Skip to content

Instantly share code, notes, and snippets.

@goldbattle
Created May 2, 2022 22:34
Show Gist options
  • Save goldbattle/e55f232fe568b662b86a013f0533b946 to your computer and use it in GitHub Desktop.
Save goldbattle/e55f232fe568b662b86a013f0533b946 to your computer and use it in GitHub Desktop.
"""
Drawers for various edge styles in graph plots.
"""
__all__ = (
"AbstractEdgeDrawer",
"AlphaVaryingEdgeDrawer",
"ArrowEdgeDrawer",
"DarkToLightEdgeDrawer",
"LightToDarkEdgeDrawer",
"TaperedEdgeDrawer",
)
from igraph.drawing.colors import clamp
from igraph.drawing.metamagic import AttributeCollectorBase
from igraph.drawing.text import TextAlignment
from igraph.drawing.utils import evaluate_cubic_bezier_curve, find_cairo, get_bezier_control_points_for_curved_edge
from math import atan2, cos, pi, sin, sqrt
cairo = find_cairo()
class AbstractEdgeDrawer:
"""Abstract edge drawer object from which all concrete edge drawer
implementations are derived."""
def __init__(self, context, palette):
"""Constructs the edge drawer.
@param context: a Cairo context on which the edges will be drawn.
@param palette: the palette that can be used to map integer
color indices to colors when drawing edges
"""
self.context = context
self.palette = palette
self.VisualEdgeBuilder = self._construct_visual_edge_builder()
@staticmethod
def _curvature_to_float(value):
"""Converts values given to the 'curved' edge style argument
in plotting calls to floating point values."""
if value is None or value is False:
return 0.0
if value is True:
return 0.5
return float(value)
def _construct_visual_edge_builder(self):
"""Construct the visual edge builder that will collect the visual
attributes of an edge when it is being drawn."""
class VisualEdgeBuilder(AttributeCollectorBase):
"""Builder that collects some visual properties of an edge for
drawing"""
_kwds_prefix = "edge_"
arrow_size = 1.0
arrow_width = 1.0
color = ("#444", self.palette.get)
curved = (0.0, self._curvature_to_float)
label = None
label_color = ("black", self.palette.get)
label_size = 12.0
font = "sans-serif"
width = 1.0
return VisualEdgeBuilder
def draw_directed_edge(self, edge, src_vertex, dest_vertex):
"""Draws a directed edge.
@param edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.
@param src_vertex: the source vertex. Visual properties are given
again as attributes.
@param dest_vertex: the target vertex. Visual properties are given
again as attributes.
"""
raise NotImplementedError()
def draw_loop_edge(self, edge, vertex):
"""Draws a loop edge.
The default implementation draws a small circle.
@param edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.
@param vertex: the vertex to which the edge is attached. Visual
properties are given again as attributes.
"""
ctx = self.context
ctx.set_source_rgba(*edge.color)
ctx.set_line_width(edge.width)
radius = vertex.size * 1.5
center_x = vertex.position[0] + cos(pi / 4) * radius / 2.0
center_y = vertex.position[1] - sin(pi / 4) * radius / 2.0
ctx.arc(center_x, center_y, radius / 2.0, 0, pi * 2)
ctx.stroke()
def draw_undirected_edge(self, edge, src_vertex, dest_vertex):
"""Draws an undirected edge.
The default implementation of this method draws undirected edges
as straight lines. Loop edges are drawn as small circles.
@param edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.
@param src_vertex: the source vertex. Visual properties are given
again as attributes.
@param dest_vertex: the target vertex. Visual properties are given
again as attributes.
"""
if src_vertex == dest_vertex: # TODO
return self.draw_loop_edge(edge, src_vertex)
ctx = self.context
ctx.set_source_rgba(*edge.color)
ctx.set_line_width(edge.width)
ctx.move_to(*src_vertex.position)
if hasattr(edge, 'curved') and edge.curved:
(x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position
aux1, aux2 = get_bezier_control_points_for_curved_edge(x1, y1, x2, y2, edge.curved)
ctx.curve_to(aux1[0], aux1[1], aux2[0], aux2[1], *dest_vertex.position)
else:
ctx.line_to(*dest_vertex.position)
ctx.stroke()
def get_label_position(self, edge, src_vertex, dest_vertex):
"""Returns the position where the label of an edge should be drawn. The
default implementation returns the midpoint of the edge and an alignment
that tries to avoid overlapping the label with the edge.
@param edge: the edge to be drawn. Visual properties of the edge
are defined by the attributes of this object.
@param src_vertex: the source vertex. Visual properties are given
again as attributes.
@param dest_vertex: the target vertex. Visual properties are given
again as attributes.
@return: a tuple containing two more tuples: the desired position of the
label and the desired alignment of the label, where the position is
given as C{(x, y)} and the alignment is given as C{(horizontal, vertical)}.
Members of the alignment tuple are taken from constants in the
L{TextAlignment} class.
"""
# Determine the angle of the line
dx = dest_vertex.position[0] - src_vertex.position[0]
dy = dest_vertex.position[1] - src_vertex.position[1]
if dx != 0 or dy != 0:
# Note that we use -dy because the Y axis points downwards
angle = atan2(-dy, dx) % (2 * pi)
else:
angle = None
# Determine the midpoint
if hasattr(edge, 'curved') and edge.curved:
(x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position
aux1, aux2 = get_bezier_control_points_for_curved_edge(x1, y1, x2, y2, edge.curved)
pos = evaluate_cubic_bezier_curve(x1, y1, *aux1, *aux2, x2, y2, .5)
else:
pos = (
(src_vertex.position[0] + dest_vertex.position[0]) / 2.0,
(src_vertex.position[1] + dest_vertex.position[1]) / 2,
)
# Determine the alignment based on the angle
pi4 = pi / 4
if angle is None:
halign, valign = TextAlignment.CENTER, TextAlignment.CENTER
else:
index = int((angle / pi4) % 8)
halign = [
TextAlignment.RIGHT,
TextAlignment.RIGHT,
TextAlignment.RIGHT,
TextAlignment.RIGHT,
TextAlignment.LEFT,
TextAlignment.LEFT,
TextAlignment.LEFT,
TextAlignment.LEFT,
][index]
valign = [
TextAlignment.BOTTOM,
TextAlignment.CENTER,
TextAlignment.CENTER,
TextAlignment.TOP,
TextAlignment.TOP,
TextAlignment.CENTER,
TextAlignment.CENTER,
TextAlignment.BOTTOM,
][index]
return pos, (halign, valign)
class ArrowEdgeDrawer(AbstractEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges as arrows.
"""
def draw_directed_edge(self, edge, src_vertex, dest_vertex):
if src_vertex == dest_vertex: # TODO
return self.draw_loop_edge(edge, src_vertex)
ctx = self.context
(x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position
(x_src, y_src), (x_dest, y_dest) = src_vertex.position, dest_vertex.position
def bezier_cubic(x0, y0, x1, y1, x2, y2, x3, y3, t):
"""Computes the Bezier curve from point (x0,y0) to (x3,y3)
via control points (x1,y1) and (x2,y2) with parameter t.
"""
xt = (
(1.0 - t) ** 3 * x0
+ 3.0 * t * (1.0 - t) ** 2 * x1
+ 3.0 * t ** 2 * (1.0 - t) * x2
+ t ** 3 * x3
)
yt = (
(1.0 - t) ** 3 * y0
+ 3.0 * t * (1.0 - t) ** 2 * y1
+ 3.0 * t ** 2 * (1.0 - t) * y2
+ t ** 3 * y3
)
return xt, yt
def euclidean_distance(x1, y1, x2, y2):
"""Computes the Euclidean distance between points (x1,y1) and (x2,y2)."""
return sqrt((1.0 * x1 - x2) ** 2 + (1.0 * y1 - y2) ** 2)
def intersect_bezier_circle(
x0, y0, x1, y1, x2, y2, x3, y3, radius, max_iter=10
):
"""Binary search solver for finding the intersection of a Bezier curve
and a circle centered at the curve's end point.
Returns the x,y of the intersection point.
TODO: implement safeguard to ensure convergence in ALL possible cases.
"""
precision = radius / 20.0
source_target_distance = euclidean_distance(x0, y0, x3, y3)
radius = float(radius)
t0 = 1.0
t1 = 1.0 - radius / source_target_distance
xt1, yt1 = bezier_cubic(x0, y0, x1, y1, x2, y2, x3, y3, t1)
distance_t0 = 0
distance_t1 = euclidean_distance(x3, y3, xt1, yt1)
counter = 0
while abs(distance_t1 - radius) > precision and counter < max_iter:
if ((distance_t1 - radius) > 0) != ((distance_t0 - radius) > 0):
t_new = (t0 + t1) / 2.0
else:
if abs(distance_t1 - radius) < abs(distance_t0 - radius):
# If t1 gets us closer to the circumference step in the
# same direction
t_new = t1 + (t1 - t0) / 2.0
else:
t_new = t1 - (t1 - t0)
t_new = 1 if t_new > 1 else (0 if t_new < 0 else t_new)
t0, t1 = t1, t_new
distance_t0 = distance_t1
xt1, yt1 = bezier_cubic(x0, y0, x1, y1, x2, y2, x3, y3, t1)
distance_t1 = euclidean_distance(x3, y3, xt1, yt1)
counter += 1
return bezier_cubic(x0, y0, x1, y1, x2, y2, x3, y3, t1)
# Draw the edge
ctx.set_source_rgba(*edge.color)
ctx.set_line_width(edge.width)
ctx.move_to(x1, y1)
if hasattr(edge, 'curved') and edge.curved:
# Calculate the curve
aux1, aux2 = get_bezier_control_points_for_curved_edge(x1, x2, y1, y2, edge.curved)
# Coordinates of the control points of the Bezier curve
xc1, yc1 = aux1
xc2, yc2 = aux2
# Determine where the edge intersects the circumference of the
# vertex shape: Tip of the arrow
x2, y2 = intersect_bezier_circle(
x_src, y_src, xc1, yc1, xc2, yc2, x_dest, y_dest, dest_vertex.size / 2.0
)
# Calculate the arrow head coordinates
angle = atan2(y_dest - y2, x_dest - x2) # navid
arrow_size = 15.0 * edge.arrow_size
arrow_width = 10.0 / edge.arrow_width
aux_points = [
(
x2 - arrow_size * cos(angle - pi / arrow_width),
y2 - arrow_size * sin(angle - pi / arrow_width),
),
(
x2 - arrow_size * cos(angle + pi / arrow_width),
y2 - arrow_size * sin(angle + pi / arrow_width),
),
]
# Midpoint of the base of the arrow triangle
x_arrow_mid, y_arrow_mid = (aux_points[0][0] + aux_points[1][0]) / 2.0, (
aux_points[0][1] + aux_points[1][1]
) / 2.0
# Vector representing the base of the arrow triangle
x_arrow_base_vec, y_arrow_base_vec = (
aux_points[0][0] - aux_points[1][0]
), (aux_points[0][1] - aux_points[1][1])
# Recalculate the curve such that it lands on the base of the arrow triangle
aux1 = (2 * x_src + x_arrow_mid) / 3.0 - edge.curved * 0.5 * (
y_arrow_mid - y_src
), (2 * y_src + y_arrow_mid) / 3.0 + edge.curved * 0.5 * (
x_arrow_mid - x_src
)
aux2 = (x_src + 2 * x_arrow_mid) / 3.0 - edge.curved * 0.5 * (
y_arrow_mid - y_src
), (y_src + 2 * y_arrow_mid) / 3.0 + edge.curved * 0.5 * (
x_arrow_mid - x_src
)
# Offset the second control point (aux2) such that it falls precisely
# on the normal to the arrow base vector. Strictly speaking,
# offset_length is the offset length divided by the length of the
# arrow base vector.
offset_length = (x_arrow_mid - aux2[0]) * x_arrow_base_vec + (
y_arrow_mid - aux2[1]
) * y_arrow_base_vec
offset_length /= (
euclidean_distance(0, 0, x_arrow_base_vec, y_arrow_base_vec) ** 2
)
aux2 = (
aux2[0] + x_arrow_base_vec * offset_length,
aux2[1] + y_arrow_base_vec * offset_length,
)
# Draw the curve from the first vertex to the midpoint of the base
# of the arrow head
ctx.curve_to(aux1[0], aux1[1], aux2[0], aux2[1], x_arrow_mid, y_arrow_mid)
else:
# Determine where the edge intersects the circumference of the
# vertex shape.
x2, y2 = dest_vertex.shape.intersection_point(
x2, y2, x1, y1, dest_vertex.size
)
# Draw the arrowhead
angle = atan2(y_dest - y2, x_dest - x2)
arrow_size = 15.0 * edge.arrow_size
arrow_width = 10.0 / edge.arrow_width
aux_points = [
(
x2 - arrow_size * cos(angle - pi / arrow_width),
y2 - arrow_size * sin(angle - pi / arrow_width),
),
(
x2 - arrow_size * cos(angle + pi / arrow_width),
y2 - arrow_size * sin(angle + pi / arrow_width),
),
]
# Midpoint of the base of the arrow triangle
x_arrow_mid, y_arrow_mid = (aux_points[0][0] + aux_points[1][0]) / 2.0, (
aux_points[0][1] + aux_points[1][1]
) / 2.0
# Draw the line
ctx.line_to(x_arrow_mid, y_arrow_mid)
# Draw the edge
ctx.stroke()
# Draw the arrow head
ctx.move_to(x2, y2)
ctx.line_to(*aux_points[0])
ctx.line_to(*aux_points[1])
ctx.line_to(x2, y2)
ctx.fill()
class TaperedEdgeDrawer(AbstractEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges as tapered lines that are
wider at the source and narrow at the destination.
"""
def draw_directed_edge(self, edge, src_vertex, dest_vertex):
if src_vertex == dest_vertex: # TODO
return self.draw_loop_edge(edge, src_vertex)
# Determine where the edge intersects the circumference of the
# destination vertex.
src_pos, dest_pos = src_vertex.position, dest_vertex.position
dest_pos = dest_vertex.shape.intersection_point(
dest_pos[0], dest_pos[1], src_pos[0], src_pos[1], dest_vertex.size
)
ctx = self.context
# Draw the edge
ctx.set_source_rgba(*edge.color)
ctx.set_line_width(edge.width)
angle = atan2(dest_pos[1] - src_pos[1], dest_pos[0] - src_pos[0])
arrow_size = src_vertex.size / 4.0
aux_points = [
(
src_pos[0] + arrow_size * cos(angle + pi / 2),
src_pos[1] + arrow_size * sin(angle + pi / 2),
),
(
src_pos[0] + arrow_size * cos(angle - pi / 2),
src_pos[1] + arrow_size * sin(angle - pi / 2),
),
]
ctx.move_to(*dest_pos)
ctx.line_to(*aux_points[0])
ctx.line_to(*aux_points[1])
ctx.line_to(*dest_pos)
ctx.fill()
class AlphaVaryingEdgeDrawer(AbstractEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges by varying the alpha value
of the specified edge color between the source and the destination.
"""
def __init__(self, context, alpha_at_src, alpha_at_dest):
super().__init__(context)
self.alpha_at_src = (clamp(float(alpha_at_src), 0.0, 1.0),)
self.alpha_at_dest = (clamp(float(alpha_at_dest), 0.0, 1.0),)
def draw_directed_edge(self, edge, src_vertex, dest_vertex):
if src_vertex == dest_vertex: # TODO
return self.draw_loop_edge(edge, src_vertex)
src_pos, dest_pos = src_vertex.position, dest_vertex.position
ctx = self.context
# Set up the gradient
lg = cairo.LinearGradient(src_pos[0], src_pos[1], dest_pos[0], dest_pos[1])
edge_color = edge.color[:3] + self.alpha_at_src
edge_color_end = edge_color[:3] + self.alpha_at_dest
lg.add_color_stop_rgba(0, *edge_color)
lg.add_color_stop_rgba(1, *edge_color_end)
# Draw the edge
ctx.set_source(lg)
ctx.set_line_width(edge.width)
ctx.move_to(*src_pos)
ctx.line_to(*dest_pos)
ctx.stroke()
class LightToDarkEdgeDrawer(AlphaVaryingEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges by using an alpha value of
zero (total transparency) at the source and an alpha value of
one (full opacity) at the destination. The alpha value is
interpolated in-between.
"""
def __init__(self, context):
super().__init__(context, 0.0, 1.0)
class DarkToLightEdgeDrawer(AlphaVaryingEdgeDrawer):
"""Edge drawer implementation that draws undirected edges as
straight lines and directed edges by using an alpha value of
one (full opacity) at the source and an alpha value of zero
(total transparency) at the destination. The alpha value is
interpolated in-between.
"""
def __init__(self, context):
super().__init__(context, 1.0, 0.0)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment