Created
May 6, 2017 14:53
-
-
Save goldingn/b0b8d800ba914f9d1d5218ff3c34e7f5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(greta) | |
# to be overwritten with correct method | |
greta_here <- function () | |
invisible(NULL) | |
# create an environment, and define the model there | |
greta_model <- function (model_expression, | |
parameters = list()) { | |
env <- new.env() | |
expr <- substitute(model_expression) | |
# make sure the greta nodes are placed evaluated here | |
local(greta_here(), envir = env) | |
local(eval(expr), envir = env) | |
# define and return the model object | |
define_text <- paste('define_model(', | |
paste(parameters, collapse = ','), | |
')') | |
m <- local(eval(parse(text = define_text)), | |
envir = env) | |
m$defining_environment <- env | |
m | |
} | |
model <- greta_model({ | |
intercept = normal(0, 5) | |
coefficient = normal(0, 3) | |
sd = lognormal(0, 3) | |
mean <- intercept + coefficient * iris$Petal.Length | |
likelihood(iris$Sepal.Length) = normal(mean, sd) | |
}, parameters = list('intercept', 'coefficient', 'sd')) | |
mcmc(model, n_samples = 100, warmup = 1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment