Created
February 24, 2018 09:12
-
-
Save goldsborough/4ffe2d4fb60bb35ca47d00a55c025ad7 to your computer and use it in GitHub Desktop.
RNN/LSTM/GRU in NumPy
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
np.random.seed(42) | |
def sigmoid(z): | |
return 1 / (1 + np.exp(-z)) | |
def d_sigmoid(z): | |
s = sigmoid(z) | |
return (1 - s) * s | |
def tanh(z): | |
return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z)) | |
def d_tanh(z): | |
t = tanh(z) | |
return 1 - (t * t) | |
class RNN(object): | |
def __init__(self, input_features, state_size): | |
self.W = np.random.randn(input_features + state_size, state_size) | |
self.b = np.zeros(state_size) | |
self.weights = [self.W, self.b] | |
self.cache = {} | |
def forward(self, input, previous_h): | |
X = np.concatenate([input, previous_h], axis=1) | |
z = X.dot(self.W) + self.b | |
h = tanh(z) | |
self.cache['z'] = z | |
self.cache['X'] = X | |
return h.sum() | |
def backward(self, d_output): | |
d_z = d_tanh(self.cache['z']) * d_output | |
d_b = d_z | |
d_W = self.cache['X'].T.dot(d_z) | |
return [d_W, d_b] | |
class LSTM(object): | |
def __init__(self, input_features, state_size): | |
self.W = np.random.randn(input_features + state_size, 4 * state_size) | |
self.b = np.zeros([1, 4 * state_size]) | |
self.weights = [self.W, self.b] | |
self.cache = {} | |
def forward(self, input, old_cell, old_h): | |
X = np.concatenate([input, old_h], axis=1) | |
gates = X.dot(self.W) + self.b | |
gates = np.split(gates, 4, axis=1) | |
input_gate = sigmoid(gates[0]) | |
forget_gate = sigmoid(gates[1]) | |
output_gate = sigmoid(gates[2]) | |
candidate_cell = tanh(gates[3]) | |
new_cell = old_cell * forget_gate + candidate_cell * input_gate | |
new_h = tanh(new_cell) * output_gate | |
self.cache['X'] = X | |
self.cache['input_gate'] = input_gate | |
self.cache['output_gate'] = output_gate | |
self.cache['old_cell'] = old_cell | |
self.cache['new_cell'] = new_cell | |
self.cache['candidate_cell'] = candidate_cell | |
self.cache['gates'] = gates | |
return new_h.sum() | |
def backward(self, d_output): | |
d_output_gate = tanh(self.cache['new_cell']) * d_output | |
d_tanh_new_cell = self.cache['output_gate'] * d_output | |
d_new_cell = d_tanh(self.cache['new_cell']) * d_tanh_new_cell | |
d_forget_gate = self.cache['old_cell'] * d_new_cell | |
d_candidate_cell = self.cache['input_gate'] * d_new_cell | |
d_input_gate = self.cache['candidate_cell'] * d_new_cell | |
d_input_gate *= d_sigmoid(self.cache['gates'][0]) | |
d_forget_gate *= d_sigmoid(self.cache['gates'][1]) | |
d_output_gate *= d_sigmoid(self.cache['gates'][2]) | |
d_candidate_cell *= d_tanh(self.cache['gates'][3]) | |
d_gates = np.concatenate( | |
[d_input_gate, d_forget_gate, d_output_gate, d_candidate_cell], | |
axis=1) | |
d_W = self.cache['X'].T.dot(d_gates) | |
d_b = d_gates | |
return [d_W, d_b] | |
class GRU(object): | |
def __init__(self, input_features, state_size): | |
self.W_input = np.random.randn(input_features, 3 * state_size) | |
self.W_state = np.random.randn(state_size, 3 * state_size) | |
self.b_input = np.zeros([1, 3 * state_size]) | |
self.b_state = np.zeros([1, 3 * state_size]) | |
self.weights = [self.W_input, self.W_state, self.b_input, self.b_state] | |
self.cache = {} | |
def forward(self, input, old_h): | |
input_gates = input.dot(self.W_input) + self.b_input | |
state_gates = old_h.dot(self.W_state) + self.b_state | |
input_gates = np.split(input_gates, 3, axis=1) | |
state_gates = np.split(state_gates, 3, axis=1) | |
z_reset = input_gates[0] + state_gates[0] | |
reset_gate = sigmoid(z_reset) | |
z_update = input_gates[1] + state_gates[1] | |
update_gate = sigmoid(z_update) | |
z_candidate = input_gates[2] + reset_gate * state_gates[2] | |
candidate_h = tanh(z_candidate) | |
# new_h = update_gate * candidate_h + (1 - update_gate) * old_h | |
new_h = update_gate * (candidate_h - old_h) + old_h | |
self.cache['input'] = input | |
self.cache['old_h'] = old_h | |
self.cache['state_gates'] = state_gates | |
self.cache['input_gates'] = input_gates | |
self.cache['reset_gate'] = reset_gate | |
self.cache['update_gate'] = update_gate | |
self.cache['z_candidate'] = z_candidate | |
self.cache['z_update'] = z_update | |
self.cache['z_reset'] = z_reset | |
self.cache['candidate_h'] = candidate_h | |
return new_h.sum() | |
def backward(self, d_output): | |
d_candidate_h = self.cache['update_gate'] * d_output | |
d_update_gate = self.cache['candidate_h'] - self.cache['old_h'] | |
d_update_gate *= d_output | |
d_state_gates = np.zeros([3, self.W_state.shape[0]]) | |
d_input_gates = np.zeros_like(d_state_gates) | |
d_z_candidate = d_tanh(self.cache['z_candidate']) * d_candidate_h | |
d_reset_gate = self.cache['state_gates'][2] * d_z_candidate | |
d_state_gates[2] = self.cache['reset_gate'] * d_z_candidate | |
d_input_gates[2] = d_z_candidate | |
d_update_gate *= d_sigmoid(self.cache['z_update']) | |
d_input_gates[1] = d_update_gate | |
d_state_gates[1] = d_update_gate | |
d_reset_gate *= d_sigmoid(self.cache['z_reset']) | |
d_input_gates[0] = d_reset_gate | |
d_state_gates[0] = d_reset_gate | |
d_input_gates = d_input_gates.reshape(1, -1) | |
d_state_gates = d_state_gates.reshape(1, -1) | |
d_W_input = self.cache['input'].T.dot(d_input_gates) | |
d_b_input = d_input_gates | |
d_W_state = self.cache['old_h'].T.dot(d_state_gates) | |
d_b_state = d_state_gates | |
return [d_W_input, d_W_state, d_b_input, d_b_state] | |
B = 1 | |
I = 10 | |
S = 4 | |
D = np.float64(1e-6) | |
X = np.random.randn(B, I) | |
# C = np.random.randn(1, S) | |
h = np.random.randn(1, S) | |
inputs = [X, h] | |
rnn = GRU(I, S) | |
for w, W in enumerate(rnn.weights): | |
for i in range(W.size): | |
w_0 = W.flat[i] | |
W.flat[i] = w_0 - D | |
left = rnn.forward(*inputs) | |
W.flat[i] = w_0 + D | |
right = rnn.forward(*inputs) | |
W.flat[i] = w_0 | |
num = (right - left) / (2 * D) | |
# print(num.flatten()) | |
rnn.forward(*inputs) | |
grad = rnn.backward(np.ones_like(num)) | |
# print(grad[w].flatten()) | |
grad = grad[w].flat[i] | |
error = np.abs(num - grad) / np.maximum(np.abs(num), np.abs(grad)) | |
if error > 1e-3: | |
print('!!! {}[{}] {:e} | {:.6f} vs. {:.6f}'.format( | |
w, i, error, num, grad)) | |
# assert False | |
elif error > 1e-5: | |
print('{}[{}] {:e} | {:.6f} vs. {:.6f}'.format( | |
w, i, error, num, grad)) | |
print('Ok') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment