Created
May 2, 2022 22:34
-
-
Save goldbattle/e55f232fe568b662b86a013f0533b946 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Drawers for various edge styles in graph plots. | |
""" | |
__all__ = ( | |
"AbstractEdgeDrawer", | |
"AlphaVaryingEdgeDrawer", | |
"ArrowEdgeDrawer", | |
"DarkToLightEdgeDrawer", | |
"LightToDarkEdgeDrawer", | |
"TaperedEdgeDrawer", | |
) | |
from igraph.drawing.colors import clamp | |
from igraph.drawing.metamagic import AttributeCollectorBase | |
from igraph.drawing.text import TextAlignment | |
from igraph.drawing.utils import evaluate_cubic_bezier_curve, find_cairo, get_bezier_control_points_for_curved_edge | |
from math import atan2, cos, pi, sin, sqrt | |
cairo = find_cairo() | |
class AbstractEdgeDrawer: | |
"""Abstract edge drawer object from which all concrete edge drawer | |
implementations are derived.""" | |
def __init__(self, context, palette): | |
"""Constructs the edge drawer. | |
@param context: a Cairo context on which the edges will be drawn. | |
@param palette: the palette that can be used to map integer | |
color indices to colors when drawing edges | |
""" | |
self.context = context | |
self.palette = palette | |
self.VisualEdgeBuilder = self._construct_visual_edge_builder() | |
@staticmethod | |
def _curvature_to_float(value): | |
"""Converts values given to the 'curved' edge style argument | |
in plotting calls to floating point values.""" | |
if value is None or value is False: | |
return 0.0 | |
if value is True: | |
return 0.5 | |
return float(value) | |
def _construct_visual_edge_builder(self): | |
"""Construct the visual edge builder that will collect the visual | |
attributes of an edge when it is being drawn.""" | |
class VisualEdgeBuilder(AttributeCollectorBase): | |
"""Builder that collects some visual properties of an edge for | |
drawing""" | |
_kwds_prefix = "edge_" | |
arrow_size = 1.0 | |
arrow_width = 1.0 | |
color = ("#444", self.palette.get) | |
curved = (0.0, self._curvature_to_float) | |
label = None | |
label_color = ("black", self.palette.get) | |
label_size = 12.0 | |
font = "sans-serif" | |
width = 1.0 | |
return VisualEdgeBuilder | |
def draw_directed_edge(self, edge, src_vertex, dest_vertex): | |
"""Draws a directed edge. | |
@param edge: the edge to be drawn. Visual properties of the edge | |
are defined by the attributes of this object. | |
@param src_vertex: the source vertex. Visual properties are given | |
again as attributes. | |
@param dest_vertex: the target vertex. Visual properties are given | |
again as attributes. | |
""" | |
raise NotImplementedError() | |
def draw_loop_edge(self, edge, vertex): | |
"""Draws a loop edge. | |
The default implementation draws a small circle. | |
@param edge: the edge to be drawn. Visual properties of the edge | |
are defined by the attributes of this object. | |
@param vertex: the vertex to which the edge is attached. Visual | |
properties are given again as attributes. | |
""" | |
ctx = self.context | |
ctx.set_source_rgba(*edge.color) | |
ctx.set_line_width(edge.width) | |
radius = vertex.size * 1.5 | |
center_x = vertex.position[0] + cos(pi / 4) * radius / 2.0 | |
center_y = vertex.position[1] - sin(pi / 4) * radius / 2.0 | |
ctx.arc(center_x, center_y, radius / 2.0, 0, pi * 2) | |
ctx.stroke() | |
def draw_undirected_edge(self, edge, src_vertex, dest_vertex): | |
"""Draws an undirected edge. | |
The default implementation of this method draws undirected edges | |
as straight lines. Loop edges are drawn as small circles. | |
@param edge: the edge to be drawn. Visual properties of the edge | |
are defined by the attributes of this object. | |
@param src_vertex: the source vertex. Visual properties are given | |
again as attributes. | |
@param dest_vertex: the target vertex. Visual properties are given | |
again as attributes. | |
""" | |
if src_vertex == dest_vertex: # TODO | |
return self.draw_loop_edge(edge, src_vertex) | |
ctx = self.context | |
ctx.set_source_rgba(*edge.color) | |
ctx.set_line_width(edge.width) | |
ctx.move_to(*src_vertex.position) | |
if hasattr(edge, 'curved') and edge.curved: | |
(x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position | |
aux1, aux2 = get_bezier_control_points_for_curved_edge(x1, y1, x2, y2, edge.curved) | |
ctx.curve_to(aux1[0], aux1[1], aux2[0], aux2[1], *dest_vertex.position) | |
else: | |
ctx.line_to(*dest_vertex.position) | |
ctx.stroke() | |
def get_label_position(self, edge, src_vertex, dest_vertex): | |
"""Returns the position where the label of an edge should be drawn. The | |
default implementation returns the midpoint of the edge and an alignment | |
that tries to avoid overlapping the label with the edge. | |
@param edge: the edge to be drawn. Visual properties of the edge | |
are defined by the attributes of this object. | |
@param src_vertex: the source vertex. Visual properties are given | |
again as attributes. | |
@param dest_vertex: the target vertex. Visual properties are given | |
again as attributes. | |
@return: a tuple containing two more tuples: the desired position of the | |
label and the desired alignment of the label, where the position is | |
given as C{(x, y)} and the alignment is given as C{(horizontal, vertical)}. | |
Members of the alignment tuple are taken from constants in the | |
L{TextAlignment} class. | |
""" | |
# Determine the angle of the line | |
dx = dest_vertex.position[0] - src_vertex.position[0] | |
dy = dest_vertex.position[1] - src_vertex.position[1] | |
if dx != 0 or dy != 0: | |
# Note that we use -dy because the Y axis points downwards | |
angle = atan2(-dy, dx) % (2 * pi) | |
else: | |
angle = None | |
# Determine the midpoint | |
if hasattr(edge, 'curved') and edge.curved: | |
(x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position | |
aux1, aux2 = get_bezier_control_points_for_curved_edge(x1, y1, x2, y2, edge.curved) | |
pos = evaluate_cubic_bezier_curve(x1, y1, *aux1, *aux2, x2, y2, .5) | |
else: | |
pos = ( | |
(src_vertex.position[0] + dest_vertex.position[0]) / 2.0, | |
(src_vertex.position[1] + dest_vertex.position[1]) / 2, | |
) | |
# Determine the alignment based on the angle | |
pi4 = pi / 4 | |
if angle is None: | |
halign, valign = TextAlignment.CENTER, TextAlignment.CENTER | |
else: | |
index = int((angle / pi4) % 8) | |
halign = [ | |
TextAlignment.RIGHT, | |
TextAlignment.RIGHT, | |
TextAlignment.RIGHT, | |
TextAlignment.RIGHT, | |
TextAlignment.LEFT, | |
TextAlignment.LEFT, | |
TextAlignment.LEFT, | |
TextAlignment.LEFT, | |
][index] | |
valign = [ | |
TextAlignment.BOTTOM, | |
TextAlignment.CENTER, | |
TextAlignment.CENTER, | |
TextAlignment.TOP, | |
TextAlignment.TOP, | |
TextAlignment.CENTER, | |
TextAlignment.CENTER, | |
TextAlignment.BOTTOM, | |
][index] | |
return pos, (halign, valign) | |
class ArrowEdgeDrawer(AbstractEdgeDrawer): | |
"""Edge drawer implementation that draws undirected edges as | |
straight lines and directed edges as arrows. | |
""" | |
def draw_directed_edge(self, edge, src_vertex, dest_vertex): | |
if src_vertex == dest_vertex: # TODO | |
return self.draw_loop_edge(edge, src_vertex) | |
ctx = self.context | |
(x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position | |
(x_src, y_src), (x_dest, y_dest) = src_vertex.position, dest_vertex.position | |
def bezier_cubic(x0, y0, x1, y1, x2, y2, x3, y3, t): | |
"""Computes the Bezier curve from point (x0,y0) to (x3,y3) | |
via control points (x1,y1) and (x2,y2) with parameter t. | |
""" | |
xt = ( | |
(1.0 - t) ** 3 * x0 | |
+ 3.0 * t * (1.0 - t) ** 2 * x1 | |
+ 3.0 * t ** 2 * (1.0 - t) * x2 | |
+ t ** 3 * x3 | |
) | |
yt = ( | |
(1.0 - t) ** 3 * y0 | |
+ 3.0 * t * (1.0 - t) ** 2 * y1 | |
+ 3.0 * t ** 2 * (1.0 - t) * y2 | |
+ t ** 3 * y3 | |
) | |
return xt, yt | |
def euclidean_distance(x1, y1, x2, y2): | |
"""Computes the Euclidean distance between points (x1,y1) and (x2,y2).""" | |
return sqrt((1.0 * x1 - x2) ** 2 + (1.0 * y1 - y2) ** 2) | |
def intersect_bezier_circle( | |
x0, y0, x1, y1, x2, y2, x3, y3, radius, max_iter=10 | |
): | |
"""Binary search solver for finding the intersection of a Bezier curve | |
and a circle centered at the curve's end point. | |
Returns the x,y of the intersection point. | |
TODO: implement safeguard to ensure convergence in ALL possible cases. | |
""" | |
precision = radius / 20.0 | |
source_target_distance = euclidean_distance(x0, y0, x3, y3) | |
radius = float(radius) | |
t0 = 1.0 | |
t1 = 1.0 - radius / source_target_distance | |
xt1, yt1 = bezier_cubic(x0, y0, x1, y1, x2, y2, x3, y3, t1) | |
distance_t0 = 0 | |
distance_t1 = euclidean_distance(x3, y3, xt1, yt1) | |
counter = 0 | |
while abs(distance_t1 - radius) > precision and counter < max_iter: | |
if ((distance_t1 - radius) > 0) != ((distance_t0 - radius) > 0): | |
t_new = (t0 + t1) / 2.0 | |
else: | |
if abs(distance_t1 - radius) < abs(distance_t0 - radius): | |
# If t1 gets us closer to the circumference step in the | |
# same direction | |
t_new = t1 + (t1 - t0) / 2.0 | |
else: | |
t_new = t1 - (t1 - t0) | |
t_new = 1 if t_new > 1 else (0 if t_new < 0 else t_new) | |
t0, t1 = t1, t_new | |
distance_t0 = distance_t1 | |
xt1, yt1 = bezier_cubic(x0, y0, x1, y1, x2, y2, x3, y3, t1) | |
distance_t1 = euclidean_distance(x3, y3, xt1, yt1) | |
counter += 1 | |
return bezier_cubic(x0, y0, x1, y1, x2, y2, x3, y3, t1) | |
# Draw the edge | |
ctx.set_source_rgba(*edge.color) | |
ctx.set_line_width(edge.width) | |
ctx.move_to(x1, y1) | |
if hasattr(edge, 'curved') and edge.curved: | |
# Calculate the curve | |
aux1, aux2 = get_bezier_control_points_for_curved_edge(x1, x2, y1, y2, edge.curved) | |
# Coordinates of the control points of the Bezier curve | |
xc1, yc1 = aux1 | |
xc2, yc2 = aux2 | |
# Determine where the edge intersects the circumference of the | |
# vertex shape: Tip of the arrow | |
x2, y2 = intersect_bezier_circle( | |
x_src, y_src, xc1, yc1, xc2, yc2, x_dest, y_dest, dest_vertex.size / 2.0 | |
) | |
# Calculate the arrow head coordinates | |
angle = atan2(y_dest - y2, x_dest - x2) # navid | |
arrow_size = 15.0 * edge.arrow_size | |
arrow_width = 10.0 / edge.arrow_width | |
aux_points = [ | |
( | |
x2 - arrow_size * cos(angle - pi / arrow_width), | |
y2 - arrow_size * sin(angle - pi / arrow_width), | |
), | |
( | |
x2 - arrow_size * cos(angle + pi / arrow_width), | |
y2 - arrow_size * sin(angle + pi / arrow_width), | |
), | |
] | |
# Midpoint of the base of the arrow triangle | |
x_arrow_mid, y_arrow_mid = (aux_points[0][0] + aux_points[1][0]) / 2.0, ( | |
aux_points[0][1] + aux_points[1][1] | |
) / 2.0 | |
# Vector representing the base of the arrow triangle | |
x_arrow_base_vec, y_arrow_base_vec = ( | |
aux_points[0][0] - aux_points[1][0] | |
), (aux_points[0][1] - aux_points[1][1]) | |
# Recalculate the curve such that it lands on the base of the arrow triangle | |
aux1 = (2 * x_src + x_arrow_mid) / 3.0 - edge.curved * 0.5 * ( | |
y_arrow_mid - y_src | |
), (2 * y_src + y_arrow_mid) / 3.0 + edge.curved * 0.5 * ( | |
x_arrow_mid - x_src | |
) | |
aux2 = (x_src + 2 * x_arrow_mid) / 3.0 - edge.curved * 0.5 * ( | |
y_arrow_mid - y_src | |
), (y_src + 2 * y_arrow_mid) / 3.0 + edge.curved * 0.5 * ( | |
x_arrow_mid - x_src | |
) | |
# Offset the second control point (aux2) such that it falls precisely | |
# on the normal to the arrow base vector. Strictly speaking, | |
# offset_length is the offset length divided by the length of the | |
# arrow base vector. | |
offset_length = (x_arrow_mid - aux2[0]) * x_arrow_base_vec + ( | |
y_arrow_mid - aux2[1] | |
) * y_arrow_base_vec | |
offset_length /= ( | |
euclidean_distance(0, 0, x_arrow_base_vec, y_arrow_base_vec) ** 2 | |
) | |
aux2 = ( | |
aux2[0] + x_arrow_base_vec * offset_length, | |
aux2[1] + y_arrow_base_vec * offset_length, | |
) | |
# Draw the curve from the first vertex to the midpoint of the base | |
# of the arrow head | |
ctx.curve_to(aux1[0], aux1[1], aux2[0], aux2[1], x_arrow_mid, y_arrow_mid) | |
else: | |
# Determine where the edge intersects the circumference of the | |
# vertex shape. | |
x2, y2 = dest_vertex.shape.intersection_point( | |
x2, y2, x1, y1, dest_vertex.size | |
) | |
# Draw the arrowhead | |
angle = atan2(y_dest - y2, x_dest - x2) | |
arrow_size = 15.0 * edge.arrow_size | |
arrow_width = 10.0 / edge.arrow_width | |
aux_points = [ | |
( | |
x2 - arrow_size * cos(angle - pi / arrow_width), | |
y2 - arrow_size * sin(angle - pi / arrow_width), | |
), | |
( | |
x2 - arrow_size * cos(angle + pi / arrow_width), | |
y2 - arrow_size * sin(angle + pi / arrow_width), | |
), | |
] | |
# Midpoint of the base of the arrow triangle | |
x_arrow_mid, y_arrow_mid = (aux_points[0][0] + aux_points[1][0]) / 2.0, ( | |
aux_points[0][1] + aux_points[1][1] | |
) / 2.0 | |
# Draw the line | |
ctx.line_to(x_arrow_mid, y_arrow_mid) | |
# Draw the edge | |
ctx.stroke() | |
# Draw the arrow head | |
ctx.move_to(x2, y2) | |
ctx.line_to(*aux_points[0]) | |
ctx.line_to(*aux_points[1]) | |
ctx.line_to(x2, y2) | |
ctx.fill() | |
class TaperedEdgeDrawer(AbstractEdgeDrawer): | |
"""Edge drawer implementation that draws undirected edges as | |
straight lines and directed edges as tapered lines that are | |
wider at the source and narrow at the destination. | |
""" | |
def draw_directed_edge(self, edge, src_vertex, dest_vertex): | |
if src_vertex == dest_vertex: # TODO | |
return self.draw_loop_edge(edge, src_vertex) | |
# Determine where the edge intersects the circumference of the | |
# destination vertex. | |
src_pos, dest_pos = src_vertex.position, dest_vertex.position | |
dest_pos = dest_vertex.shape.intersection_point( | |
dest_pos[0], dest_pos[1], src_pos[0], src_pos[1], dest_vertex.size | |
) | |
ctx = self.context | |
# Draw the edge | |
ctx.set_source_rgba(*edge.color) | |
ctx.set_line_width(edge.width) | |
angle = atan2(dest_pos[1] - src_pos[1], dest_pos[0] - src_pos[0]) | |
arrow_size = src_vertex.size / 4.0 | |
aux_points = [ | |
( | |
src_pos[0] + arrow_size * cos(angle + pi / 2), | |
src_pos[1] + arrow_size * sin(angle + pi / 2), | |
), | |
( | |
src_pos[0] + arrow_size * cos(angle - pi / 2), | |
src_pos[1] + arrow_size * sin(angle - pi / 2), | |
), | |
] | |
ctx.move_to(*dest_pos) | |
ctx.line_to(*aux_points[0]) | |
ctx.line_to(*aux_points[1]) | |
ctx.line_to(*dest_pos) | |
ctx.fill() | |
class AlphaVaryingEdgeDrawer(AbstractEdgeDrawer): | |
"""Edge drawer implementation that draws undirected edges as | |
straight lines and directed edges by varying the alpha value | |
of the specified edge color between the source and the destination. | |
""" | |
def __init__(self, context, alpha_at_src, alpha_at_dest): | |
super().__init__(context) | |
self.alpha_at_src = (clamp(float(alpha_at_src), 0.0, 1.0),) | |
self.alpha_at_dest = (clamp(float(alpha_at_dest), 0.0, 1.0),) | |
def draw_directed_edge(self, edge, src_vertex, dest_vertex): | |
if src_vertex == dest_vertex: # TODO | |
return self.draw_loop_edge(edge, src_vertex) | |
src_pos, dest_pos = src_vertex.position, dest_vertex.position | |
ctx = self.context | |
# Set up the gradient | |
lg = cairo.LinearGradient(src_pos[0], src_pos[1], dest_pos[0], dest_pos[1]) | |
edge_color = edge.color[:3] + self.alpha_at_src | |
edge_color_end = edge_color[:3] + self.alpha_at_dest | |
lg.add_color_stop_rgba(0, *edge_color) | |
lg.add_color_stop_rgba(1, *edge_color_end) | |
# Draw the edge | |
ctx.set_source(lg) | |
ctx.set_line_width(edge.width) | |
ctx.move_to(*src_pos) | |
ctx.line_to(*dest_pos) | |
ctx.stroke() | |
class LightToDarkEdgeDrawer(AlphaVaryingEdgeDrawer): | |
"""Edge drawer implementation that draws undirected edges as | |
straight lines and directed edges by using an alpha value of | |
zero (total transparency) at the source and an alpha value of | |
one (full opacity) at the destination. The alpha value is | |
interpolated in-between. | |
""" | |
def __init__(self, context): | |
super().__init__(context, 0.0, 1.0) | |
class DarkToLightEdgeDrawer(AlphaVaryingEdgeDrawer): | |
"""Edge drawer implementation that draws undirected edges as | |
straight lines and directed edges by using an alpha value of | |
one (full opacity) at the source and an alpha value of zero | |
(total transparency) at the destination. The alpha value is | |
interpolated in-between. | |
""" | |
def __init__(self, context): | |
super().__init__(context, 1.0, 0.0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment