Last active
October 1, 2021 03:25
-
-
Save goraj/6df8f22a49534e042804a299d81bf2d6 to your computer and use it in GitHub Desktop.
incremental learning lightgbm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
@author: goraj | |
""" | |
import lightgbm as lgbm | |
from sklearn.datasets import load_digits | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import roc_auc_score | |
def iterative_ds(params, X_train, X_test, y_train, y_test): | |
# initialize model | |
ss = 5 | |
estimator = None | |
for iteration, x in enumerate(range(0, X_train.shape[0] - ss, ss)): | |
indices = list(range(x, x + ss)) | |
estimator = lgbm.train(params, | |
init_model=estimator, | |
train_set=lgbm.Dataset(X_train[indices], y_train[indices]), | |
keep_training_booster=True, | |
num_boost_round=5) | |
auc = roc_auc_score(y_test, estimator.predict(X_test) >= 0.5) | |
if iteration % 15 == 0: | |
print('iteration: {} auc: {}'.format(iteration, auc)) | |
def iterative_subset(params, X_train, X_test, y_train, y_test): | |
# using subset | |
ss = 5 | |
estimator = None | |
dset = lgbm.Dataset(X_train, y_train, free_raw_data=False) | |
for iteration, x in enumerate(range(0, X_train.shape[0] - ss, ss)): | |
indices = list(range(x, x + ss)) | |
estimator = lgbm.train(params, | |
init_model=estimator, | |
train_set=dset.subset(indices), | |
keep_training_booster=True, | |
num_boost_round=5) | |
auc = roc_auc_score(y_test, estimator.predict(X_test) >= 0.5) | |
if iteration % 15 == 0: | |
print('iteration: {} auc: {}'.format(iteration, auc)) | |
if __name__ == '__main__': | |
d = load_digits() | |
xs = d['data'] | |
ys = d['target'] | |
indices = np.where((ys == 1) | (ys == 0)) | |
X = xs[indices] | |
y = ys[indices] | |
X_train, X_test, y_train, y_test = train_test_split(X, | |
y, | |
test_size=0.20, | |
random_state=42) | |
params = { | |
'boosting_type': 'gbdt', | |
'objective': 'binary', | |
'learning_rate': 0.01, | |
'num_leaves': 35, | |
'metric': 'auc', | |
'is_unbalance': False, | |
'seed': 1024, | |
'verbosity': -1, | |
'min_data': 1, | |
'min_data_in_bin': 1, | |
'free_raw_data': False | |
} | |
# works | |
iterative_ds(params, X_train, X_test, y_train, y_test) | |
# does not work | |
iterative_subset(params, X_train, X_test, y_train, y_test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment