Last active
March 4, 2022 22:33
-
-
Save graphific/16e3b1e3b13e555cb67a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
VGG_ILSVRC_19_layers_train_val.prototxt | |
name: "VGG_ILSVRC_19_layers" | |
layers { | |
name: "data" | |
type: DATA | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
crop_size: 224 | |
mean_value: 104 | |
mean_value: 117 | |
mean_value: 123 | |
mirror: true | |
} | |
data_param { | |
source: "data/ilsvrc12/ilsvrc12_train_lmdb" | |
batch_size: 64 | |
backend: LMDB | |
} | |
top: "data" | |
top: "label" | |
} | |
layers { | |
name: "data" | |
type: DATA | |
include { | |
phase: TEST | |
} | |
transform_param { | |
crop_size: 224 | |
mean_value: 104 | |
mean_value: 117 | |
mean_value: 123 | |
mirror: false | |
} | |
data_param { | |
source: "data/ilsvrc12/ilsvrc12_val_lmdb" | |
batch_size: 50 | |
backend: LMDB | |
} | |
top: "data" | |
top: "label" | |
} | |
layers { | |
bottom: "data" | |
top: "conv1_1" | |
name: "conv1_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv1_1" | |
top: "conv1_1" | |
name: "relu1_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv1_1" | |
top: "conv1_2" | |
name: "conv1_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv1_2" | |
top: "conv1_2" | |
name: "relu1_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv1_2" | |
top: "pool1" | |
name: "pool1" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layers { | |
bottom: "pool1" | |
top: "conv2_1" | |
name: "conv2_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv2_1" | |
top: "conv2_1" | |
name: "relu2_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv2_1" | |
top: "conv2_2" | |
name: "conv2_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv2_2" | |
top: "conv2_2" | |
name: "relu2_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv2_2" | |
top: "pool2" | |
name: "pool2" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layers { | |
bottom: "pool2" | |
top: "conv3_1" | |
name: "conv3_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv3_1" | |
top: "conv3_1" | |
name: "relu3_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv3_1" | |
top: "conv3_2" | |
name: "conv3_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv3_2" | |
top: "conv3_2" | |
name: "relu3_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv3_2" | |
top: "conv3_3" | |
name: "conv3_3" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv3_3" | |
top: "conv3_3" | |
name: "relu3_3" | |
type: RELU | |
} | |
layers { | |
bottom: "conv3_3" | |
top: "conv3_4" | |
name: "conv3_4" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv3_4" | |
top: "conv3_4" | |
name: "relu3_4" | |
type: RELU | |
} | |
layers { | |
bottom: "conv3_4" | |
top: "pool3" | |
name: "pool3" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layers { | |
bottom: "pool3" | |
top: "conv4_1" | |
name: "conv4_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv4_1" | |
top: "conv4_1" | |
name: "relu4_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv4_1" | |
top: "conv4_2" | |
name: "conv4_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv4_2" | |
top: "conv4_2" | |
name: "relu4_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv4_2" | |
top: "conv4_3" | |
name: "conv4_3" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv4_3" | |
top: "conv4_3" | |
name: "relu4_3" | |
type: RELU | |
} | |
layers { | |
bottom: "conv4_3" | |
top: "conv4_4" | |
name: "conv4_4" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv4_4" | |
top: "conv4_4" | |
name: "relu4_4" | |
type: RELU | |
} | |
layers { | |
bottom: "conv4_4" | |
top: "pool4" | |
name: "pool4" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layers { | |
bottom: "pool4" | |
top: "conv5_1" | |
name: "conv5_1" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv5_1" | |
top: "conv5_1" | |
name: "relu5_1" | |
type: RELU | |
} | |
layers { | |
bottom: "conv5_1" | |
top: "conv5_2" | |
name: "conv5_2" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv5_2" | |
top: "conv5_2" | |
name: "relu5_2" | |
type: RELU | |
} | |
layers { | |
bottom: "conv5_2" | |
top: "conv5_3" | |
name: "conv5_3" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv5_3" | |
top: "conv5_3" | |
name: "relu5_3" | |
type: RELU | |
} | |
layers { | |
bottom: "conv5_3" | |
top: "conv5_4" | |
name: "conv5_4" | |
type: CONVOLUTION | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layers { | |
bottom: "conv5_4" | |
top: "conv5_4" | |
name: "relu5_4" | |
type: RELU | |
} | |
layers { | |
bottom: "conv5_4" | |
top: "pool5" | |
name: "pool5" | |
type: POOLING | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layers { | |
bottom: "pool5" | |
top: "fc6" | |
name: "fc6" | |
type: INNER_PRODUCT | |
inner_product_param { | |
num_output: 4096 | |
} | |
} | |
layers { | |
bottom: "fc6" | |
top: "fc6" | |
name: "relu6" | |
type: RELU | |
} | |
layers { | |
bottom: "fc6" | |
top: "fc6" | |
name: "drop6" | |
type: DROPOUT | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layers { | |
bottom: "fc6" | |
top: "fc7" | |
name: "fc7" | |
type: INNER_PRODUCT | |
inner_product_param { | |
num_output: 4096 | |
} | |
} | |
layers { | |
bottom: "fc7" | |
top: "fc7" | |
name: "relu7" | |
type: RELU | |
} | |
layers { | |
bottom: "fc7" | |
top: "fc7" | |
name: "drop7" | |
type: DROPOUT | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layers { | |
name: "fc8" | |
bottom: "fc7" | |
top: "fc8" | |
type: INNER_PRODUCT | |
inner_product_param { | |
num_output: 1000 | |
} | |
} | |
layers { | |
name: "loss" | |
type: SOFTMAX_LOSS | |
bottom: "fc8" | |
bottom: "label" | |
top: "loss/loss" | |
} | |
layers { | |
name: "accuracy/top1" | |
type: ACCURACY | |
bottom: "fc8" | |
bottom: "label" | |
top: "accuracy@1" | |
include: { phase: TEST } | |
accuracy_param { | |
top_k: 1 | |
} | |
} | |
layers { | |
name: "accuracy/top5" | |
type: ACCURACY | |
bottom: "fc8" | |
bottom: "label" | |
top: "accuracy@5" | |
include: { phase: TEST } | |
accuracy_param { | |
top_k: 5 | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you!