Created
September 21, 2017 18:33
-
-
Save goldsborough/d16bb1d7905b1551e50b4899d1199200 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cudnn.h> | |
#include <cassert> | |
#include <cstdlib> | |
#include <iostream> | |
#include <opencv2/opencv.hpp> | |
cv::Mat load_image(const char* image_path) { | |
cv::Mat image = cv::imread(image_path, CV_LOAD_IMAGE_COLOR); | |
image.convertTo(image, CV_32FC3); | |
cv::normalize(image, image, 0, 1, cv::NORM_MINMAX); | |
return image; | |
} | |
#define checkCUDNN(status) \ | |
if (status != CUDNN_STATUS_SUCCESS) { \ | |
std::cerr << "Error on line " << __LINE__ << ": " \ | |
<< cudnnGetErrorString(status) << std::endl; \ | |
std::exit(EXIT_FAILURE); \ | |
} | |
int main(int argc, const char* argv[]) { | |
if (argc < 2) { | |
std::cerr << "usage: conv <image> [gpu=0]" << std::endl; | |
std::exit(EXIT_FAILURE); | |
} | |
int gpu_id = (argc > 2) ? std::atoi(argv[2]) : 0; | |
std::cout << "GPU: " << gpu_id << std::endl; | |
cv::Mat image = load_image(argv[1]); | |
cudaSetDevice(gpu_id); | |
cudnnHandle_t cudnn{nullptr}; | |
cudnnCreate(&cudnn); | |
cudnnTensorDescriptor_t input_descriptor; | |
checkCUDNN(cudnnCreateTensorDescriptor(&input_descriptor)); | |
checkCUDNN(cudnnSetTensor4dDescriptor(input_descriptor, | |
/*format=*/CUDNN_TENSOR_NHWC, | |
/*dataType=*/CUDNN_DATA_FLOAT, | |
/*batch_size=*/1, | |
/*channels=*/3, | |
/*image_height=*/image.rows, | |
/*image_width=*/image.cols)); | |
cudnnFilterDescriptor_t kernel_descriptor; | |
checkCUDNN(cudnnCreateFilterDescriptor(&kernel_descriptor)); | |
checkCUDNN(cudnnSetFilter4dDescriptor(kernel_descriptor, | |
/*dataType=*/CUDNN_DATA_FLOAT, | |
/*format=*/CUDNN_TENSOR_NCHW, | |
/*out_channels=*/3, | |
/*in_channels=*/3, | |
/*kernel_height=*/3, | |
/*kernel_width=*/3)); | |
cudnnConvolutionDescriptor_t convolution_descriptor; | |
checkCUDNN(cudnnCreateConvolutionDescriptor(&convolution_descriptor)); | |
checkCUDNN(cudnnSetConvolution2dDescriptor(convolution_descriptor, | |
/*pad_height=*/1, | |
/*pad_width=*/1, | |
/*vertical_stride=*/1, | |
/*horizontal_stride=*/1, | |
/*dilation_height=*/1, | |
/*dilation_width=*/1, | |
/*mode=*/CUDNN_CROSS_CORRELATION, | |
/*computeType=*/CUDNN_DATA_FLOAT)); | |
int batch_size{0}, channels{0}, height{0}, width{0}; | |
checkCUDNN(cudnnGetConvolution2dForwardOutputDim(convolution_descriptor, | |
input_descriptor, | |
kernel_descriptor, | |
&batch_size, | |
&channels, | |
&height, | |
&width)); | |
std::cout << "Output Image: " << height << " x " << width << " x " << channels | |
<< std::endl; | |
cudnnTensorDescriptor_t output_descriptor; | |
checkCUDNN(cudnnCreateTensorDescriptor(&output_descriptor)); | |
checkCUDNN(cudnnSetTensor4dDescriptor(output_descriptor, | |
/*format=*/CUDNN_TENSOR_NHWC, | |
/*dataType=*/CUDNN_DATA_FLOAT, | |
/*batch_size=*/1, | |
/*channels=*/3, | |
/*image_height=*/image.rows, | |
/*image_width=*/image.cols)); | |
cudnnConvolutionFwdAlgo_t convolution_algorithm; | |
checkCUDNN( | |
cudnnGetConvolutionForwardAlgorithm(cudnn, | |
input_descriptor, | |
kernel_descriptor, | |
convolution_descriptor, | |
output_descriptor, | |
CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, | |
0, | |
&convolution_algorithm)); | |
// CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM | |
size_t workspace_bytes{0}; | |
checkCUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn, | |
input_descriptor, | |
kernel_descriptor, | |
convolution_descriptor, | |
output_descriptor, | |
convolution_algorithm, | |
&workspace_bytes)); | |
std::cout << "Workspace size: " << (workspace_bytes / 1048576) << "MB" | |
<< std::endl; | |
assert(workspace_bytes > 0); | |
void* d_workspace{nullptr}; | |
cudaMalloc(&d_workspace, workspace_bytes); | |
int image_bytes = batch_size * channels * height * width * sizeof(float); | |
float* d_input{nullptr}; | |
cudaMalloc(&d_input, image_bytes); | |
cudaMemcpy(d_input, image.ptr<float>(0), image_bytes, cudaMemcpyHostToDevice); | |
float* d_output{nullptr}; | |
cudaMalloc(&d_output, image_bytes); | |
cudaMemset(d_output, 0, image_bytes); | |
// clang-format off | |
float kernel_template[3][3] = { | |
{1, 1, 1}, | |
{1, -8, 1}, | |
{1, 1, 1} | |
}; | |
// clang-format on | |
float h_kernel[3][3][3][3]; | |
for (int kernel = 0; kernel < 3; ++kernel) { | |
for (int channel = 0; channel < 3; ++channel) { | |
for (int row = 0; row < 3; ++row) { | |
for (int column = 0; column < 3; ++column) { | |
h_kernel[kernel][channel][row][column] = kernel_template[row][column]; | |
} | |
} | |
} | |
} | |
float* d_kernel{nullptr}; | |
cudaMalloc(&d_kernel, sizeof(h_kernel)); | |
cudaMemcpy(d_kernel, h_kernel, sizeof(h_kernel), cudaMemcpyHostToDevice); | |
const float alpha = 1.0f, beta = 0.0f; | |
checkCUDNN(cudnnConvolutionForward(cudnn, | |
&alpha, | |
input_descriptor, | |
d_input, | |
kernel_descriptor, | |
d_kernel, | |
convolution_descriptor, | |
convolution_algorithm, | |
d_workspace, | |
workspace_bytes, | |
&beta, | |
output_descriptor, | |
d_output)); | |
cudnnActivationDescriptor_t activation_descriptor; | |
checkCUDNN(cudnnCreateActivationDescriptor(&activation_descriptor)); | |
checkCUDNN(cudnnSetActivationDescriptor(activation_descriptor, | |
CUDNN_ACTIVATION_SIGMOID, | |
CUDNN_PROPAGATE_NAN, | |
/*relu_coef=*/0)); | |
checkCUDNN(cudnnActivationForward(cudnn, | |
activation_descriptor, | |
&alpha, | |
output_descriptor, | |
d_output, | |
&beta, | |
output_descriptor, | |
d_output)); | |
float* h_output = new float[image_bytes]; | |
cudaMemcpy(h_output, d_output, image_bytes, cudaMemcpyDeviceToHost); | |
cv::Mat output_image(height, width, CV_32FC3, h_output); | |
cv::normalize(output_image, output_image, 0.0, 255.0, cv::NORM_MINMAX); | |
output_image.convertTo(output_image, CV_8UC3); | |
const char* output_filename = "out.png"; | |
cv::imwrite(output_filename, output_image); | |
std::cout << "Wrote output to " << output_filename << std::endl; | |
delete[] h_output; | |
cudaFree(d_kernel); | |
cudaFree(d_input); | |
cudaFree(d_output); | |
cudaFree(d_workspace); | |
cudnnDestroyTensorDescriptor(input_descriptor); | |
cudnnDestroyTensorDescriptor(output_descriptor); | |
cudnnDestroyFilterDescriptor(kernel_descriptor); | |
cudnnDestroyConvolutionDescriptor(convolution_descriptor); | |
checkCUDNN(cudnnDestroyActivationDescriptor(activation_descriptor)); | |
cudnnDestroy(cudnn); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment