Created
February 28, 2016 17:04
-
-
Save gravitino/c7984d88354101d566e8 to your computer and use it in GitHub Desktop.
scalable spectral clustering using efficient out of sample extension by estimating the feature transform
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pylab as pl | |
#import seaborn as sns | |
from sklearn.datasets import make_blobs, make_circles | |
def rbf_kernel(X, beta=None, p=2): | |
num_data, num_feat = X.shape | |
kernel = np.zeros((num_data, num_data)) | |
for i in range(num_data): | |
for j in range(i, num_data): | |
kernel[i, j] = \ | |
kernel[j, i] = np.sum(abs(X[i]-X[j])**p) | |
if beta == None: | |
beta = np.std(kernel)/4 | |
beta = abs(beta) | |
kernel = np.exp(-kernel/beta**p) | |
print "typical length in rbf kernel", beta | |
return kernel | |
def plot_with_labels(X, labels): | |
colors = {0: "red", 1: "blue", 2: "green", 3: "black", 4: "magenta"} | |
k = max(labels)+1 | |
Xs, Ys = [[] for _ in range(k)], [[] for _ in range(k)] | |
for label, (x, y) in zip(labels, X): | |
Xs[label].append(x) | |
Ys[label].append(y) | |
for label, (x, y) in enumerate(zip(Xs, Ys)): | |
pl.plot(x, y, "o", c=colors[label % 5]) | |
from sklearn.cluster import KMeans | |
def spectral_clustering(kernel, k=3, weighted=True): | |
if weighted: | |
weights = np.sum(kernel, axis=0) | |
else: | |
weights = np.ones(kernel.shape[0]) | |
D = np.diag(1/np.sqrt(weights)) | |
L = np.eye(kernel.shape[0])-D.dot(kernel).dot(D) | |
U, S, V = np.linalg.svd(L) | |
return KMeans(n_clusters=k).fit_predict(U[:,-2-k:-2]), U[:,-2-k:-2] | |
from sklearn.metrics import adjusted_rand_score | |
n_samples, k = 2000, 2 | |
X, Y = make_blobs(n_samples=n_samples, n_features=2, centers=2, cluster_std=1.0) | |
X, Y = make_circles(n_samples=n_samples, factor=.5, noise=.05) | |
pl.subplot(231) | |
plot_with_labels(X, Y) | |
K = rbf_kernel(X) | |
L, E = spectral_clustering(K, k) | |
pl.subplot(232) | |
plot_with_labels(X, L) | |
pl.subplot(233) | |
plot_with_labels(E[:,:2], L) | |
print "rand score insample", adjusted_rand_score(Y, L) | |
from sklearn.neighbors import KNeighborsRegressor | |
rfr0 = KNeighborsRegressor(n_jobs=-1).fit(X, E[:,0]) | |
rfr1 = KNeighborsRegressor(n_jobs=-1).fit(X, E[:,1]) | |
print rfr0 | |
print rfr1 | |
XX, YY = make_circles(n_samples=10000*n_samples, factor=.5, noise=.05) | |
FF = np.vstack((rfr0.predict(XX), rfr1.predict(XX))).T | |
LL = KMeans(n_clusters=k).fit_predict(FF[:,:1]) | |
print "finished computation" | |
pl.subplot(234) | |
plot_with_labels(XX, YY) | |
pl.subplot(235) | |
plot_with_labels(XX, LL) | |
pl.subplot(236) | |
plot_with_labels(FF, LL) | |
print "rand score outsample", adjusted_rand_score(YY, LL) | |
pl.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment