Ask Gemini Flash this question and get a quick, balanced response: $ARGUMENTS
- Provide clear, concise answers (limit ~500 tokens)
- Use creative but accurate tone
- For complex code tasks, suggest using ask-gemini-pro instead
- If unable to answer, explain why clearly
from dotenv import load_dotenv
load_dotenv('/home/graham/workspace/experiments/llm_call/.env')
import os
from litellm import completion
model = os.getenv('SLASHCMD_ASK_GEMINI_FLASH_MODEL') # Gets configured Gemini Flash model
response = completion(
model=model,
messages=[{"role": "user", "content": "YOUR_QUERY"}],
temperature=0.7, # Balanced creativity
max_tokens=500 # Reasonable response length
)
print(response.choices[0].message.content)- vertex_ai/gemini-1.5-flash: Fast, cost-efficient version of Gemini 1.5
- Good for: Code generation, analysis, general questions, quick responses
- Features: Multi-modal support, function calling, safety settings
GOOGLE_APPLICATION_CREDENTIALS: Path to service account JSON fileVERTEX_PROJECT: Google Cloud project ID (optional, can be in credentials)VERTEX_LOCATION: Region like 'us-central1' (optional)
- Vertex AI Setup: https://docs.litellm.ai/docs/providers/vertex
- Gemini Models: https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/gemini
- Authentication: https://cloud.google.com/docs/authentication/getting-started
/user:ask-gemini-flash Write a Python function to calculate fibonacci/user:ask-gemini-flash Explain quantum computing in simple terms/user:ask-gemini-flash Debug this code: [paste code]
- Ensure Google Cloud credentials are properly configured
- Flash model is optimized for speed and cost-efficiency
- For complex reasoning tasks, consider using gemini-1.5-pro instead