Created
February 13, 2019 14:28
-
-
Save gonzaloruizdevilla/a1d658d9df61da74d90162b5b4738d06 to your computer and use it in GitHub Desktop.
RobotParticles
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Now we want to simulate robot | |
# motion with our particles. | |
# Each particle should turn by 0.1 | |
# and then move by 5. | |
# | |
# | |
# Don't modify the code below. Please enter | |
# your code at the bottom. | |
from math import * | |
import random | |
landmarks = [[20.0, 20.0], [80.0, 80.0], [20.0, 80.0], [80.0, 20.0]] | |
world_size = 100.0 | |
class robot: | |
def __init__(self): | |
self.x = random.random() * world_size | |
self.y = random.random() * world_size | |
self.orientation = random.random() * 2.0 * pi | |
self.forward_noise = 0.0; | |
self.turn_noise = 0.0; | |
self.sense_noise = 0.0; | |
def set(self, new_x, new_y, new_orientation): | |
if new_x < 0 or new_x >= world_size: | |
raise ValueError, 'X coordinate out of bound' | |
if new_y < 0 or new_y >= world_size: | |
raise ValueError, 'Y coordinate out of bound' | |
if new_orientation < 0 or new_orientation >= 2 * pi: | |
raise ValueError, 'Orientation must be in [0..2pi]' | |
self.x = float(new_x) | |
self.y = float(new_y) | |
self.orientation = float(new_orientation) | |
def set_noise(self, new_f_noise, new_t_noise, new_s_noise): | |
# makes it possible to change the noise parameters | |
# this is often useful in particle filters | |
self.forward_noise = float(new_f_noise); | |
self.turn_noise = float(new_t_noise); | |
self.sense_noise = float(new_s_noise); | |
def sense(self): | |
Z = [] | |
for i in range(len(landmarks)): | |
dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2) | |
dist += random.gauss(0.0, self.sense_noise) | |
Z.append(dist) | |
return Z | |
def move(self, turn, forward): | |
if forward < 0: | |
raise ValueError, 'Robot cant move backwards' | |
# turn, and add randomness to the turning command | |
orientation = self.orientation + float(turn) + random.gauss(0.0, self.turn_noise) | |
orientation %= 2 * pi | |
# move, and add randomness to the motion command | |
dist = float(forward) + random.gauss(0.0, self.forward_noise) | |
x = self.x + (cos(orientation) * dist) | |
y = self.y + (sin(orientation) * dist) | |
x %= world_size # cyclic truncate | |
y %= world_size | |
# set particle | |
res = robot() | |
res.set(x, y, orientation) | |
res.set_noise(self.forward_noise, self.turn_noise, self.sense_noise) | |
return res | |
def Gaussian(self, mu, sigma, x): | |
# calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma | |
return exp(- ((mu - x) ** 2) / (sigma ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2)) | |
def measurement_prob(self, measurement): | |
# calculates how likely a measurement should be | |
prob = 1.0; | |
for i in range(len(landmarks)): | |
dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2) | |
prob *= self.Gaussian(dist, self.sense_noise, measurement[i]) | |
return prob | |
def __repr__(self): | |
return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y), str(self.orientation)) | |
#myrobot = robot() | |
#myrobot.set_noise(5.0, 0.1, 5.0) | |
#myrobot.set(30.0, 50.0, pi/2) | |
#myrobot = myrobot.move(-pi/2, 15.0) | |
#print myrobot.sense() | |
#myrobot = myrobot.move(-pi/2, 10.0) | |
#print myrobot.sense() | |
#### DON'T MODIFY ANYTHING ABOVE HERE! ENTER CODE BELOW #### | |
N = 1000 | |
p = [] | |
for i in range(N): | |
x = robot() | |
p.append(x) | |
p2 = [] | |
for i in range(N): | |
x = p[i].move(0.1, 5.0) | |
p2.append(x) | |
p = p2 | |
# Now we want to simulate robot | |
# motion with our particles. | |
# Each particle should turn by 0.1 | |
# and then move by 5. | |
print p #PLEASE LEAVE THIS HERE FOR GRADING PURPOSES | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment