Skip to content

Instantly share code, notes, and snippets.

@gonzaloruizdevilla
Created August 16, 2018 17:28
Show Gist options
  • Save gonzaloruizdevilla/2d1870de1c80ef70d52bebd7a6a4d25b to your computer and use it in GitHub Desktop.
Save gonzaloruizdevilla/2d1870de1c80ef70d52bebd7a6a4d25b to your computer and use it in GitHub Desktop.
Sobel x,y
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pickle
# Read in an image and grayscale it
image = mpimg.imread('signs_vehicles_xygrad.png')
# Define a function that applies Sobel x or y,
# then takes an absolute value and applies a threshold.
# Note: calling your function with orient='x', thresh_min=5, thresh_max=100
# should produce output like the example image shown above this quiz.
def abs_sobel_thresh(img, orient='x', thresh_min=0, thresh_max=255):
# Apply the following steps to img
# 1) Convert to grayscale
# 2) Take the derivative in x or y given orient = 'x' or 'y'
# 3) Take the absolute value of the derivative or gradient
# 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
# 5) Create a mask of 1's where the scaled gradient magnitude
# is > thresh_min and < thresh_max
# 6) Return this mask as your binary_output image
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
if orient == 'x':
a = 1
b = 0
if orient == 'y':
a = 0
b = 1
sobel = cv2.Sobel(gray, cv2.CV_64F, a, b)
abs_sobel = np.absolute(sobel)
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
sbinary = np.zeros_like(scaled_sobel)
sbinary[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1
return sbinary
# Run the function
grad_binary = abs_sobel_thresh(image, orient='y', thresh_min=20, thresh_max=100)
# Plot the result
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
f.tight_layout()
ax1.imshow(image)
ax1.set_title('Original Image', fontsize=50)
ax2.imshow(grad_binary, cmap='gray')
ax2.set_title('Thresholded Gradient', fontsize=50)
plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment