Last active
June 27, 2018 01:50
-
-
Save goldsborough/21fb5e1167a13b49ac2a46d327bef2d7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
from __future__ import division | |
import argparse | |
import matplotlib.pyplot as plot | |
import numpy as np | |
import torch.utils.data | |
import torchvision.datasets | |
from torch import nn, optim | |
from torchvision import transforms | |
class Reshape(nn.Module): | |
def __init__(self, *shape): | |
super(Reshape, self).__init__() | |
self.shape = tuple(shape) | |
def forward(self, input): | |
return input.view(len(input), *self.shape) | |
def __repr__(self): | |
return "{}{}".format(self.__class__.__name__, self.shape) | |
class Flatten(nn.Module): | |
def __init__(self): | |
super(Flatten, self).__init__() | |
def forward(self, input): | |
return input.view(len(input), int(np.prod(input.shape[1:]))) | |
class AddNoise(nn.Module): | |
def __init__(self, mean=0.0, stddev=0.1): | |
super(AddNoise, self).__init__() | |
self.mean = mean | |
self.stddev = stddev | |
def forward(self, input): | |
noise = torch.empty_like(input).normal_(self.mean, self.stddev) | |
return input + noise | |
def initialize_weights(m): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
nn.init.xavier_normal_(m.weight) | |
elif classname.find("BatchNorm") != -1: | |
m.weight.data.normal_(1.0, 0.02) | |
m.bias.data.fill_(0) | |
class Generator(nn.Module): | |
def __init__(self, noise_size): | |
super(Generator, self).__init__() | |
self.model = nn.Sequential( | |
# Layer 1 | |
nn.Linear(noise_size, 7 * 7 * 256), | |
nn.BatchNorm1d(7 * 7 * 256, momentum=0.9), | |
nn.LeakyReLU(0.2), | |
Reshape(256, 7, 7), | |
# Layer 2 | |
nn.Upsample(scale_factor=2), | |
nn.Conv2d(256, 128, kernel_size=5, padding=2), | |
nn.BatchNorm2d(128, momentum=0.9), | |
nn.LeakyReLU(0.2), | |
# Layer 3 | |
nn.Upsample(scale_factor=2), | |
nn.Conv2d(128, 64, kernel_size=5, padding=2), | |
nn.BatchNorm2d(64, momentum=0.9), | |
nn.LeakyReLU(0.2), | |
# Layer 4 | |
nn.Conv2d(64, 32, kernel_size=5, padding=2), | |
nn.BatchNorm2d(32, momentum=0.9), | |
nn.LeakyReLU(0.2), | |
# Output | |
nn.Conv2d(32, 1, kernel_size=5, padding=2), | |
nn.Tanh(), | |
) | |
def forward(self, noise): | |
return self.model(noise) | |
class Discriminator(nn.Module): | |
def __init__(self): | |
super(Discriminator, self).__init__() | |
self.model = nn.Sequential( | |
AddNoise(), | |
# Layer 1 | |
nn.Conv2d(1, 32, kernel_size=5, padding=2, stride=2), | |
nn.LeakyReLU(0.2), | |
# Layer 2 | |
nn.Conv2d(32, 64, kernel_size=5, padding=2, stride=2), | |
nn.LeakyReLU(0.2), | |
# Layer 3 | |
nn.Conv2d(64, 128, kernel_size=5, padding=2, stride=2), | |
nn.LeakyReLU(0.2), | |
# Layer 4 | |
nn.Conv2d(128, 256, kernel_size=5, padding=2, stride=2), | |
nn.LeakyReLU(0.2), | |
# Output | |
Flatten(), | |
nn.Linear(256 * 2 * 2, 1), | |
) | |
def forward(self, images): | |
return self.model(images) | |
parser = argparse.ArgumentParser(description="PyTorch LSGAN") | |
parser.add_argument("-n", "--noise-size", type=int, default=100) | |
parser.add_argument("-e", "--epochs", type=int, default=30) | |
parser.add_argument("-b", "--batch-size", type=int, default=256) | |
parser.add_argument("-x", "--examples", type=int, default=8) | |
parser.add_argument("-s", "--show", action="store_true") | |
parser.add_argument("-g", "--cuda", action="store_true") | |
options = parser.parse_args() | |
generator = Generator(options.noise_size) | |
discriminator = Discriminator() | |
generator.apply(initialize_weights) | |
discriminator.apply(initialize_weights) | |
criterion = nn.MSELoss() | |
discriminator_optimizer = optim.Adam( | |
discriminator.parameters(), lr=5e-4, betas=(0.5, 0.999) | |
) | |
generator_optimizer = optim.Adam(generator.parameters(), lr=2e-4, betas=(0.5, 0.999)) | |
print(discriminator) | |
print(generator) | |
dataset = torchvision.datasets.MNIST( | |
root="./data", | |
train=True, | |
download=True, | |
transform=transforms.Compose( | |
[transforms.ToTensor(), transforms.Normalize([0.5], [0.5])] | |
), | |
) | |
data_loader = torch.utils.data.DataLoader( | |
dataset, batch_size=options.batch_size, num_workers=4, shuffle=True, drop_last=True | |
) | |
device = torch.device("cuda:0" if options.cuda else "cpu") | |
generator.to(device) | |
discriminator.to(device) | |
criterion.to(device) | |
try: | |
for epoch_index in range(1, options.epochs + 1): | |
for batch_index, batch in enumerate(data_loader): | |
discriminator.zero_grad() | |
real_images = batch[0].to(device) | |
real_predictions = discriminator(real_images) | |
real_labels = torch.empty(options.batch_size, 1, device=device) | |
real_labels = real_labels.uniform_(0.8, 1.0) | |
d_loss_real = criterion(real_predictions, real_labels) | |
d_loss_real.backward() | |
noise = torch.randn(options.batch_size, options.noise_size, device=device) | |
fake_images = generator(noise) | |
fake_predictions = discriminator(fake_images.detach()) | |
fake_labels = torch.zeros(options.batch_size, 1, device=device) | |
d_loss_fake = criterion(fake_predictions, fake_labels) | |
d_loss_fake.backward() | |
d_loss_value = d_loss_real.mean() + d_loss_fake.mean() | |
discriminator_optimizer.step() | |
generator.zero_grad() | |
fake_labels.fill_(1) | |
fake_predictions = discriminator(fake_images) | |
g_loss = criterion(fake_predictions, fake_labels) | |
g_loss.backward() | |
g_loss_value = g_loss.mean() | |
generator_optimizer.step() | |
message = "Epoch: {}/{} | Batch: {}/{} | G: {:.10f} D: {:.10f}" | |
message = message.format( | |
epoch_index, | |
options.epochs, | |
batch_index, | |
len(data_loader), | |
g_loss_value, | |
d_loss_value, | |
) | |
print("\r{}".format(message), end="") | |
print() | |
except KeyboardInterrupt: | |
pass | |
print("\nTraining complete!") | |
if not options.show: | |
plot.switch_backend("Agg") | |
generator.eval() | |
noise = torch.empty(options.examples, options.noise_size) | |
if options.cuda: | |
noise = noise.cuda() | |
images = generator(noise).detach().cpu().numpy() | |
images = (images + 1) / 2 | |
number_of_columns = 4 | |
number_of_rows = options.examples // number_of_columns | |
plot.figure() | |
for i, image in enumerate(images): | |
plot.subplot(number_of_rows, number_of_columns, 1 + i) | |
plot.axis("off") | |
plot.imshow(image.squeeze(), cmap="gray") | |
if options.show: | |
print("Showing plots") | |
plot.show() | |
else: | |
print("Saving figure.png") | |
plot.savefig("figure.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment