Created
October 31, 2011 09:08
-
-
Save gorlum0/1327152 to your computer and use it in GitHub Desktop.
ml-class - ex1 (python)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from numpy import newaxis, r_, c_, mat | |
from numpy.linalg import * | |
def plotData(X, y): | |
plt.plot(X, y, 'rx', markersize=7) | |
plt.ylabel('Profit in $10,000s') | |
plt.xlabel('Population of City in 10,000s') | |
def computeCost(X, y, theta): | |
m = X.shape[0] | |
predictions = X*theta | |
sqrErrors = (predictions - y).A ** 2 | |
return 1./(2*m) * sqrErrors.sum() | |
def gradientDescent(X, y, theta, alpha, num_iters): | |
m = X.shape[0] | |
J_history = np.zeros(num_iters) | |
for i in xrange(num_iters): | |
theta = theta - alpha/m * X.T * (X*theta - y) | |
J_history[i] = computeCost(X, y, theta) | |
return theta, J_history | |
if __name__ == '__main__': | |
data = np.loadtxt('ex1data1.txt', delimiter=',') | |
X = mat(data[:, 0][:, newaxis]) | |
y = data[:, 1][:, newaxis] | |
m = X.shape[0] | |
# =================== Part 2: Plotting | |
plotData(X, y) | |
plt.show() | |
raw_input('Press any key to continue\n') | |
# =================== Part 3: Gradient descent | |
X = c_[np.ones(m), X] | |
theta = np.zeros(2)[:, newaxis] | |
iterations = 1500 | |
alpha = 0.01 | |
print computeCost(X, y, theta) | |
theta, J_history = gradientDescent(X, y, theta, alpha, iterations) | |
print 'Theta found by gradient descent:\n', theta | |
plotData(X[:, 1], y) | |
plt.plot(X[:, 1], X*theta, '-') | |
plt.legend(['Training data', 'Linear regression']) | |
plt.show() | |
raw_input('Press any key to continue\n') | |
# ============= Part 4: Visualizing J(theta_0, theta_1) | |
theta0_vals = np.linspace(-10, 10, 100) | |
theta1_vals = np.linspace(-1, 4, 100) | |
J_vals = np.zeros((len(theta0_vals), len(theta1_vals))) | |
for i in xrange(len(theta0_vals)): | |
for j in xrange(len(theta1_vals)): | |
t = r_[theta0_vals[i], theta1_vals[j]][:, newaxis] | |
J_vals[i, j] = computeCost(X, y, t); | |
J_vals = J_vals.T | |
plt.contour(theta0_vals, theta1_vals, J_vals, np.logspace(-2, 3, 20)) | |
plt.plot(theta[0], theta[1], 'rx', markersize=10, linewidth=5) | |
plt.xlabel(r'$\Theta_0$'); plt.ylabel(r'$\Theta_1$') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment