Skip to content

Instantly share code, notes, and snippets.

@goldsborough
Created January 29, 2018 06:43
Show Gist options
  • Save goldsborough/7decd8bce46d717834bdd952f9e9568d to your computer and use it in GitHub Desktop.
Save goldsborough/7decd8bce46d717834bdd952f9e9568d to your computer and use it in GitHub Desktop.
import argparse
import numpy as np
import torch.utils.data
import torchvision.datasets
from torch import nn, optim
from torch.autograd import Variable
from torchvision import transforms
class Reshape(nn.Module):
def __init__(self, *shape):
super(Reshape, self).__init__()
self.shape = tuple(shape)
def forward(self, input):
return input.view(len(input), *self.shape)
def __repr__(self):
return '{}{}'.format(self.__class__.__name__, self.shape)
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, input):
return input.view(len(input), int(np.prod(input.shape[1:])))
class AddNoise(nn.Module):
def __init__(self, mean=0.0, stddev=1.0):
super(AddNoise, self).__init__()
self.mean = mean
self.stddev = stddev
def forward(self, input):
noise = torch.Tensor(input.shape).normal_(self.mean, self.stddev)
return input + Variable(noise)
class Generator(nn.Module):
def __init__(self, noise_size):
super(Generator, self).__init__()
self.model = nn.Sequential(
# Layer 1
nn.Linear(noise_size, 7 * 7 * 256),
nn.BatchNorm1d(7 * 7 * 256),
nn.LeakyReLU(0.2),
Reshape(256, 7, 7),
# Layer 2
nn.Upsample(scale_factor=2),
nn.Conv2d(256, 128, kernel_size=5, padding=2),
nn.BatchNorm2d(128, momentum=0.9),
nn.LeakyReLU(0.2),
# Layer 3
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, kernel_size=5, padding=2),
nn.BatchNorm2d(64, momentum=0.9),
nn.LeakyReLU(0.2),
# Layer 4
nn.Conv2d(64, 32, kernel_size=5, padding=2),
nn.BatchNorm2d(32, momentum=0.9),
nn.LeakyReLU(0.2),
# Output
nn.Conv2d(32, 1, kernel_size=5, padding=2),
nn.Tanh())
def forward(self, noise):
return self.model(noise)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
AddNoise(),
# Layer 1
nn.Conv2d(1, 32, kernel_size=5, padding=2, stride=2),
nn.LeakyReLU(0.2),
# Layer 2
nn.Conv2d(32, 64, kernel_size=5, padding=2, stride=2),
nn.LeakyReLU(0.2),
# Layer 3
nn.Conv2d(64, 128, kernel_size=5, padding=2, stride=2),
nn.LeakyReLU(0.2),
# Layer 4
nn.Conv2d(128, 256, kernel_size=5, padding=2, stride=2),
nn.LeakyReLU(0.2),
# Output
Flatten(),
nn.Linear(256 * 2 * 2, 1),
)
def forward(self, images):
return self.model(images)
parser = argparse.ArgumentParser(description='PyTorch LSGAN')
parser.add_argument('-n', '--noise-size', type=int, default=100)
parser.add_argument('-e', '--epochs', type=int, default=30)
parser.add_argument('-b', '--batch-size', type=int, default=256)
parser.add_argument('-x', '--examples', type=int, default=8)
parser.add_argument('-s', '--show', action='store_true')
parser.add_argument('-g', '--gpu', action='store_true')
options = parser.parse_args()
generator = Generator(options.noise_size)
discriminator = Discriminator()
criterion = nn.MSELoss()
discriminator_optimizer = optim.Adam(
discriminator.parameters(), lr=5e-4, betas=(0.5, 0.999))
generator_optimizer = optim.Adam(
generator.parameters(), lr=2e-4, betas=(0.5, 0.999))
print(discriminator)
print(generator)
dataset = torchvision.datasets.MNIST(
root='./data',
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])]))
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=options.batch_size, num_workers=4, shuffle=True)
noise = Variable(torch.Tensor(options.batch_size, options.noise_size))
real_labels = Variable(torch.Tensor(options.batch_size))
fake_labels = Variable(torch.zeros(options.batch_size))
if options.gpu:
generator.cuda()
discriminator.cuda()
criterion.cuda()
noise = noise.cuda()
real_labels = real_labels.cuda()
fake_labels = fake_labels.cuda()
try:
for epoch_index in range(1, options.epochs + 1):
print('Epoch: {}/{}'.format(epoch_index, options.epochs))
for batch_index, batch in enumerate(data_loader):
real_images = Variable(batch[0])
if options.gpu:
real_images = real_images.cuda()
discriminator.zero_grad()
real_predictions = discriminator(real_images)
real_labels.uniform_(0.8, 1.0)
d_loss_real = criterion(real_predictions, real_labels)
d_loss_real.backward()
noise.normal_()
fake_images = generator(noise).detach()
fake_predictions = discriminator(fake_images)
fake_labels.fill_(0)
d_loss_fake = criterion(fake_predictions, fake_labels)
d_loss_fake.backward()
d_loss_value = d_loss_real.data.mean() + d_loss_fake.data.mean()
discriminator_optimizer.step()
generator.zero_grad()
fake_labels.fill_(1)
fake_predictions = discriminator(fake_images)
g_loss = criterion(fake_predictions, fake_labels)
g_loss.backward()
g_loss_value = g_loss.data.mean()
generator_optimizer.step()
message = 'Batch: {}/{} | G: {:.10f} D: {:.10f}'
message = message.format(batch_index, len(data_loader),
g_loss_value, d_loss_value)
print('\r{}'.format(message), end='')
print()
except KeyboardInterrupt:
pass
print('\nTraining complete!')
import matplotlib.pyplot as plot
if not options.show:
plot.switch_backend('Agg')
noise = Variable(torch.Tensor(options.examples, options.noise_size))
if options.gpu:
noise = noise.cuda()
images = generator(noise)
number_of_columns = 4
number_of_rows = options.examples // number_of_columns
plot.figure()
for i, image in enumerate(images.detach().numpy()):
plot.subplot(number_of_rows, number_of_columns, 1 + i)
plot.axis('off')
plot.imshow(image.squeeze())
if options.show:
plot.show()
else:
plot.savefig('figure.png')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment