Created
March 22, 2017 08:00
-
-
Save gravitino/c27ed694842c47bd5ea88bb1a3900da2 to your computer and use it in GitHub Desktop.
dense matrix factorization
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import tqdm | |
def tfmf(D, k, | |
params_dict={"iters":2**14, "p":2, "h":1E-2, "init":"kmeans"}, | |
regularizer_dict={"lambda_C":1E-3, "lambda_B":1E-3, "p":1}): | |
m, n = D.shape[0], D.shape[1] | |
D_con = tf.constant(D) | |
C_var = tf.Variable(np.random.normal(0, 1, (m, k, 1)).astype(D.dtype)) | |
if params_dict["init"] == "kmeans": | |
from sklearn.cluster import KMeans | |
kmeans = KMeans(k, n_jobs=-1).fit(D) | |
centers = np.expand_dims(kmeans.cluster_centers_, 0) | |
B_var = tf.Variable(centers.astype(D.dtype)) | |
else: | |
B_var = tf.Variable(np.random.normal(0, 1, (1, k, n)).astype(D.dtype)) | |
BdotC = tf.reduce_sum(B_var*C_var, 1) | |
raw_loss = tf.reduce_mean(tf.abs(BdotC-D_con)**params_dict["p"]) | |
all_loss = raw_loss | |
if regularizer_dict: | |
p_r = regularizer_dict["p"] | |
L_C = regularizer_dict["lambda_C"] | |
L_B = regularizer_dict["lambda_B"] | |
reg_loss = L_C*tf.reduce_mean(tf.abs(C_var)**p_r) + \ | |
L_B*tf.reduce_mean(tf.abs(B_var)**p_r) | |
all_loss += reg_loss | |
h = params_dict["h"] | |
optimizer_C = tf.train.AdamOptimizer(h).minimize(all_loss, var_list=[C_var]) | |
optimizer_B = tf.train.AdamOptimizer(h).minimize(all_loss, var_list=[B_var]) | |
init = tf.global_variables_initializer() | |
sess = tf.Session() | |
sess.run(init) | |
if params_dict["init"] == "kmeans": | |
for _ in range(10): | |
sess.run(optimizer_C) | |
progress_bar = tqdm.tqdm(range(params_dict["iters"]), desc=str(sess.run(all_loss))) | |
for _ in progress_bar: | |
sess.run(optimizer_B) | |
sess.run(optimizer_C) | |
if _ % max(params_dict["iters"]/1024, 1) == 0: | |
progress_bar.desc=str(sess.run(all_loss)) | |
C_mat = sess.run(C_var) | |
B_mat = sess.run(B_var) | |
L_raw = sess.run(raw_loss) | |
L_all = sess.run(all_loss) | |
return (C_mat[:,:,0], B_mat[0]), (L_raw, L_all) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment