStrings]]
git-tree-sha1 = "f2355693d6778a178ade15952b7ac47a4ff97996"
uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
version = "1.3.0"
[[deps.LabelledArrays]]
deps = ["ArrayInterface", "ChainRulesCore", "LinearAlgebra", "MacroTools", "StaticArrays"]
git-tree-sha1 = "3609bbf5feba7b22fb35fe7cb207c8c8d2e2fc5b"
uuid = "2ee39098-c373-598a-b85f-a56591580800"
version = "1.6.7"
[[deps.LayoutPointers]]
deps = ["ArrayInterface", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static"]
git-tree-sha1 = "83b56449c39342a47f3fcdb3bc782bd6d66e1d97"
uuid = "10f19ff3-798f-405d-979b-55457f8fc047"
version = "0.1.4"
[[deps.LazyArtifacts]]
deps = ["Artifacts", "Pkg"]
uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.LineSearches]]
deps = ["LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "Printf"]
git-tree-sha1 = "f27132e551e959b3667d8c93eae90973225032dd"
uuid = "d3d80556-e9d4-5f37-9878-2ab0fcc64255"
version = "7.1.1"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.LinearMaps]]
deps = ["LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "dbb14c604fc47aa4f2e19d0ebb7b6416f3cfa5f5"
uuid = "7a12625a-238d-50fd-b39a-03d52299707e"
version = "3.5.1"
[[deps.LogExpFunctions]]
deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"]
git-tree-sha1 = "be9eef9f9d78cecb6f262f3c10da151a6c5ab827"
uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
version = "0.3.5"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.LoopVectorization]]
deps = ["ArrayInterface", "CPUSummary", "CloseOpenIntervals", "DocStringExtensions", "HostCPUFeatures", "IfElse", "LayoutPointers", "LinearAlgebra", "OffsetArrays", "PolyesterWeave", "Requires", "SIMDDualNumbers", "SLEEFPirates", "Static", "ThreadingUtilities", "UnPack", "VectorizationBase"]
git-tree-sha1 = "9e10579c154f785b911d9ceb96c33fcc1a661171"
uuid = "bdcacae8-1622-11e9-2a5c-532679323890"
version = "0.12.99"
[[deps.MKL_jll]]
deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "Pkg"]
git-tree-sha1 = "5455aef09b40e5020e1520f551fa3135040d4ed0"
uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7"
version = "2021.1.1+2"
[[deps.MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "3d3e902b31198a27340d0bf00d6ac452866021cf"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.9"
[[deps.ManualMemory]]
git-tree-sha1 = "9cb207b18148b2199db259adfa923b45593fe08e"
uuid = "d125e4d3-2237-4719-b19c-fa641b8a4667"
version = "0.1.6"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS]]
deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"]
git-tree-sha1 = "1c38e51c3d08ef2278062ebceade0e46cefc96fe"
uuid = "739be429-bea8-5141-9913-cc70e7f3736d"
version = "1.0.3"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[deps.Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.0.2"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[deps.MuladdMacro]]
git-tree-sha1 = "c6190f9a7fc5d9d5915ab29f2134421b12d24a68"
uuid = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221"
version = "0.2.2"
[[deps.NLSolversBase]]
deps = ["DiffResults", "Distributed", "FiniteDiff", "ForwardDiff"]
git-tree-sha1 = "50310f934e55e5ca3912fb941dec199b49ca9b68"
uuid = "d41bc354-129a-5804-8e4c-c37616107c6c"
version = "7.8.2"
[[deps.NLsolve]]
deps = ["Distances", "LineSearches", "LinearAlgebra", "NLSolversBase", "Printf", "Reexport"]
git-tree-sha1 = "019f12e9a1a7880459d0173c182e6a99365d7ac1"
uuid = "2774e3e8-f4cf-5e23-947b-6d7e65073b56"
version = "4.5.1"
[[deps.NaNMath]]
git-tree-sha1 = "bfe47e760d60b82b66b61d2d44128b62e3a369fb"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "0.3.5"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[deps.NonlinearSolve]]
deps = ["ArrayInterface", "FiniteDiff", "ForwardDiff", "IterativeSolvers", "LinearAlgebra", "RecursiveArrayTools", "RecursiveFactorization", "Reexport", "SciMLBase", "Setfield", "StaticArrays", "UnPack"]
git-tree-sha1 = "8dc3be3e9edf976a3e79363b3bd2ad776a627c31"
uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec"
version = "0.3.12"
[[deps.OffsetArrays]]
deps = ["Adapt"]
git-tree-sha1 = "043017e0bdeff61cfbb7afeb558ab29536bbb5ed"
uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
version = "1.10.8"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
[[deps.OpenLibm_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "05823500-19ac-5b8b-9628-191a04bc5112"
[[deps.OpenSpecFun_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.5+0"
[[deps.Optim]]
deps = ["Compat", "FillArrays", "ForwardDiff", "LineSearches", "LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "PositiveFactorizations", "Printf", "SparseArrays", "StatsBase"]
git-tree-sha1 = "35d435b512fbab1d1a29138b5229279925eba369"
uuid = "429524aa-4258-5aef-a3af-852621145aeb"
version = "1.5.0"
[[deps.OrderedCollections]]
git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.4.1"
[[deps.OrdinaryDiffEq]]
deps = ["Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "ExponentialUtilities", "FastClosures", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "Logging", "LoopVectorization", "MacroTools", "MuladdMacro", "NLsolve", "Polyester", "PreallocationTools", "RecursiveArrayTools", "Reexport", "SparseArrays", "SparseDiffTools", "StaticArrays", "UnPack"]
git-tree-sha1 = "d6d57aff20976207ee25f634f6936b06f17d33db"
uuid = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
version = "5.69.0"
[[deps.PDMats]]
deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"]
git-tree-sha1 = "ee26b350276c51697c9c2d88a072b339f9f03d73"
uuid = "90014a1f-27ba-587c-ab20-58faa44d9150"
version = "0.11.5"
[[deps.Parameters]]
deps = ["OrderedCollections", "UnPack"]
git-tree-sha1 = "34c0e9ad262e5f7fc75b10a9952ca7692cfc5fbe"
uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a"
version = "0.12.3"
[[deps.Parsers]]
deps = ["Dates"]
git-tree-sha1 = "ae4bbcadb2906ccc085cf52ac286dc1377dceccc"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.1.2"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[deps.PoissonRandom]]
deps = ["Random", "Statistics", "Test"]
git-tree-sha1 = "44d018211a56626288b5d3f8c6497d28c26dc850"
uuid = "e409e4f3-bfea-5376-8464-e040bb5c01ab"
version = "0.4.0"
[[deps.Polyester]]
deps = ["ArrayInterface", "BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "ManualMemory", "PolyesterWeave", "Requires", "Static", "StrideArraysCore", "ThreadingUtilities"]
git-tree-sha1 = "892b8d9dd3c7987a4d0fd320f0a421dd90b5d09d"
uuid = "f517fe37-dbe3-4b94-8317-1923a5111588"
version = "0.5.4"
[[deps.PolyesterWeave]]
deps = ["BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "Static", "ThreadingUtilities"]
git-tree-sha1 = "a3ff99bf561183ee20386aec98ab8f4a12dc724a"
uuid = "1d0040c9-8b98-4ee7-8388-3f51789ca0ad"
version = "0.1.2"
[[deps.PositiveFactorizations]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "17275485f373e6673f7e7f97051f703ed5b15b20"
uuid = "85a6dd25-e78a-55b7-8502-1745935b8125"
version = "0.2.4"
[[deps.PreallocationTools]]
deps = ["Adapt", "ArrayInterface", "ForwardDiff", "LabelledArrays"]
git-tree-sha1 = "ba819074442cd4c9bda1a3d905ec305f8acb37f2"
uuid = "d236fae5-4411-538c-8e31-a6e3d9e00b46"
version = "0.2.0"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "00cfd92944ca9c760982747e9a1d0d5d86ab1e5a"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.2.2"
[[deps.Primes]]
git-tree-sha1 = "984a3ee07d47d401e0b823b7d30546792439070a"
uuid = "27ebfcd6-29c5-5fa9-bf4b-fb8fc14df3ae"
version = "0.5.1"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.PyCall]]
deps = ["Conda", "Dates", "Libdl", "LinearAlgebra", "MacroTools", "Serialization", "VersionParsing"]
git-tree-sha1 = "4ba3651d33ef76e24fef6a598b63ffd1c5e1cd17"
uuid = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
version = "1.92.5"
[[deps.PyPlot]]
deps = ["Colors", "LaTeXStrings", "PyCall", "Sockets", "Test", "VersionParsing"]
git-tree-sha1 = "14c1b795b9d764e1784713941e787e1384268103"
uuid = "d330b81b-6aea-500a-939a-2ce795aea3ee"
version = "2.10.0"
[[deps.QuadGK]]
deps = ["DataStructures", "LinearAlgebra"]
git-tree-sha1 = "78aadffb3efd2155af139781b8a8df1ef279ea39"
uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc"
version = "2.4.2"
[[deps.QuantumOptics]]
deps = ["Arpack", "DiffEqCallbacks", "FFTW", "IterativeSolvers", "LinearAlgebra", "LinearMaps", "OrdinaryDiffEq", "QuantumOpticsBase", "Random", "RecursiveArrayTools", "Reexport", "SparseArrays", "StochasticDiffEq", "WignerSymbols"]
git-tree-sha1 = "eea423799266abf5c22a41313f26c11b9bb54488"
uuid = "6e0679c1-51ea-5a7c-ac74-d61b76210b0c"
version = "1.0.1"
[[deps.QuantumOpticsBase]]
deps = ["Adapt", "FFTW", "LinearAlgebra", "Random", "SparseArrays"]
git-tree-sha1 = "5506df67d351551b521c3099e19e06b6ea64e038"
uuid = "4f57444f-1401-5e15-980d-4471b28d5678"
version = "0.3.1"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Random123]]
deps = ["Libdl", "Random", "RandomNumbers"]
git-tree-sha1 = "0e8b146557ad1c6deb1367655e052276690e71a3"
uuid = "74087812-796a-5b5d-8853-05524746bad3"
version = "1.4.2"
[[deps.RandomNumbers]]
deps = ["Random", "Requires"]
git-tree-sha1 = "043da614cc7e95c703498a491e2c21f58a2b8111"
uuid = "e6cf234a-135c-5ec9-84dd-332b85af5143"
version = "1.5.3"
[[deps.RationalRoots]]
git-tree-sha1 = "52315cf3098691c1416a356925027af5ab5bf548"
uuid = "308eb6b3-cc68-5ff3-9e97-c3c4da4fa681"
version = "0.2.0"
[[deps.RecipesBase]]
git-tree-sha1 = "6bf3f380ff52ce0832ddd3a2a7b9538ed1bcca7d"
uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
version = "1.2.1"
[[deps.RecursiveArrayTools]]
deps = ["ArrayInterface", "ChainRulesCore", "DocStringExtensions", "FillArrays", "LinearAlgebra", "RecipesBase", "Requires", "StaticArrays", "Statistics", "ZygoteRules"]
git-tree-sha1 = "c944fa4adbb47be43376359811c0a14757bdc8a8"
uuid = "731186ca-8d62-57ce-b412-fbd966d074cd"
version = "2.20.0"
[[deps.RecursiveFactorization]]
deps = ["LinearAlgebra", "LoopVectorization", "Polyester", "StrideArraysCore", "TriangularSolve"]
git-tree-sha1 = "b7edd69c796b30985ea6dfeda8504cdb7cf77e9f"
uuid = "f2c3362d-daeb-58d1-803e-2bc74f2840b4"
version = "0.2.5"
[[deps.Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[deps.Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.1.3"
[[deps.ResettableStacks]]
deps = ["StaticArrays"]
git-tree-sha1 = "256eeeec186fa7f26f2801732774ccf277f05db9"
uuid = "ae5879a3-cd67-5da8-be7f-38c6eb64a37b"
version = "1.1.1"
[[deps.Rmath]]
deps = ["Random", "Rmath_jll"]
git-tree-sha1 = "bf3188feca147ce108c76ad82c2792c57abe7b1f"
uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa"
version = "0.7.0"
[[deps.Rmath_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "68db32dff12bb6127bac73c209881191bf0efbb7"
uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f"
version = "0.3.0+0"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[deps.SIMDDualNumbers]]
deps = ["ForwardDiff", "IfElse", "SLEEFPirates", "VectorizationBase"]
git-tree-sha1 = "62c2da6eb66de8bb88081d20528647140d4daa0e"
uuid = "3cdde19b-5bb0-4aaf-8931-af3e248e098b"
version = "0.1.0"
[[deps.SIMDTypes]]
git-tree-sha1 = "330289636fb8107c5f32088d2741e9fd7a061a5c"
uuid = "94e857df-77ce-4151-89e5-788b33177be4"
version = "0.1.0"
[[deps.SLEEFPirates]]
deps = ["IfElse", "Static", "VectorizationBase"]
git-tree-sha1 = "1410aad1c6b35862573c01b96cd1f6dbe3979994"
uuid = "476501e8-09a2-5ece-8869-fb82de89a1fa"
version = "0.6.28"
[[deps.SciMLBase]]
deps = ["ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "RecipesBase", "RecursiveArrayTools", "StaticArrays", "Statistics", "Tables", "TreeViews"]
git-tree-sha1 = "2c54ffd46315e821ef6cf84672832edf45d7683a"
uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
version = "1.20.0"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.Setfield]]
deps = ["ConstructionBase", "Future", "MacroTools", "Requires"]
git-tree-sha1 = "0afd9e6c623e379f593da01f20590bacc26d1d14"
uuid = "efcf1570-3423-57d1-acb7-fd33fddbac46"
version = "0.8.1"
[[deps.SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[deps.SimpleTraits]]
deps = ["InteractiveUtils", "MacroTools"]
git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231"
uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d"
version = "0.9.4"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SoftGlobalScope]]
deps = ["REPL"]
git-tree-sha1 = "986ec2b6162ccb95de5892ed17832f95badf770c"
uuid = "b85f4697-e234-5449-a836-ec8e2f98b302"
version = "1.1.0"
[[deps.SortingAlgorithms]]
deps = ["DataStructures"]
git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "1.0.1"
[[deps.SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.SparseDiffTools]]
deps = ["Adapt", "ArrayInterface", "Compat", "DataStructures", "FiniteDiff", "ForwardDiff", "Graphs", "LinearAlgebra", "Requires", "SparseArrays", "StaticArrays", "VertexSafeGraphs"]
git-tree-sha1 = "5e86e10d8a833e792d27c5db9a172d002cb4c4e2"
uuid = "47a9eef4-7e08-11e9-0b38-333d64bd3804"
version = "1.18.3"
[[deps.SpecialFunctions]]
deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"]
git-tree-sha1 = "f0bccf98e16759818ffc5d97ac3ebf87eb950150"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "1.8.1"
[[deps.Static]]
deps = ["IfElse"]
git-tree-sha1 = "e7bc80dc93f50857a5d1e3c8121495852f407e6a"
uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3"
version = "0.4.0"
[[deps.StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"]
git-tree-sha1 = "3c76dde64d03699e074ac02eb2e8ba8254d428da"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "1.2.13"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[deps.StatsAPI]]
git-tree-sha1 = "0f2aa8e32d511f758a2ce49208181f7733a0936a"
uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0"
version = "1.1.0"
[[deps.StatsBase]]
deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"]
git-tree-sha1 = "2bb0cb32026a66037360606510fca5984ccc6b75"
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
version = "0.33.13"
[[deps.StatsFuns]]
deps = ["ChainRulesCore", "InverseFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"]
git-tree-sha1 = "bedb3e17cc1d94ce0e6e66d3afa47157978ba404"
uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c"
version = "0.9.14"
[[deps.StochasticDiffEq]]
deps = ["Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DiffEqJump", "DiffEqNoiseProcess", "DocStringExtensions", "FillArrays", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "Logging", "MuladdMacro", "NLsolve", "OrdinaryDiffEq", "Random", "RandomNumbers", "RecursiveArrayTools", "Reexport", "SparseArrays", "SparseDiffTools", "StaticArrays", "UnPack"]
git-tree-sha1 = "d6756d0c66aecd5d57ad9d305d7c2526fb5922d9"
uuid = "789caeaf-c7a9-5a7d-9973-96adeb23e2a0"
version = "6.41.0"
[[deps.StrideArraysCore]]
deps = ["ArrayInterface", "CloseOpenIntervals", "IfElse", "LayoutPointers", "ManualMemory", "Requires", "SIMDTypes", "Static", "ThreadingUtilities"]
git-tree-sha1 = "12cf3253ebd8e2a3214ae171fbfe51e7e8d8ad28"
uuid = "7792a7ef-975c-4747-a70f-980b88e8d1da"
version = "0.2.9"
[[deps.SuiteSparse]]
deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"]
uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
[[deps.TableTraits]]
deps = ["IteratorInterfaceExtensions"]
git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39"
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
version = "1.0.1"
[[deps.Tables]]
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"]
git-tree-sha1 = "fed34d0e71b91734bf0a7e10eb1bb05296ddbcd0"
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
version = "1.6.0"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.ThreadingUtilities]]
deps = ["ManualMemory"]
git-tree-sha1 = "03013c6ae7f1824131b2ae2fc1d49793b51e8394"
uuid = "8290d209-cae3-49c0-8002-c8c24d57dab5"
version = "0.4.6"
[[deps.TreeViews]]
deps = ["Test"]
git-tree-sha1 = "8d0d7a3fe2f30d6a7f833a5f19f7c7a5b396eae6"
uuid = "a2a6695c-b41b-5b7d-aed9-dbfdeacea5d7"
version = "0.3.0"
[[deps.TriangularSolve]]
deps = ["CloseOpenIntervals", "IfElse", "LayoutPointers", "LinearAlgebra", "LoopVectorization", "Polyester", "Static", "VectorizationBase"]
git-tree-sha1 = "ec9a310324dd2c546c07f33a599ded9c1d00a420"
uuid = "d5829a12-d9aa-46ab-831f-fb7c9ab06edf"
version = "0.1.8"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.UnPack]]
git-tree-sha1 = "387c1f73762231e86e0c9c5443ce3b4a0a9a0c2b"
uuid = "3a884ed6-31ef-47d7-9d2a-63182c4928ed"
version = "1.0.2"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.VectorizationBase]]
deps = ["ArrayInterface", "CPUSummary", "HostCPUFeatures", "Hwloc", "IfElse", "LayoutPointers", "Libdl", "LinearAlgebra", "SIMDTypes", "Static"]
git-tree-sha1 = "17e5847bb36730d90801170ecd0ce4041a3dde86"
uuid = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f"
version = "0.21.22"
[[deps.VersionParsing]]
git-tree-sha1 = "e575cf85535c7c3292b4d89d89cc29e8c3098e47"
uuid = "81def892-9a0e-5fdd-b105-ffc91e053289"
version = "1.2.1"
[[deps.VertexSafeGraphs]]
deps = ["Graphs"]
git-tree-sha1 = "8351f8d73d7e880bfc042a8b6922684ebeafb35c"
uuid = "19fa3120-7c27-5ec5-8db8-b0b0aa330d6f"
version = "0.2.0"
[[deps.WignerSymbols]]
deps = ["HalfIntegers", "LRUCache", "Primes", "RationalRoots"]
git-tree-sha1 = "960e5f708871c1d9a28a7f1dbcaf4e0ee34ee960"
uuid = "9f57e263-0b3d-5e2e-b1be-24f2bb48858b"
version = "2.0.0"
[[deps.ZMQ]]
deps = ["FileWatching", "Sockets", "ZeroMQ_jll"]
git-tree-sha1 = "fc68e8a3719166950a0f3e390a14c7302c48f8de"
uuid = "c2297ded-f4af-51ae-bb23-16f91089e4e1"
version = "1.2.1"
[[deps.ZeroMQ_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "libsodium_jll"]
git-tree-sha1 = "fe5c65a526f066fb3000da137d5785d9649a8a47"
uuid = "8f1865be-045e-5c20-9c9f-bfbfb0764568"
version = "4.3.4+0"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
[[deps.ZygoteRules]]
deps = ["MacroTools"]
git-tree-sha1 = "8c1a8e4dfacb1fd631745552c8db35d0deb09ea0"
uuid = "700de1a5-db45-46bc-99cf-38207098b444"
version = "0.2.2"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl", "OpenBLAS_jll"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
[[deps.libsodium_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "848ab3d00fe39d6fbc2a8641048f8f272af1c51e"
uuid = "a9144af2-ca23-56d9-984f-0d03f7b5ccf8"
version = "1.0.20+0"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
View raw

(Sorry about that, but we can’t show files that are this big right now.)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment