Created
December 2, 2021 22:33
-
-
Save gorbatschow/90a664fe62791c9733e4febf6a021641 to your computer and use it in GitHub Desktop.
Matlab etude demonstrates window function effect on single-tone signal
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% Spectral analysis etudes | |
% This etude demonstrates window function effect on single-tone signal | |
% code by [email protected] | |
clear | |
% PARAMETERS | |
% ------------------------------------------------------------------------- | |
% Sample rate (Hz) | |
Fs = 48e3; | |
% Time resolution (secs) | |
dt = 1/Fs; | |
% Number of signal samples | |
NSIG = 2^10; | |
% Number of FFT input samples (zero padded signal samples) | |
NFFT = 2^14; | |
% Actual frequency resolution (Hz) | |
df = Fs/NSIG; | |
% Interpolated frequency resolution (Hz) | |
dfi = Fs/NFFT; | |
% Window functions | |
w_list = {'rectwin' 'hamming' 'hann' 'flattopwin' 'blackmanharris'}; | |
nw = numel(w_list); | |
% Signal frequency (Hz) | |
fsig = df*100; | |
% Signal amplitude 0-pk (Volts) | |
asig = 1.0; | |
% GENERATOR | |
% ------------------------------------------------------------------------- | |
% Generate tone signal | |
t = (0:NSIG-1)*dt; | |
s = asig*sin(2*pi*fsig*t); | |
% PROCESSOR | |
% ------------------------------------------------------------------------- | |
S = zeros(nw, NFFT/2-1); | |
for i = 1:nw | |
% Calculate win. coef. | |
w = window(w_list{i}, NSIG)'; | |
w = w/mean(w); | |
x = [s.*w zeros(1,NFFT-NSIG)]; | |
X = fft(x, NFFT); | |
X = X(2:NFFT/2); % X(1) is DC | |
X = abs(X); | |
% Multiply by 2 for 0-Pk amplitude | |
X = X/NSIG*2; | |
% Store | |
S(i,:) = X; | |
end | |
% RESULTS | |
% ------------------------------------------------------------------------- | |
% Interpolated spectrum frequnecies (Hz) | |
f = (1:NFFT/2-1)*dfi; | |
f_khz = f*1e-3; | |
fsig_khz = fsig*1e-3; | |
figure; | |
plot(f_khz, S'); | |
grid on; grid minor; | |
xlim([fsig_khz-1 fsig_khz+1]); | |
ylim([0 1.1*max(asig)]); | |
xlabel('кГц'); ylabel('Pk-Pk'); | |
legend(w_list); | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment